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Abstract

Let σ = {σi | i ∈ I} be a partition of the set of all primes P. Let σ0 ∈ Π ⊆ σ and let I be a class of
finite σ0-groups which is closed under extensions, epimorphic images and subgroups. We say that a
finite group G is ΠI-primary provided G is either an I-group or a σi-group for some σi ∈ Π \ {σ0} and
we say that a subgroup A of an arbitrary group G∗ is ΠI-subnormal in G∗ if there is a subgroup chain
A = A0 ≤ A1 ≤ · · · ≤ At = G∗ such that either Ai−1 E Ai or Ai/(Ai−1)Ai is ΠI-primary for all i = 1, . . . , t.
We prove that the set LΠI (G) of all ΠI-subnormal subgroups of G forms a sublattice of the lattice of all
subgroups of G and we describe the conditions under which the lattice LΠI (G) is modular.
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1. Introduction

Throughout this paper, G and G∗ always denote a finite group and an arbitrary group,
respectively. If N E G∗, we denote by L(G∗/N) the lattice of all subgroups H of G∗

with N ≤ H ≤ G∗.
A classical theorem of Wielandt states that the set Lsn(G) of all subnormal

subgroups of G is a sublattice of the lattice L(G) of all subgroups of G. A
generalisation of the lattice Lsn(G) was found by Kegel [9].

Let F be a class of groups. A subgroup A of G is called F-subnormal in G in the
sense of Kegel [9] or K-F-subnormal in G [3, Definition 6.1.4] if there is a subgroup
chain A = A0 ≤ A1 ≤ · · · ≤ At = G such that either Ai−1 E Ai or Ai/(Ai−1)Ai ∈ F for all
i = 1, . . . , t.

In [9], Kegel proved that if the class F is closed under extensions, epimorphic
images and subgroups, then the set LFsn(G) of all K-F-subnormal subgroups of G
is a sublattice of the latticeL(G). For every set π of primes, we may choose the class F
of all π-groups. In this way we obtain infinitely many functors LFsn assigning to every
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group G a sublattice ofL(G) containingLsn(G). This result has been generalised using
the theory of formations (see [2, 14] and [3, Ch. 6]).

Here, we seek to generalise Kegel’s result without applying the theory of
formations. Following Shemetkov [11], σ denotes some partition of the set of all
primes P. Thus, σ = {σi | i ∈ I ⊆ {0} ∪ N}, where P =

⋃
i∈I σi and σi ∩ σ j = ∅ for all

i , j. We denote by Π a subset of the set σ and set Π′ = σ \ Π. We assume that 0 ∈ I
and σ0 ∈ Π.

Let I denote a class of finite σ0-groups which is closed under extensions,
epimorphic images and subgroups. We will say that G is ΠI-primary provided G is
either an I-group or a σi-group for some σi ∈ Π \ {σ0}. We will omit the symbol I
in the notation and definitions when I is the class of all σ0-groups. Therefore, for
example, we say that G is Π-primary provided G is a σi-group for some σi ∈ Π.

Definition 1.1. We say that a subgroup A of G∗ is ΠI-subnormal in G∗ if there is a
subgroup chain A = A0 ≤ A1 ≤ · · · ≤ At = G∗ such that either Ai−1 E Ai or Ai/(Ai−1)Ai

is ΠI-primary for all i = 1, . . . , t.

Note that a subgroup A of G is K-I-subnormal in G if and only if it is ΠI-subnormal
in G, where Π = {σ0}, and A is subnormal in G if and only if it is ΠI-subnormal in G,
where Π = σ = {{2}, {3}, . . .}.

Example 1.2. Consider C29 o C7, a nonabelian group of order 203, and let P be
a simple F11(C29 o C7)-module which is faithful for C29 o C7. Construct the group
G = (P o (C29 o C7)) × A5, where A5 is the alternating group of degree 5. Let
σ = {σ0, σ1, σ2}, where σ0 = {2, 3, 5}, σ1 = {11, 29} and σ2 = {2, 3, 5, 11, 29}′. Let
Π = {σ1, σ2}. Then a subgroup H of G of order 4 is σ-subnormal in G but it is neither
Π-subnormal in G norσI-subnormal in G, where I is the class of all solubleσ0-groups
(see Lemma 2.1(1) below). The subgroup C29 is ΠI-subnormal in G but it is clearly
not subnormal in G.

It is not difficult to show that the intersection of any two ΠI-subnormal subgroups
of G is also ΠI-subnormal in G (see Lemma 2.1(3) below). It is well known that any
partially ordered set with the greatest element 1 in which each nonempty subset has a
greatest lower bound is a lattice. Hence, the setLΠI(G) of all ΠI-subnormal subgroups
of G is a lattice.

Modifying the concept of σ-nilpotency in [6], we say that G is ΠI-nilpotent if
G = A1 × · · · × At × A for some ΠI-primary groups A1, . . . ,At and a nilpotent group A.
Note that G is nilpotent if and only if it is ΠI-nilpotent, where Π = σ = {{2}, {3}, . . .}.

Our main goal is to prove the following theorem.

Theorem 1.3. The latticeLΠI(G) is modular if and only if the following two conditions
hold:

(a) if T, S ∈ LΠI(G), where T is a normal subgroup of S and either S/T is ΠI-
primary or |S/T | = p3 (p a prime), then L(S/T ) is modular;

(b) 〈A, B〉/(A ∩ B)〈A,B〉 is ΠI-nilpotent for each A, B ∈ LΠI(G) such that A and B
cover A ∩ B (in LΠI(G)) and A ∩ B is not normal in both A and B.
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Twice applying Theorem 1.3, first with Π = σ = {{2}, {3}, . . .} and then with
Π = {σ0} and with I the class of all identity groups, gives the following corollary.

Corollary 1.4 (Cf. [15] and [10, Theorem 9.2.3]). The following statements are
equivalent.

(i) Lsn(G) is modular.
(ii) If T ≤ S are subnormal subgroups of G, where T is normal in S and S/T is a

p-group, p a prime, then L(S/T ) is modular.
(iii) If T ≤ S are subnormal subgroups of G, where T is normal in S and |S/T | = p3

(p a prime), then L(S/T ) is modular.

We say that G is I-nilpotent if G = A × B, where A ∈ I and B are Hall subgroups
of G and B is nilpotent. Note, in passing, that every subgroup of G is K-I-subnormal
in G if and only if G is I-nilpotent [9]. Now we can characterise groups with modular
lattice LIsn(G).

Corollary 1.5. The lattice LIsn(G) is modular if and only if the following two
conditions hold:

(a) if T, S ∈ LIsn(G), where T is a normal subgroup of S and either S/T ∈ I or
|S/T | = p3 (p a prime), then L(S/T ) is modular;

(b) 〈A, B〉/(A ∩ B)〈A,B〉 is I-nilpotent for each A, B ∈ LIsn(G) such that A and B
cover A ∩ B (in LIsn(G)) and A ∩ B is not normal in both A and B.

The proof of Theorem 1.3 is based on many properties of ΠI-subnormal subgroups,
which we study in Section 2. In particular, we give the proof of the following two
results, which are the key steps in the proof of Theorem 1.3.

Proposition 1.6. Let A be a ΠI-subnormal subgroup of G. If A is ΠI-nilpotent, then
the normal closure AG of A in G is also ΠI-nilpotent. Moreover, if A is a σi-group for
some σi ∈ Π, then AG is a σi-group; if A is a Π′-group, then AG is also a Π′-group.

Theorem 1.7. The lattice LΠI(G) is a sublattice of the lattice L(G) of all subgroups
of G.

These two results may be of independent interest since they generalise known
results. First, in the case Π = σ = {{2}, {3}, . . .}, Proposition 1.6 and Theorem 1.7 yield
the following well-known result (see, for example, [4, Ch. A, Theorem 8.8]).

Corollary 1.8. If A1, . . . ,At are nilpotent subnormal subgroups of G, then 〈A1, . . . ,At〉

is also a nilpotent subnormal subgroup of G.

In the case Π = σ = {{2}, {3}, . . .}, or when Π = {σ0}, Theorem 1.7 yields the result
of Wielandt mentioned above.

Corollary 1.9. The set of all subnormal subgroups of G forms a sublattice of the
lattice of all subgroups of G.
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Another special case of Theorem 1.7 was also proved in [13].

Corollary 1.10. The set of all σ-subnormal subgroups of G forms a sublattice of the
lattice of all subgroups of G.

2. ΠI-subnormal subgroups

Let n be an integer. We write σ(n) = {σi | σi ∩ π(n) , ∅} and σ(G) = σ(|G|). We say
that n is a Π-number if σ(n) ⊆ Π and G is a Π-group if |G| is a Π-number.

We use (G∗)I and Oσi (G∗) respectively to denote the intersection of all normal
subgroups N of G with G∗/N ∈ I and with the property that G∗/N is a finite σi-group.
We say that G∗ is ΠI-perfect if G∗ = (G∗)I and Oσi (G∗) = G∗ for all σi ∈ Π with i , 0.

Lemma 2.1. Let A, K and N be subgroups of G∗. Suppose that A is ΠI-subnormal in
G∗ and N is normal in G∗.

(1) A ∩ K is ΠI-subnormal in K.
(2) If K is a ΠI-subnormal subgroup of A, then K is ΠI-subnormal in G∗.
(3) If K is ΠI-subnormal in G∗, then A ∩ K is ΠI-subnormal in G∗.
(4) If N ≤ K and K/N is ΠI-subnormal in G∗/N, then K is ΠI-subnormal in G∗.
(5) AN/N is ΠI-subnormal in G∗/N.
(6) If K ≤ A and A is ΠI-primary, then K is ΠI-subnormal in G∗.
(7) If A is ΠI-perfect, then A is subnormal in G∗.
(8) If |G∗ : A| is a Π′-number, then A is subnormal in G∗.

Proof. See the proof of [1, Lemma 2.2]. �

Recall that OΠ(G) denotes the subgroup of G generated by all its Π′-subgroups [13].
A subgroup H of G is called a Hall Π-subgroup of G if |H| is a Π-number and |G : H|
is a Π′-number, and a σ-Hall subgroup of G if H is a Hall Π-subgroup of G for some
Π ⊆ σ [12, 13].

Lemma 2.2. Let Π1 ⊆ Π and A be a Π-subnormal subgroup of G.

(1) If H , 1 is a Hall Π1-subgroup of G and A is not a Π′1-group, then A ∩ H , 1 is
a Hall Π1-subgroup of A.

(2) If A is a Hall Π1-subgroup of G, then A is normal in G.
(3) If |G : A| is a Π1-number, then OΠ1 (A) = OΠ1 (G).
(4) If N is a normal Π1-subgroup of G, then N ≤ NG(OΠ1 (A)).

Proof. Assume that the lemma is false and let G be a counterexample of minimal order.
By hypothesis, there is a subgroup chain A = A0 < A1 < · · · < Ar = G such that either
Ai−1 is normal in Ai or Ai/(Ai−1)Ai is ΠI-primary for all i = 1, . . . , r. Let M = Ar−1.
Without loss of generality, we may assume that M < G.

(1) First we show that M ∩ H , 1 is a Hall Π1-subgroup of M. If either H ≤ M
or M is normal in G, it is evident. Assume that K = MG , M and H � M. Then
|G : K| is a σi-number for some σi ∈ Π. Moreover, σi ∈ σ(H) ⊆ Π1 since otherwise
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we have H ≤ K ≤ M. Therefore, if K = 1, then G is a σi-group and so H = G. But then
M = M ∩ H is a Hall Π1-subgroup of M. Now assume that K , 1. Then HK/K , 1
is a Hall Π1-subgroup of G/K since H � M, and M/K is a Π-subnormal subgroup
of G/K such that M/K is not a Π′1-group since K < M and |G/K| is a σi-number,
where σi ∈ σ(H) ⊆ Π1. Therefore, the choice of G implies that (HK/K) ∩ (M/K) =

(H ∩ M)K/K , 1 is a Hall Π1-subgroup of M/K. Hence, |M : K(H ∩ M)| is a Π′-
number. On the other hand, H ∩ K is a Hall Π1-subgroup of K since K is normal
in G. Therefore, |M : H ∩ M| = |M : K(H ∩ M)| |K : K ∩ H| is a Π′1-number. Hence,
M ∩ H , 1 is a Hall Π1-subgroup of M. Since A is Π-subnormal in M and |M| < |G|,
the choice of G implies that H ∩ A = (H ∩ M) ∩ A is a Hall Π1-subgroup of A.

(2) If A = 1, it is clear. Now assume that A , 1. Then, for any x ∈ G, A ∩ Ax , 1 is
a Hall Π1-subgroup of A by Assertion (1). Therefore, A = Ax for all x ∈ G, giving (2).

(3) It is clear that |M : A| and |G : M| are Π1-numbers. Moreover, A is Π-subnormal
in M by Lemma 2.1(1). The choice of G implies that OΠ1 (A) = OΠ1 (M). Since |G : M| is
a Π1-number, G/MG is a Π1-number. Therefore, every Π′1-subgroup of G is contained
in MG, so OΠ1 (G) = OΠ1 (M) = OΠ1 (A).

(4) It is clear that |AN : A| is a Π1-number. On the other hand, A is Π-subnormal in
AN by Lemma 2.1(1). Hence, N ≤ NAN(OΠ1 (AN)) = NAN(OΠ1 (A)) by Assertion (3).

The lemma is proved. �

Lemma 2.3. Let A be a ΠI-subnormal subgroup of G.

(1) If R is a minimal normal subgroup of G and not ΠI-primary, then R ≤ NG(A).
(2) If N ≤ H ≤ G, where N is a normal subgroup of G such that G/N ∈ I, then

HI = GI.
(3) If G = AB for some subgroup B of G contained in I, then AI = GI.
(4) If a normal subgroup R of G belongs to I, then R ≤ NG(AI).

Proof. Assume that the lemma is false and let G be a counterexample of minimal order.
By hypothesis, there is a subgroup chain A = A0 < A1 < · · · < Ar = G such that either
Ai−1 is normal in Ai or Ai/(Ai−1)Ai is ΠI-primary for all i = 1, . . . , r. Let M = Ar−1.
Without loss of generality, we may assume that M < G.

(1) First assume that R is abelian. If R is a Π′-group, then |RA : A| is a Π′-
number and so A is subnormal in RA by Lemma 2.1(1),(8). Hence, R ≤ NG(A) by [4,
Ch. A, 14.3]. Now suppose that R is a p-group for some p ∈ σi ∈ Π. Then i = 0
and R < I since otherwise R is ΠI-primary, contrary to the hypothesis. Since I is
closed under extensions and subgroups, every group S ∈ I is a p′-group. But A is ΠI-
subnormal in RA. Hence, A is subnormal in RA since |AR : A| is a power of p (from
the proof of Lemma 2.1(8)). Hence, R ≤ NG(A). Finally, suppose that R is nonabelian.
Consider the group AR. Clearly, R is the product of some minimal normal subgroup
of AR. If AR < G, then the choice of G implies that R ≤ NG(A). Now assume that
G = AR. Then R � M since M < G. If M is not normal in G, then G/MG is ΠI-
primary and so RMG/MG ' R/R ∩ MG ' R is ΠI-primary, contrary to the hypothesis.
Hence, M is normal in G. Then R = (R ∩ M) × R0, where R ∩ M and R0 are normal
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in G and R0 ∩ M = 1. Hence, R ∩ M ≤ Soc(M) and M = M ∩ AR = A(R ∩ M). The
choice of G implies that R ∩ M ≤ NM(A) ≤ NG(A). On the other hand, R0 ∩ M = 1, so
R0 ≤ CG(M) ≤ CG(A). Thus, R ≤ NG(A). Hence, we have (1).

(2) Clearly, GI ≤ N and also N/GI ∈ I. Hence, NI ≤ GI. Since NI is a
characteristic subgroup of N, it is normal in G. Thus, G/NI ∈ I since the class I
is closed under extensions. It follows that GI ≤ NI and so NI = GI. Since N is normal
in H and H/N ∈ I, we have also that NI = HI. Hence, HI = GI.

(3) It is clear that |M : A| and |G : M| are π(B)-numbers, so |M : A| and |G : M| are
σ0-numbers. Moreover, as A is ΠI-subnormal in M and M = A(M ∩ B), the choice of
G implies that AI = MI. Note that G/MG ∈ I. Indeed, if M is normal in G, this follows
from the isomorphism BM/M ' B/B ∩ M since in this case MG = M. Assume that M
is not normal in G. Then either G/MG is a σi-group for some i , 0 or G/MG ∈ I.
But the former case is impossible since |G : M| is a σ0-number. Hence, G/MG ∈ I. It
follows from (2) that AI = MI = GI.

(4) By Lemma 2.1(1), A is ΠI-subnormal in AR, so AI = (AR)I by (3). It follows
that R ≤ NAR(AI) ≤ NG(AI).

The lemma is proved. �

Lemma 2.4. If H is a normal subgroup of G and π = π(H/H ∩ Φ(G)), then H has a
Hall π-subgroup E and E is normal in G. Moreover, if H/H ∩ Φ(G) ∈ I, then E ∈ I.

Proof. See the proof of [13, Lemma 2.5]. �

Proof of Proposition 1.6. We use GI to denote the product of all normal subgroups
of G belonging to I. Since the class I is closed under extensions and subgroups, every
subgroup of GI belongs to I.

If A = 1 or A = G, then A = AG is ΠI-nilpotent by hypothesis. Now assume
that 1 , A , G. By hypothesis, A = B1 × · · · × Bt × B for some ΠI-primary groups
B1, . . . , Bt and a nilpotent group B. Then AG = (B1)G · · · (Bt)GBG. Without loss of
generality, we can assume that B1 ∈ I, Bi is a σi-group for all i = 2, . . . , t and B is
a Π′-subgroup of G. Therefore, in order to prove that AG is ΠI-nilpotent, it is enough
to prove the following three claims.

Claim 1. BG
1 ∈ I. It is enough to show that B1 ≤ GI. Assume that this false and let

G be a counterexample of minimal order. Let D = GI. Then B1 , 1 and G , D. Let
R be a minimal normal subgroup of G. Clearly, B1 is ΠI-subnormal in G and B1 is
ΠI-nilpotent. The choice of G and Lemma 2.1(5) imply that B1R/R ≤ O/R = (G/R)I
since B1R/R is a σ0-group. Therefore, R � D, so D = 1 and B1 ∩ R < R. Suppose
that L = B1 ∩ R , 1. Then L is ΠI-subnormal in G by Lemma 2.1(3) and so L is
ΠI-subnormal in R by Lemma 2.1(1). If R < G, then the choice of G implies that
L ≤ RI ≤ D. But then R ≤ D, which is a contradiction. Hence, R = G is a simple group,
which is impossible since B1 , 1 and G , D. Therefore, R ∩ B1 = 1.

If O < G, then the choice of G implies that B1 ≤ OI ≤ GI, contrary to our
assumption on B1. Hence, G/R = O/R ∈ I. It follows from [8, Ch. I, Hilfssatz 9.6] that
R is the unique minimal normal subgroup of G. If R ≤ Φ(G), then G has a normal Hall

https://doi.org/10.1017/S0004972717000259 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000259


[7] Subnormal subgroups of a finite group 239

subgroup E0 ∈ I by Lemma 2.4. It follows that E0 ≤ D = 1, which is a contradiction.
Thus, R � Φ(G), which implies that CG(R) ≤ R.

Now we show that R ≤ NG(B1). First assume that R is ΠI-primary. Then R is a σi-
group for some i , 0 and so Oσi (B1) = B1. Therefore, R ≤ NG(B1) by Lemma 2.2(4).
On the other hand, if R is not ΠI-primary, then R ≤ NRB1 (B1) by Lemma 2.3(1).
Therefore, B1R = B1 × R and so B1 ≤ CG(R) ≤ R. This contradiction completes the
proof of Claim 1.

Claim 2. If i > 1, then BG
i is a σi-group. This claim can be proved similarly to Claim

1 using Lemma 2.2 instead of Lemma 2.3.

Claim 3. BG is a nilpotent Π′-group. Assume that the claim is false and let G be a
counterexample of minimal order. Then B , G. It is clear that B is ΠI-subnormal in
G. Hence, there is a subgroup chain B = A0 < A1 < · · · < Ar = G such that either Ai−1

is normal in Ai or Ai/(Ai−1)Ai is ΠI-primary for all i = 1, . . . , r. Let M = Ar−1. Without
loss of generality, we can assume that M < G. Then BM is a nilpotent Π′-group by the
choice of G. If M is normal in G, then BM is subnormal in G. Using Claim 2 with
Π = σ = {{2}, {3}, . . .}, we conclude that BG = (BM)G is a nilpotent Π′-group. Finally,
if M is not normal in G, then M/MG is a Π-group and so BM ≤ MG. Hence, as above,
we conclude that BG = (BM)G is a nilpotent Π′-group. �

Proposition 2.5. Let NΠI be the class of all ΠI-nilpotent groups.

(1) The class NΠI is closed under products of normal subgroups, homomorphic
images and subgroups. Moreover, if G/Φ(G) is ΠI-nilpotent, then G is ΠI-
nilpotent.

(2) G ∈ NΠI if and only if every subgroup of G is ΠI-subnormal in G.

Proof. Assertion (1) follows from Lemma 2.4. For Assertion (2), see the proof of
[7, Proposition 3.4]. �

Proof of Theorem 1.7. In view of Lemma 2.1(3), we only need to show that if A and
B are ΠI-subnormal subgroups of G, then 〈A, B〉 is ΠI-subnormal in G. Assume that
this is false and let G be a counterexample of minimal order. Then A , 1 , B and
〈A, B〉 , G. Let R be a minimal normal subgroup of G.

Claim 1. 〈A, B〉R = G and so 〈A, B〉G = 1.
Suppose that L = 〈A, B〉R , G. Lemma 2.1(1) implies that A and B are ΠI-

subnormal in L. Hence, the choice of G implies that 〈A, B〉 is ΠI-subnormal in L.
On the other hand, L/R = 〈A, B〉R/R = 〈AR/R, BR/R〉, where AR/R and BR/R are
ΠI-subnormal in G/R by Lemma 2.1(5), so the choice of G implies that L/R is ΠI-
subnormal in G/R and so L is ΠI-subnormal in G by Lemma 2.1(4). But then 〈A, B〉
is ΠI-subnormal in G by Lemma 2.1(2). This contradiction proves Claim 1.

Claim 2. If S is a nonidentity characteristic subgroup of C, where C ∈ {A, B}, then
R � NG(S ). In particular, R � NG(C).
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Indeed, if R ≤ NG(S ), then S G = S 〈A,B〉R = S 〈A,B〉 ≤ 〈A, B〉G = 1, which is a
contradiction.

Claim 3. R is ΠI-primary. Hence, R is a σi-group for some σi ∈ Π.
This follows from Claim 2 and Lemma 2.3(1).

Claim 4. A and B are ΠI-primary.
Claim 3 implies that R is a ΠI-primary σi-group for some σi ∈ Π. First assume that

i = 0. Then R belongs I, so R ≤ NG(AI) by Lemma 2.3(2). Hence, A/AI = A/1 ' A ∈ I
by Claim 2. It follows that A is an I-group. Now assume that R is a σi-group for
i , 0. Then R ≤ NG(Oσi (A)) by Lemma 2.2(4). But Oσi (A) is characteristic in A, so
Oσi (A) = 1 by Claim 2. Hence, A is a σi-group. This shows that A is ΠI-primary.
Similarly, we can see that B is ΠI-primary.
Final contradiction. From Claim 4, we know that A and B are ΠI-primary.
Consequently, A and B are ΠI-nilpotent. Hence, AG and BG are ΠI-nilpotent
by Proposition 1.6. It follows from Proposition 2.5(1) that AGBG is ΠI-nilpotent.
Therefore, by Proposition 2.5(2), 〈A, B〉 is ΠI-subnormal in G. This contradiction
completes the proof. �

3. Proof of Theorem 1.3

First suppose that LΠI(G) is modular. We derive (a) and (b).
(a) If T and S are ΠI-subnormal subgroups of G, where T is normal in S , and

either S/T is ΠI-primary or |S/T | = p3 (p a prime), then L(S/T ) = LΠI(S/T ) by
Lemma 2.1(6). Hence, L(S/T ) is modular.

(b) Now assume that A and B are ΠI-subnormal subgroups of G such that A and B
cover A ∩ B (in LΠI(G)) and also A ∩ B is not normal in both A and B. We show that
〈A, B〉/(A ∩ B)〈A,B〉 is ΠI-nilpotent. In view of Theorem 1.7, 〈A, B〉 is ΠI-subnormal in
G. Hence, LΠI(〈A, B〉) is a sublattice of the modular lattice LΠI(G), so LΠI(〈A, B〉) is
modular. Then, in case 〈A, B〉 < G, we see that 〈A, B〉/(A ∩ B)〈A,B〉 is ΠI-nilpotent by
induction. Finally, suppose that 〈A, B〉 = G. Then, since A and B cover A ∩ B and the
lattice LΠI(G) is modular, A and B are coatoms in the lattice LΠI(G) by [10, Theorem
2.1.10]. Therefore, either A is normal in G or G/AG is ΠI-primary. In the former case
A ∩ B is normal in B, contrary to our choice of A and B. Hence, G/AG is ΠI-primary,
so it is ΠI-nilpotent. Similarly, G/BG is ΠI-nilpotent. Therefore, G/AG ∩ BG is ΠI-
nilpotent by Proposition 2.5, so G/AG ∩ BG = G/(A ∩ B)G = 〈A, B〉/(A ∩ B)〈A,B〉 is ΠI-
nilpotent.

The sufficiency of (a) and (b) follows from the following proposition.

Proposition 3.1. The lattice LΠI(G) is modular if the following two conditions hold.

(a) If T ≤ S are ΠI-subnormal subgroups of G, where T is normal in S and either
S/T is ΠI-primary or |S/T | = p3 (p a prime), then L(S/T ) is modular.

(b) 〈A, B〉/(A ∩ B)〈A,B〉 is ΠI-nilpotent for each A, B ∈ LΠI(G) such that A and B
cover A ∩ B, A ∩ B is not normal in both A and B and also |A : A ∩ B| and
|B : A ∩ B| are σ-coprime, that is, σ(|A : A ∩ B|) ∩ σ(|B : A ∩ B|) = ∅.
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Proof. Suppose that the proposition is false and let G be a counterexample of minimal
order. Then G is neither ΠI-primary nor a group of order p3 (p a prime) (otherwise,
L(G) = LΠI(G) is modular by hypothesis).

(i) If A, B ∈ LΠI(G), where A covers B and B is not normal in A, then A/BA is a
nonabelian ΠI-primary group of order pq for some primes p and q. Hence, |A : B| is
a prime.

Since B is not normal in A and A covers B (in LΠI(G)), A/BA is ΠI-primary.
Therefore, every subgroup of A/BA is ΠI-subnormal in A/BA by Lemma 2.1(6), so
B is a maximal subgroup of A. Thus, A/BA is a primitive group. On the other hand, by
hypothesis, L(A/BA) is modular. Therefore, A/BA is a nonabelian ΠI-primary group
of order pq with p and q distinct primes, by the Iwasawa theorem [10, Theorem 2.4.4]
(see also [10, Lemma 2.4.3]).

(ii) LΠ(G) is lower semimodular.
We need to show that if A, B ∈ LΠI(G) are such that 〈A, B〉 covers A (in LΠI(G)),

then B covers A ∩ B (in LΠ(G)). Suppose that this is false. Then G = 〈A, B〉. Indeed,
assume that 〈A, B〉 < G. In view of Theorem 1.7, the hypothesis holds for 〈A, B〉.
The choice of G implies that LΠ(〈A, B〉) is modular. Hence, this lattice is lower
semimodular by [10, Theorem 2.1.10] and so B covers A ∩ B, which is a contradiction.
Hence, G = 〈A,B〉. We show that A is not a conjugate of B. Indeed, assume that A = Bx.
Then AG = BG. Lemma 2.1(4),(5) implies that the hypothesis holds for G/AG. The
choice of G implies that the lattice LΠI(G/AG) is modular. It is clear also that in this
lattice G/AG = 〈A/AG, B/AG〉 covers A/AG. Hence, B/AG covers (A/AG) ∩ (B/BG) =

(A ∩ B)/AG and so B covers A ∩ B (inLΠ(G)), which is a contradiction. Hence, A , Bx

for all x ∈ G. Now we show that A is not normal in G. Assume that A E G. Then
AB = G. Assume that T is a ΠI-subnormal subgroup of G such that A ∩ B ≤ T ≤ B.
Then AT is ΠI-subnormal in G by Theorem 1.7. Hence, from A ≤ AT ≤ AB = G, it
follows that either A = AT or AT = AB. In the former case, T ≤ A and so A ∩ B = T . In
the second case, B = T (B ∩ A) = T. Hence, B covers A ∩ B. This contradiction shows
that A is not normal in G. Assume that AB ,G. Then AB/AG ,G/AG. Since G = 〈A,B〉
and G covers A, it follows that B � A. Hence, G/AG is a nonabelian group of order pq
for some primes p and q and |G : A| is a prime by (i). Since A is not a conjugate of B,
A/AG is not a conjugate of AGB/AG in G/AG, so G/AG = (AGB/AG)(A/AG) = AB/AG,
which is a contradiction. Thus, AB = G. Then, by (i) again, |G : A| = |B : A ∩ B| is a
prime. This implies that B covers A ∩ B, which is a contradiction. Hence, we have
proved (ii).

(iii) LΠI(G) is upper semimodular.
In view of [5, page 173], it is enough to show that if A, B ∈ LΠI(G) are such that A

and B cover A ∩ B (in LΠI(G)), then 〈A, B〉 covers A (in LΠI(G)). Suppose that this is
false.

Claim 1. G = 〈A, B〉. Assume that 〈A, B〉 < G. Then the choice of G implies that
LΠI(〈A, B〉) is modular. Hence, this lattice is upper semimodular by [10, Theorem
2.1.10] and so 〈A, B〉 covers A, which is a contradiction. Hence, we have Claim 1.
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Claim 2. AB , BA. Indeed, if AB = BA, then G = AB by Claim 1. Hence, for every
subgroup T ∈ LΠI(G) satisfying A ≤ T ≤G, we have T = A(T ∩ B). On the other hand,
since B covers A ∩ B, from A ∩ B = T ∩ A ∩ B ≤ T ∩ B ≤ B it follows that either
A ∩ B = T ∩ B or T ∩ B = B. In the former case, T = A(T ∩ B) = A(A ∩ B) = A. In
the second case, T = G. Hence, G = 〈A, B〉 = AB covers A, which is a contradiction.
Hence, we have Claim 2.

Claim 3. (A ∩ B)G = 1. Assume that (A ∩ B)G , 1. Then, by Lemma 2.1(4),(5), the
hypothesis holds for G/(A ∩ B)G. The choice of G implies that LΠI(G/(A ∩ B)G) is
modular. Since B covers A ∩ B (in LΠI(G)), B/(A ∩ B)G covers (A ∩ B)/(A ∩ B)G (in
LΠI(G/(A ∩ B)G)). Hence, 〈A, B〉/(A ∩ B)G covers A/(A ∩ B)G (in LΠI(G/(A ∩ B)G)),
which implies that 〈A, B〉 covers A (in LΠI(G)). This contradiction proves Claim 3.

Claim 4. A and B are not both ΠI-primary. Assume, for example, that A is ΠI-
primary. First suppose that A ∈ I. Then AG ∈ I by Proposition 1.6. By Claim 1,
G = AGB and so BI = GI is normal in G by Lemma 2.3(3). Since G is not ΠI-primary,
BI , 1. Let R be a minimal normal subgroup of G contained in BI. By Claim 3, R � A,
so (A ∩ B)R = B since B covers A ∩ B. Hence, AB = A(A ∩ B)R = AR = BA, contrary to
Claim 2. Hence, A is a σi-group for some i , 0. Then AG is a σi-group by Proposition
1.6. Hence, |G : B| = |AGB : B| is a σi-number. By Lemma 2.2(3), Oσi (B) = Gσi (B)
is normal in G. Since G is not ΠI-primary, Oσi (B) , 1 and so, as above, AB = BA,
contrary to Claim 2. Hence, we have Claim 4.

Claim 5. A ∩ B , 1. Assume that A ∩ B = 1. Then A and B are minimal ΠI-subnormal
subgroups of G, that is, A and B are atoms in LΠI(G). Hence, A and B are simple
groups. By Claim 4, A and B are ΠI-perfect, so A and B are subnormal in G by
Lemma 2.1(7). If one of these subgroups, say A, is nonabelian, then R = AG is a
minimal normal subgroup of G and R ≤ NG(B) by Lemma 2.3(1) since A is not ΠI-
primary by Claim 4. But then AB = BA, contrary to Claim 2. Hence, |A| = p and |B| = q
for some primes p and q. Proposition 1.6 (using the case when Π = σ = {{2}, {3}, . . . , })
implies that A ≤ Op(G) and B ≤ Oq(G). Therefore, by Claim 2, p = q, so G = Op(G).
But then LΠI(G) = L(G) is modular by [10, Lemma 2.3.3] and Condition (a), which is
a contradiction. Hence, we have Claim 5.

Claim 6. Neither A ≤ NG(A ∩ B) nor B ≤ NG(A ∩ B). Assume, for example, that
B ≤ NG(A ∩ B). If also A ≤ NG(A ∩ B), then A ∩ B is normal in G by Claim 1, which is
impossible in view of Claims 3 and 5. Therefore, A � NG(A ∩ B). Then A/(A ∩ B)A is
a ΠI-primary σi-group for some σi ∈ Π by (i). First suppose that A/(A ∩ B)A ∈ I.
Then (A ∩ B)I = AI is normal in A by Lemma 2.3(2). On the other hand, since
B ≤ NG(A ∩ B) and (A ∩ B)I is characteristic in A ∩ B, we have B ≤ NG((A ∩ B)I).
Hence, (A ∩ B)I is normal in G, which in view of Claim 3 implies that (A ∩ B)I = 1.
But then A is ΠI-primary, contrary to Claim 4. Therefore, A/(A ∩ B)A is a σi-group
for some σi ∈ Π \ {σ0}. But in this case we see similarly that A is a σi-group. Thus, A
is ΠI-primary, contrary to Claim 4. This contradiction completes the proof of Claim 6.
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Final contradiction for (iii). From (i) and Claim 6, A/(A ∩ B)A and B/(A ∩ B)B

are ΠI-primary. First suppose that these two groups are σi-groups for the same
σi ∈ Π. Assume that i , 0. Then Oσi (A ∩ B) = Oσi (A) = Oσi (B) by Lemma 2.2(3),
so Oσi (A ∩ B) is normal in G by Claim 1. Hence, from Claim 3, Oσi (A ∩ B) = 1.
It follows that A and B are σi-groups. But then A and B are ΠI-primary, which
contradicts Claim 4. Therefore, i = 0, that is, A/(A ∩ B)A ∈ I and B/(A ∩ B)B ∈ I.
Then AI = (A ∩ B)I = BI by Lemma 2.3(2). From Claims 1 and 3, (A ∩ B)I = 1, which
also implies that A and B are ΠI-primary. This contradiction shows that A/(A ∩ B)A is
a σi-group and B/(A ∩ B)B is a σ j-group for distinct σi and σ j in σ. By Claim 3 and
the hypothesis, G/(A ∩ B)G = 〈A,B〉/(A ∩ B)G = G/1 is ΠI-nilpotent by Condition (b).
Thus, LΠI(G) = L(G) by Proposition 2.5(ii) and G = A1 × · · · × At × At+1 × · · · × An is
the direct product of some ΠI-primary groups A1, . . . ,At and primary (that is, of prime
power order) groups At+1, . . . ,An. Note thatL(A1), . . . ,L(At) are modular by Condition
(a) and L(At+1), . . . ,L(An) are also modular by Condition (a) and [10, Lemma
2.3.3]. Therefore, L(A1) × · · · × L(An) is modular. But L(G) ' L(A1) × · · · × L(An)
by [10, Lemma 1.6.4]. Therefore,LΠI(G) = L(G) is modular, which is a contradiction,
proving (iii).

From (ii) and (iii) and [10, Theorem 2.1.10], the lattice LΠI(G) is modular, contrary
to the choice of G. The proposition is proved. �
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