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A FAMILY OF GENERALIZED RIESZ PRODUCTS 

A. H. DOOLEY AND S. J. EIGEN 

ABSTRACT. Generalized Riesz products similar to the type which arise as the spec­
tral measure for a rank-one transformation are studied. A condition for the mutual sin­
gularity of two such measures is given. As an application, a probability space of trans­
formations is presented in which almost all transformations are singular with respect to 
Lebesgue measure. 

1. Introduction. Recently, Choksi and Nadkarni [6] gave a simple proof that the 
maximal spectral type of a rank-one transformation was, modulo some atoms, a kind of 
generalized Riesz product measure. 

In [2], Bourgain examined a special space of rank-one transformations called class-
one (originally due to Ornstein [14]) and derived, for each transformation in this space, 
the same kind of generalized Riesz product as part of the spectral measure of an L2 

function. Using this, together with some results of Bonami on the group £>oo> Bourgain 
demonstrated that almost all the mixing transformations of class-one have spectral mea­
sures which are singular with respect to Lebesgue measure. 

The generalized Riesz products obtained by Bourgain and Choksi-Nadkarni differ in a 
significant way from the generalized Riesz products considered by Parreau [15], or from 
the G-measures considered in [3] in that they are no longer defined on independent sets, 
but on "blocks" of integers which are pairwise independent. 

In this paper, we show how to generalize the dichotomy techniques of [4], [11], [17] 
to this setting. As a result, we obtain a Bourgain-type result based on a simple counting 
argument. 

The plan of the paper is as follows: In Section 2, we define our generalized Riesz 
products, prove uniqueness and give a criterion for continuity. Section 3 contains the 
principal dichotomy results. In Section 4, we give a criterion for absolute continuity both 
with respect to Lebesgue measure and with respect to another generalized Riesz product. 
In the final section, we apply these results to the Ornstein class-one transformations. 

2. A family of generalized Riesz products. In [6], Choksi and Nadkarni defined 
polynomials on the unit circle by putting 

(2-°> * ( 2 , =^( i + i ' z " ( A * a -" ! ) ) 
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and set/?* = |#AJ2. (Here h^ m* and at are given as part of the construction of a rank-one 
transformation—see Section 5). Then they considered the weakMimit \i = lim njt=i PkK 
which exists, is unique, and is related to the maximal spectral type of the constructed 
rank-one transformation. 

The definitions below are motivated by this example. First, some notation. 

NOTATION 2.1. Let S denote a finite set of positive integers. Set 

©i(5) = {*i - 5 2 : st G 5 U {0},si ^ s2}. 

Notice that we can also write the set 

2>i(5) = {eiSl+e2s2 : st G S,sx 4 ^tx G {-1,0,1},0 < £ M < 2 , £ > | < l } . 

Observe that if q(z) = l^s^s0 b(s)z~s is a polynomial with frequencies from 5° = 5 U 
{0}, then ©i(5) U {0} consists exactly of the frequencies which occur in h{z) = \q(z)\2. 
Indeed, one can write 

h(z)=j:\b(sf+ £ 7(«0r", 
seS° «6®,(5) 

where 

7(«)= E KsiWK), 
U=SI S 2 

the sum being taken over all representatives u = s\ — s2 with s\ =j4 s2. If, as will be the 
case with most of our examples, there is a unique such representation, then there is just 
a single term in this sum. 

The function b{s) defined on 5° is assumed to satisfy Uses0 \KS)\2 < 1-
In order to cover the Riesz product case, we normalize h(z) so that it has constant term 

1. We call this modified function/? 

/7(Z) = A ( Z ) + ( 1 - E I ^ ) | 2 ) 
v seS° J 

By the construction, we have 

LEMMA 2.2. With the above notation 

fi)Spd\ = l, 
(ii) p(z) = 1 + EMG2>1(5)(EM=JI-52 b(s\)b(s2))z~u where the inner sum is taken over 

all representations u = s\ —s2 with s\ ^ s2 G 5°. • 

DEFINITION 2.3. We shall say that S is (order-one) difference dissociate if each of 
the elements of (D\(S) are obtained in a unique way as s\ — s2 with s\ ^ s2 G 5°. 

For difference dissociate sets, the form of/? is particularly simple, as the inner sum 
contains just one term. 

Our generalized Riesz products will be constructed from a sequence {pk} of functions 
of the above form. 
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DEFINITION 2.4. Let {Sk • k G N} be a sequence of finite sets of positive integers. 
We will say that {Sk} is dissociate across the k's if the (nonempty) finite sums £"=1 w,-
with ut G ©i(5W/) and «,- ̂  «7 for z ^y , are all distinct. 

REMARK 2.5. If each Sk is a singleton, then to say that {Sk} is dissociate across the 
k's amounts to saying that S = US£i Sk is a dissociate set in the usual sense [8]. 

NOTATION 2.6. Now suppose that we have a sequence {Sk ' k G N} of finite sets of 
positive integers. Suppose further that for each k G N, we have a trigonometric polyno­
mial qk(z) = T,sEso bk{s)z~s with £^50 |6jt(s)|2 < 1. As above, set 

#)H#)|2 + (i-EW2)-

Define the measure \in = Ilk==iPkK where A denotes Lebesgue measure. 
It is easy to recover the usual Riesz product construction from this. Let 5*: = {sk} 

a singleton for each k, and assume we are given a* G (—1,1). Choose ak and bk with 
al+ b\ < 1 and lakbk = ak. Then, in the above construction put qk(z) = ak + fo^*. This 
results in 

n 

dpin{t) — JJ(1 + a&cos£&0<fr-

A slight variation of the usual proof gives 

PROPOSITION 2.7. If {Sk} is dissociate across the k's, then the //„ have a unique 
weak*-limit. 

Notice that fik(0) = 1, and if u G Z \ {0}, /2*(«) = 0 unless w has the form E ^ wl? 

1// G (D\{Si) U {0} with only finitely many ut non zero. If u has this form, then by 
dissociativity across the k% 

£ * ( K ) = n A ( K / ) = n E *(*i)5fe), 
1=1 i=\Ui=S\— S2 

the sum being over all such representations of w/ with s\ ^ s2 E Sf. Thus we have 

COROLLARY 2.8. Suppose that {Sk} is dissociate across the k's. Let /i be the unique 
weak"-limit of the /i*. Then ifu G N has the form u = Y!?=\ w,-, where u\ G ©i(5W/) #«</ 
nt ^ njfor i ̂ j, we have 

N 

A(M) = I I A(w/)» where 

Kud = E b(si)b(s2), 

the sum being taken over all representations ofui — s\— s2 with s\=^s2eSf.Ifu 
cannot be represented in this way, we have /2(w) = 0. 

DEFINITION 2.9. The set of integers which have the form £ uh ut G 2>i (A,), nt ^ nj 
for / ̂  j , is denoted fTi{*St} and referred to as the order-l words of Sk-

Any measure formed by the above procedure will be called a generalized Riesz prod­
uct. 
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3. Mutual singularity. The usual proofs of singularity for Riesz products involve 
heavy use of the identity (L(U\ — uj) = /2(wi)/2(w2), where the w, belong to the dissociate 
set upon which the Riesz product is based. In our case, this equality no longer holds, but 
we can nevertheless control the sum of the terms (L{U\ — ui)— fi(u\ )/2(w2), u\ > u2 £ ©1 (Sk)-
This will be done in Lemma 3.6, which is central to the proof of our main theorem. 

In order to control our estimates, we need to assume that {Sk} is a bit more than 
difference dissociate. 

NOTATION 3.1. For 5 a finite set of positive integers, we are interested in the set 
2)2(5) = <DX (®i(5)) = { w - v : w ^ v G ©i(5)0}, where £>i(5)° = ©i(5) U 0. This 
set will arise when, in the sequel, we calculate \p\2. A problem with this set is that many 
terms are obtained in more than one manner as a sum, s — s' = (s — t) — (sf — t) for all 

The above set is contained in (Di(S) where we define 

<2K 

®K(S) = \Y,eiSi : Si G S,s{ ^ Sj,i &,* G {-^, . . . ,0 , . . . ,^} , 
w=i 

EM^o,|Ee,|<Js:j 

DEFINITION 3.2. We will say that 5 is order-2 dissociate, if each number in (Dz(S) 
is obtained as a unique sum. 

Given a sequence {Sk}, we can form the order-2 words n = Y^=l wz where wt G 
^hiSm), fy ^ rtj for / ^j. Notice that every order-1 word is also an order-2 word. 

DEFINITION 3.3. We say that the sequence {Sk} is order-2 dissociate across the ks 
if all order-2 words are obtained as unique sums. 

These definitions are actually slightly stronger than needed in the sequel, but they are 
somewhat simpler than a collection of statements which give the best possible theorem. 
We leave to the interested reader the task of formulating the weakest possible conditions 
under which our techniques apply. 

LEMMA 3.4. With the above Definitions 3.2 and 3.3, for u\, ui G ©1(5*), the differ­

ence U\—U2 cannot be expressed as £ u„jt unj G CD\ (Snj) except in the form u\ — ui = t/3, 

"3 G ©i(A). 

PROOF. The number u\ — 1/2 = fai — ^2) — to — &0 is in ©2(5*). As such, there is 
only one way (this way) to express it as an order-2 word. For it to be an order-1 word 
there must be some cancellation. Either, si = S3 or S2 = S4. If there is no cancellation, 
then u\ —1/2 is an order-2 word which is not an order-1 word and so cannot be any other 
sum. 

We will now show how to adapt Peyriere's proof of the singularity of Riesz products 
to the generalized Riesz products considered here. The theorem we will prove is 
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THEOREM 3.5. Suppose that {Sk} is order-2 dissociate across the k's, with each 
Sk order-2 difference dissociate. Suppose further that \i and / / are generalized Riesz 
products based on {Sk}* associated to the sequences {bk(s) : s € Sk} and {b'k{s) : s G 
5*} respectively, as in Notation 2.6. 

If E £ i E ^ \bk(s)bk(t) - b'k(s)b'k(t)\
2 = oo then /x V -

The above is equivalent, by each Sk order-1 dissociate, to 

oo 

E E |£(")-/i>)|2 = oo. 
»=i «<E£>I(5*) 

PROOF. Choose a sequence 0 < n(l) < n(2) < • • • with 

"0+1) 

E E \bk{s)bk{t)-b'k{s)b'k(t)\
2>\. 

Define 
i /? »(/+i) 

/*(*) = . E E E 4?(̂ "' - M*)M0), 
* 1 *=«(i)H j , /€ jg 

1 /? «(i+l) 

«*(*)=»£ E E ^(^-'-^(^(o), 
* 1 *=n(i)+l ̂ 6 5 » 

where 

btsWfi-fysWjV) 

and c $ = 0 for n(i) +l<j< n(i + 1). 

It follows thatg s - / « = 1, Sfrdu = SgRdn' = 0, and I $ $ E ^ c ^ f < 1. 
Our aim is to calculate J |/R|2 <//X, and show it is small. 
We calculate 

I^I2 = 4 ( E E E C#&(*~ - bk(s)m){zu-v - bAu)W)) 
u,ve.5? 

+ E E E cfjc^-' - bk(s)bk{t)) (i-y - bk(u)bk(v)) 
k=j (s,t)jHu,v) 

s,teS° 

+ EE E \cfj\2{^'-h^m)^-'-b&wfij) 
k=j (s,/)=(w,v) J 

s,teS°k 

Expanding and integrating the above, we find that the first sum-triple is zero and the 
third sum-triple is easily bounded by 1 /R. The middle sum-triple reduces to 

I R n(i+\) , . 

« E E E <#<#> U{(s-t)-(u-v))-bk{s)bk(t)bk{u)bkiy)) 
K i=U=n(i)+l(s,0^(«,v) V ' 
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We claim that this is dominated by 3/R. It will then follow that J \fR\2 d[i < 4/R. By 
interchanging the roles of/x and // , one sees that J |g/?|2 d\J < 4/R. 

The proof now follows exactly as in Peyriere. By the F. Riesz theorem, we can find 
a sequence i?„ so that^ —•> 0/i a.e. andg#n —> 0//' a.e. Recall also thaXfRn — gR„ = 1. 
Letting v4 be the set of points x so that^n(jc) —> 0, and B be the set of points where 
gRn (x) —• 0, we have fi(A) = 1, n'(B) = \,ii'(A) = fi(B) = 0 and A and 5 disjoint. From 
this follows /x_L/i'. 

The proof of the theorem will be complete once we show the following lemma. 

LEMMA 3.6. For each i 

|n(/+l) 

(3.6) E E 4 K w * -')-(«- v)) - W (̂0M")Mv)) < 3. 

PROOF. Consider the first term of Lemma 3.6. 

n(i+\) 

E E c?]c$il((s-t)-(u-vj) = 
"(0+1 (V#(«,v) 

E E - : ; = r , x2 K^ -')-("- v)j. 
«o>i (^(M ( E E M*)**(0 - ^ (^Wl 2 ) 

Since {5*} is order-2 dissociate across the k's we have 

I fi(s — u) if* = v, 
/ 2 (v -0 if s = u, 
0 otherwise. 

For the case t = v this gives 

?.*** i{bk(s)bk(t) - b'k(s)b'k(t))bk(s)) ((bk(u)bk(t) - b'k(u)b'k(tj)bk(uj) 

«w> (E E M*)W0 - *i(*)ii(0l2) 

«»i) ŝ sj (E^,|( w*w - ̂ )Ai(o)*t(*)| ^ J p J w ^ l w ^ r a ) 
< V^ i_̂  L 
~ »0>i (E £ M*)M0 - *i(*)^(0|2)2 

which by Holder's inequality, applied to each of the innermost sums, is < 1. Similarly, 
for the case s = u and the second term of Lemma 3.6. • 

In [5], Brown and Moran using similar techniques consider the problem of mutual 
singularity for two Riesz products based on different dissociate sequences. This will be 
explored in a future paper. The criteria of Brown and Moran is not valid for groups where 
there are large sets of characters whose square is one, see [12]. 
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and b'k. 

4. Absolute continuity. In this section we give a sufficient condition for two gen­
eralized Riesz products to be mutually absolutely continuous which generalizes Theo­
rem 7.2.1 (ii) of [8] and provides a partial converse to Theorem 3.5. The method is a 
more or less straightforward extension of the proof given in [8]; we will just indicate the 
necessary changes. The theorem is 

THEOREM 4.1. Suppose that {Sk} Is order-2 dissociate across the ks with each Sk 
order-2 dissociate. Let /x and p! denote generalized Riesz products based on {Sk}, asso­
ciated to the sequences {bk(s) : s G Sk}%Li and {b'k(s) : s G Sk}kL\ respectively. Then 
the two conditions T>seSk \°k(s)\2 < 1 for all k, and 

« £*«6ff Ms)W - b'k(s)W)\2 

> -r r - < OO 

tx 2 - ( E ^ I M * ) I 2 + I ^ ) I 2 ) 
imply \i' < [i. 

PROOF. AS in Notation 2.6, we associate polynomials/?# and/?£ respectively to 6* 
ib'k. 
Define, for n, r, s G Nh(n, r,s) = n?=1 p) Yt£l£r+\ Pk, and set 

/

n+r 

II (pkp'k)
l/2h(n,r,s)d\. 

k=n+\ 

An application of Holder's inequality shows that 0 < I(n,r,s) < 1 for all «, r, s. A 
straightforward adaptation of Lemma 7.2.6 of [8] gives: 

LEMMA. Suppose that lim^oo (infr„s I(n, r, s)) = 1. Then p! is absolutely continuous 
with respect to \i and 

k=\Pk dp 

PROOF. The proof is, indeed word-for-word the same as that of Lemma 7.2.6 of [8], 
except that at the top of Page 208 one should replace the phrase "just a Riesz product" 
with the phrase "just a generalized Riesz product". • 

PROOF OF THE THEOREM. One has 

n+r n+r 1 , /~ 

U(PkP'ky
/2 = n ,(p* +/>*)(! - <Pk -Pk)2/(Pk+p'k?)' 

n+\ n+\ 
n+r 

2" 
n+r 1 

> n ?& +p'k)(i - (Pk -p'kfiiPk+p'kf), 71+1 ^ 

since the term inside the square root is less than one. 
Using the fact that for 0 < ax < 1, n( l — #/) > 1 — £ fl/ we see that the right hand 

side of the above inequality is bounded below by 

n+r 1 n+r ( n+r 1 \ 2 / 

n ?(p'k+p'k)- E n i(Pi+p'i)(pj-p'j)\ /M(Pj(u)+P;(u)). 
¥J 
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(The third line in formula (16) of Graham and McGehee's proof has a typo—the second 
product should be a sum). 

By Definition 2.1, 

infpj(x) +/?;(*) > 2 - ( £ \bk(s)\2 + | ^ ) | 2 ) . 
x \ei£ J 

Using the fact that {Sk} is order-2 dissociate across the k% one has 

/

n+r 1 

II ~(pi+p'i)(Pj-p?>h(n,r,s)d\= £ \bk(sMt)-b'k(s)b'k(t)\
2 

n+r 

i=n+\ 2 " s^teS°k 

It now follows from our hypothesis, as on Page 208 of [8], that liminf/(w, v,s) = 1 
and so / / « \i. m 

COROLLARY 4.2. Let \ibea generalized Rieszproduct as above. 

Then ET=i ^teS°k \h(s)Mf)\2 = oo if and only ifp JL A. 

PROOF. Note that Lebesgue measure A is the generalized Riesz product defined by 
b'k(s) = OVs G Sk- In this case the necessary condition of Theorem 4.1 and the sufficient 
condition of Theorem 3.5 coincide. • 

DEFINITION 4.3. Let \i be a generalized Riesz product based on the sequence {5*}, 
which is dissociate across the &'s and associated to the sequence {bk(s) : s € S%} with 
£ |£*(s)|2 < °° f°r au< *• Let P be a subset of the integers and define 

i / M - /**(') ifkeP> 
W)- \0ys£Sk if kg P. 

Then form the measure / / based on {Sk} and associated to {bf
k}. We refer to the process 

of going from /x to \i' as thinning out fi with respect to P. 
Corollary 4.2 immediately yields 

PROPOSITION 4.4. (i) If\i is equivalent to Lebesgue measure then \i ~ \i! for every 
/ / obtained by thinning out \i. 

(ii) If\i has the property that fi ~ y! for every measure / / obtained from thinning out 
\x then \x is equivalent to Lebesgue measure. m 

REMARK. By this proposition, in order to show that a certain generalized Riesz prod­
uct is singular with respect to Lebesgue measure, it suffices to show that there exists a 
thinned out version of \i which is singular with respect to Lebesgue measure. This result 
and approach is the one taken by Bourgain in [2]. 
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5. An Ornstein-type space of transformations. In [14], Ornstein introduced a col­
lection of transformations which he dubbed class-one, and showed that this collection 
contains mixing transformations. In fact, his argument showed that in a certain sense, 
there is a set of positive measure of mixing transformations in this class. We will not 
be concerned with mixing properties here, but rather with singularity properties. To this 
end, Bourgain [2] showed that almost all of the Ornstein class-one transformations have 
singular spectrum. As an application of the previous results, we show how to construct 
an Ornstein type probability space of transformations and obtain a Bourgain type result. 

EXAMPLE 5.1. We present here a specific example of a probability space of trans­
formations. The construction is based on ideas in [14] and will in the sequel, satisfy the 
definition of a Class 1' construction. This is a special case of a rank-one construction. 

Recall that in a rank-one construction, we start with the unit interval, cut it into m\ 
subintervals, place spacers a\j, 1 < i < m\ on top of each subinterval, and stack these 
columns right-over-left. The transformation T is defined inductively as "going up the 
tower". 

Here is the inductive step of our specific construction. We have a tower of height /**. 
We cut this tower into rrik = 10* pieces. To determine the spacers, we first select the 
numbers jc ẑ for / = 0 , . . . , 10*. Set JĈ O = 0 = xk 10*. Now randomly choose integers JC*,,-, 

1 < / < 10* from {—/*£_i / 2 , . . . , hk-\ / 2 } . The spacers are a^ = A*-i +**,/ — JC*,/_I for 
i = 1, . . . , 10* in that order. 

It is immediate that the lowest a spacer can be is 0 and the highest is 2A*_i. Further 
the height of the next tower is 

hk+x = \0k(hk + hk-X). 

To clarify the beginning, we set the heights ho = 0 and /z_i = 0 . The first height, that 
of the unit interval, is h \ = 1. It then follows that /*2 = 10 * (1 + 0) = 10, and so on. With 
this, we see that at the first three stages all the JC'S are zero (i.e., x\j = 0, X2j = 0 and 
X3,i = 0). 

Let^t = {—hk-\/2,.. .,hk-\/2}, with A* = (2hk-\ + l ) - 1 the uniform distribution. 
The first two happen to be X\ = {0}, X2 = {0}. ThenX3 = {—5, —4,. . . , 4,5} because 
h2 = 10. 

Now form the product probability space 

00 mk—1 00 

k=\ 1 *=i 

Every point u = {JC* = {**,/} : 1 < k91 < / < JH* — 1} G Q completely defines 
the spacers and hence a transformation TQ. We can thus speak of some property of the 
transformations as occuring for almost all points of Q. 

Specifically, we wish to show that, for almost all points Q the transformation TQ has 
singular spectrum. In order to show this, it is sufficient to find a subsequence kn so that 
the associated polynomials pkn are based on sets Sk„ which are order-2 dissociate in both 
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senses. That this is true for almost all points will follow from the results in the sequel. 
We point out here, that the probability argument is simply that at the A>th stage we are 
picking 10* — 1 integers from a set of size hk-\ + 1, where hk-\ = 10*~2(/fy_2

 + ^-3) > 
10*-210*~3 • • • 10 • 1 = IQ(*-IX*-2)/2# S o t h e probability is very high that they are all 
different, as are the necessary differences and sums. 

NOTATION 5.2. In this section, we present the general construction of a space of Class 
1' transformations. We recall Ornstein's original construction and set some notation. The 
construction is re-explained in [2], and some related constructions (rank-one) are found in 
[6] as well as N. Friedman's book [7]. Our notation and conventions are slightly different 
from these sources. 

Let {rrik / °°} and {**,/ > 0} be fixed sequences of integers. Start with the unit 
interval Q and divide it into m\ equal subintervals. Above each, a\j spacers are added, 
and these are stacked, (the right subcolumns placed on top of the subcolumn to their 
immediate left), into a single column C2 of height h\ = m\ + Y%1\ a\r This procedure 
is continued inductively. At the £-th stage, column Q_i is divided into /w* equal parts 
and cikj spacers are put above they'-th column of Ck-\ to obtain a stack of height hk = 

For a general rank-one transformation there is no restrictions on the number of spac­
ers. In the class-one case, however, one requires that 0 < a^ < 2hk-\ for 1 <j < m*_i. 

More or less following the construction of Ornstein and Bourgain we choose numbers 
Xkj G {—hk-x/2, ...,hk-i 12} at random and place, on top of the y'-th column of C*_i, 
<*kj = hk-\ +Xkj—Xkj-\ spacers. By convention, we set JĈ O = 0. This is nearly Ornstein's 
construction. For a general (j9k) we have 0 < akj < 2hk-\ and he further required the 
last spacer ak>mk = x^mk — *kjnk-\ to be chosen between 1 and 4. We will say that the 
family of transformations so generated is of class V as the sequences {m*}, {**,,} are 
understood and fixed. 

In the above construction, we have hk+\ = #**(/** + /J*-I) + x^, and the sequence 
{hk} is completely determined by specifying the sequences {m*} and {*£,mit}. 

As in the earlier example, a transformation of class l7 is given by a point in a proba­
bility space. 

/ 00 mk—1 00 \ 

«= n n^®®r_%l 
U=i 1 k=\ J 

whereX^ = {—/z*_i / 2 , . . . , hk-\/2}, equipped with the uniform probability distribution 
A,= l / (^_! + l). 

The rest of this section is devoted to proving the following 

THEOREM. If (9m*)8 / h k - \ —» 0 as k —> 00 then for almost all points in Q, the 
transformation TQ has singular spectrum. 

5.3. Let wGQ. Define the sets 

Sk = {/(hk + hk-\) +Xkj :l<j< mk} 
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and put 

bk(s) = - L t o G $. 
y/™k 

We see immediately that T,ses° \bk(s)\2 = 1. We have from [6] 

THEOREM. The maximal spectral type of the transformation TQ is given by the gen­
eralized Rieszproduct associated with {Sk} and {bk}, modulo some atoms. m 

5.4. As an immediate application of Theorem 3.5 we have 

THEOREM. If the sequence {Sk} is order-2 dissociate across the k's with each Sk 
order-2 dissociate, then the maximal spectral type of TQ is singular with respect to 
Lebesgue measure. 

PROOF. For such a sequence {Sk} of sets, let // be the generalized Riesz product 
constructed above and let A denote Lebesgue measure. Then 

&teS* &teS£ mk m* 

When summed over k this is clearly infinite. Since any atoms not included in the gen­
eralized Riesz product are already singular to Lebesgue, the conclusion follows from 
Theorem 3.5. • 

In a similiar way, using Corollary 4.2 we have 

THEOREM. If there is a subsequence {Sk„} which is order-2 dissociate across the 
kn s with each Sk„ order-2 dissociate, then the maximal spectral type ofTQ is singular 
with respect to Lebesgue measure. 

5.5. We now present conditions which imply the various dissociate conditions we 
need for a class V transformation. 

Given a point Q define 

Ik* = £>KJC(U) 

e » G K - « + l ^ - 1 4 
Ef M^0, |£fe„|<*. 

Observe that (DKyk C £fc+i,yb and that (D^k is symmetric, i.e., —d E (DKk whenever 
d £ <DKfk. Recalling, that Sk = {j(hk + hh-\) + *jy : 1 <j < mk}, we have 

ZhiSk) = {Q -J)(hk + hk-x) + xf - x*} 

where 1 < i ^y < m*. We will see that the dissociate properties for Sk will be controlled 
by the differences (order-1 and higher) of the JC* ,-. 
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LEMMA. The only way two of these sums in CD\ (Sk) can be equal is if(j—i) = (j'—i') 
andxkj — Xk,i = Xkj> — **/ . 

PROOF. Suppose 

((/' - 0 - (/' ~ ?))(h + h-\) = (xkJ - xij) - (Xkj - xkJf). 

IftheLHS is not zero, then it must be bounded below by A^+A^-i = /?i*_i(A*_i +^-2)+ 
hk-\ > 3hk-\ (by symmetry we can assume positivity). But the RHS is bounded above 
by4'hk-i/2 = 2hk-i. • 

As a corollary, we have 

LEMMA. If all the sums in *D\jc(CS) are distinct then Sk is order-l difference dissoci­
ate. 

Next we examine 

©2(A) = { ( ( / - 0 - (/' - i'))(hk + hk-i) + (xkJ - xk4) - (xk/ - xkJt)}. 

By similiar arguments we have 

LEMMA. Ifm^ > 4 then the only way two of these sums can be equal is if(j\ —i\) — 

Q\ ~*{) = 0'2 — h) — (J2 —i'2) and(Xkji —**,i,) —(**/, —xkj\) = (xkj2 —Xkj2)~~(xkj'2 ~
xk,i'2)-

LEMMA. If all the sums in ©2 (̂0)) are distinct then Sk is order-2 difference dissoci­
ate. 

In order to show all the sums are distinct we use the following 

LEMMA. IfO fi 2\*0D) then Sk is order-2 dissociate. 

PROOF. If two of the sums in 2\*(a>) are the same, then their difference gives a sum 
in ©4,*(a)) which adds to 0. • 

5.6. Now we can ask about the probability of this. The situation is that we are picking 
mk — 1 numbers from a block of size hk-1+1, and asking for an upper bound on the number 
of ways that 0 = £? ewjc^n. In particular, each of the 8 en can take on one of 9 values; 
the 8 indices in can occur in (m*8

-1) ways; 7 of these 8 Xkjn can roam through the hk-\ + 1 
different values - the 8-th then being determined; and the other (m* — 1) — Sxkj can take 
on any of the hk-\ + 1 values. Thus we have 

LEMMA. Pr(0 G 2Mu») < 9»( V ) fcf£ < t f • 
From this it is an easy conclusion that 

THEOREM. If(9mkf /hk-\ —* 0 as k —» 00 then for almost all points in Q there is a 
sub-sequence kj along which each Skj is order-2 dissociate. 

5.7. Now we study dissociativity across the A:'s. 
Suppose we have a point Q, and a finite sequence k\, #2, • • • , K-\ so that these Sk are 

order-2 dissociate in both senses. Let W be the set of order-2 words formed from the 
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sequence {SktJi-1 • Look at the differences of these, which can be considered as order-4 
words. Consider an Sk„- Look at the differences of the integers in (Dz(Sk„) (which could 
be considered in ©4(5^)). If the intersection of these two finite difference sets is empty, 
Wr4({Ski}1~l)n'£>4(Skn) = 0,then5*n is order-2 dissociate from the Skj for 1 <j < n-l. 

Define for a fixed L > 0 

AKJt(L) ={u> = {xk} : ©*,*(a>) n {-L,... ,L} = 0). 

LEMMA. Assume hk > 101. IfQ e A1KJc(2L) then 2^(5*) H {-L,... ,L} = 0, and 
every sum u + l, u G (DxiSk) I £ {— L, ...,L} is unique. 

PROOF. A term u e (Dx(Sk) is of the form u = j(hk + hk-\) + d where d G (DKk. 
Because hk is so large in comparison to L, the only way this could be within the range 
{— L,... ,L} is if/ = 0. But by assumption d fi {— L,...,/,}. 

Suppose w + / = u' + /', then u — u' = I' — I. Since u — u' = j(hk + hk-\) + d — d!\ from 
the magnitude of hk we must havey = 0. But by assumption d — d' ^ l — l'. m 

Now we calculate the probability. For fixed /, — L < I < L the probability that / G *DK, 
i.e., I = Yi\K £nXk,in is analyzed in the same manner that we analyzed 0 = £? enXk,i„ in 

5.6. Thus 

LEMMA. Pr{AK,k(L))>l-^^^. 

Suppose for almost all points u there is a sequence k\(u),... ,kn-\(u) along which 
we have order-2 dissociate in both senses. Then for each of these d> the differences of 
the order-2 words (i.e., order-4 words) are contained in some {— L,... ,L}, L = L(CJ). 

Thus we have partitioned the space Q into a countable number of disjoint sets Qz,- By 
the lemma, for almost all points we can find another kn(Q) which, with the previous, is 
order-2 dissociate in both senses. Therefore we have the following from which our main 
theorem follows. 

THEOREM. If(9mkf/hk-\ —> 0 as k —> 00 then for almost all points in Q there is a 
subsequence kj = kj(uj) so that Sk is order-2 dissociate in both senses. 
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