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Abstract

We prove analogues of several well-known results concerning rational maps between
quadrics for the class of so-called quasilinear p-hypersurfaces. These hypersurfaces are
nowhere smooth over the base field, so many of the geometric methods which have
been successfully applied to the study of projective homogeneous varieties over fields
cannot be used. We are therefore forced to take an alternative approach, which is partly
facilitated by the appearance of several non-traditional features in the study of these
objects from an algebraic perspective. Our main results were previously known for the
class of quasilinear quadrics. We provide new proofs here, because the original proofs
do not immediately generalise for quasilinear hypersurfaces of higher degree.

1. Introduction

Considerable progress has been made in recent years towards understanding the conditions under
which a rational map X 99K Y can exist between smooth projective varieties X and Y over a
field. We can mention, for example, M. Rost’s degree formulas and their generalisations (see
[LM07, Mer00, Mer03]). The results obtained have proven to be particularly successful in their
application to the study of projective homogeneous varieties over fields. In the case where X
and Y are quadrics, several applications of this approach have been known for quite some time.
Indeed, it was already apparent from the foundational works of A. Pfister in the 1960s that
the study of rational maps between quadrics has many important applications to the algebraic
theory of quadratic forms; for example, to the study of the structure of the Witt ring or to the
construction of fields which exhibit certain arithmetic properties pertaining to quadratic forms.
On the other hand, the rich structure theory of the Witt ring unearthed by Pfister permitted
the study of rational maps between quadrics from a entirely algebraic point of view. In the
subsequent decades, the algebraic methods were developed and applied intensively to this area
of research. Two of the highlights of this approach are the following results, due to Hoffmann
and Izhboldin, respectively.

Theorem 1.1 [Hof95, Theorem 1]. Let X and Y be anisotropic projective quadrics over a field
k of characteristic different from 2. If there exists n> 1 such that dim(Y ) 6 2n − 2< dim(X),
then there are no rational maps X 99K Y .
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Theorem 1.2 [Izh00, Theorem 0.2]. Let X and Y be anisotropic projective quadrics over a
field k of characteristic different from 2 with dim(Y ) = 2n − 1 6 dim(X) for some n> 0. If there
exists a rational map X 99K Y , then there also exists a rational map Y 99KX.

Of course, phenomena of this sort are more readily explained nowadays in light of the recent
advances in the geometric theory (for example, both of the above results can be deduced from
Rost’s degree formula). Perhaps the most general result available concerning rational maps
between quadrics is due to Karpenko and Merkurjev. Before we state it, let us recall a couple
of standard definitions. If X is an anisotropic projective quadric over a field k of characteristic
different from 2, then the first Witt index of X, denoted i1(X), is the largest positive integer i
such that there exists a degree 1 cycle of dimension i− 1 on the variety Xk(X), where k(X) is
the function field of X. The Izhboldin dimension of X, denoted by dimIzh(X), is then defined to
be the integer dim(X)− i1(X) + 1. The theorem of Karpenko and Merkurjev can now be stated
as follows.

Theorem 1.3 [KM03, Theorem 4.1]. Let X and Y be anisotropic projective quadrics over a
field k of characteristic different from 2. If there exists a rational map X 99K Y , then:

(1) dimIzh(X) 6 dimIzh(Y );

(2) dimIzh(X) = dimIzh(Y ) if and only if there exists a rational map Y 99KX.

If one knows something additional about the first Witt indices of the quadrics involved, then
one can start to produce more explicit examples. For instance, Theorems 1.1 and 1.2 can both
be recovered from Theorem 1.3 modulo the observation that anisotropic quadrics of dimension
2n − 1 (for some n> 0) have first Witt index equal to 1. Although the latter fact was originally
proved by Hoffmann as a corollary of Theorem 1.1, there are several alternative proofs which are
completely independent of Theorem 1.1 (for example, see the paper [Kar03] of Karpenko, where
all possible values of the first Witt index are determined).

All of the above statements include the assumption that the characteristic of the base field
is different from 2 (and, historically, this is the form in which they were first stated). But it
turns out that all of these results can be extended to allow for fields of characteristic 2, even
when the quadrics involved are not smooth over the base field (see [HL04, HL06, Tot08]). This
includes the extreme case of quasilinear quadrics, which have no smooth points at all (quasilinear
quadrics are those quadrics which are defined by the diagonal part of a symmetric bilinear form
over a field of characteristic 2). In fact, several problems which remain open for smooth quadrics
have recently been settled for quasilinear quadrics. In particular, we want to mention the results
of Totaro on the birational geometry of quasilinear quadrics. In [Tot08], Totaro gives a positive
answer to the ‘quadratic Zariski problem’ for quasilinear quadrics: if X and Y are anisotropic
quasilinear quadrics of the same dimension over a field such that there exist rational maps from X
to Y and from Y to X, then X and Y are birational. The proof of this result uses the quasilinear
analogue of Theorem 1.3 (due to Totaro) together with the following ‘ruledness theorem’, proved
by Totaro in the same article: if X is an anisotropic quasilinear quadric over a field k, then
X is birational to X ′ × Pi1(X)−1

k for any subquadric X ′ ⊂X of codimension i1(X)− 1 (where
the integer i1(X) is defined in the same way as it is for smooth quadrics). For non-quasilinear
quadrics, the corresponding problems are still wide open, even in the smooth case.

The goal of the present article is to prove analogues of all of the above results for the class
of so-called quasilinear p-hypersurfaces, which generalises the class of quasilinear quadrics. More
precisely, a quasilinear p-hypersurface is the projective hypersurface defined by a diagonal form
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of degree p over a field of characteristic p > 0. Forms of the latter type are called quasilinear
p-forms. For evident reasons, the geometry of quasilinear hypersurfaces is only interesting over
imperfect fields. Due in part to the absence of any smooth points on these varieties, one does
not have access to the general geometric methods which have proved to be very successful
in the study of projective homogeneous varieties over fields. On the other hand, there are
several unusual aspects of the theory of quasilinear p-forms which suggest that a more algebraic
approach is feasible. The main result of the paper is Theorem 5.12. This is an analogue of the
main result of [KM03]. The latter result, due to Karpenko and Merkurjev, immediately implies
their Theorem 1.3 as a corollary. Our result should also imply the analogue of Theorem 1.3
for arbitrary quasilinear p-hypersurfaces, but there is a technical obstruction which we have
currently only managed to overcome for quasilinear quadrics and cubics. This issue is discussed
in § 4. Nevertheless, Theorem 5.12 is already sufficient for several interesting applications which
hold for all primes p. For example, in § 6 we prove analogues of Theorems 1.1 and 1.2, as well as
some results previously obtained for smooth quadrics by Vishik. In the final section, we consider
the extension of Totaro’s results on the birational geometry of quasilinear quadrics to the whole
class of quasilinear hypersurfaces. We show that Totaro’s ‘ruledness theorem’ for quasilinear
quadrics extends to all primes p, but due to the technical issue discussed in § 4, we are only
able to present partial results on the analogue of the ‘quadratic Zariski problem’. Although all
of these results were previously known in the case p= 2, the original proofs do not immediately
generalise for larger primes p, and we are forced to take a different approach. In particular, we
provide new proofs of all of the above results for the class of quasilinear quadrics.

The source of motivation for this paper is Hoffmann’s [Hof04], where an extensive study of
quasilinear p-forms was carried out from an algebraic point of view. It was shown there that
several aspects of the classical theory of quadratic forms over fields carry over in full generality
to this new situation. We recall several notions and results from Hoffmann’s paper in §§ 2 and 3.

Throughout this article, F will be an imperfect field of characteristic p > 0 and F will denote
a fixed algebraic closure of F . By a scheme we mean a scheme of finite type over a field. By a
variety, we mean an integral scheme. A scheme will be called complete if it is proper over the
base field. If X is a scheme defined over a field k, the residue field at a point x ∈X will be
denoted by k(x). If X is a variety, then we will write k(X) for the function field of X. If L/k is
any field extension, XL will denote the scheme X ×k Spec L. Finally, we implicitly assume that
all morphisms and rational maps of schemes are defined relative to the given base field.

2. Quasilinear p-forms

In this section we introduce quasilinear p-forms and discuss some of their basic properties and
invariants. Everything in this section can be found in [Hof04]. Since the proofs of the statements
we need are all very short, we include them for the reader’s convenience.

Definition 2.1. Let V be a finite-dimensional F -vector space. A quasilinear p-form (we will
often say form for simplicity) on V is a map ϕ : V → F satisfying:

(1) ϕ(λv) = λpϕ(v) for all λ ∈ F and all v ∈ V ;

(2) ϕ(v + w) = ϕ(v) + ϕ(w) for all v, w ∈ V .

We will say that ϕ is a quasilinear p-form over F if ϕ is a quasilinear p-form on some finite-
dimensional F -vector space. In this case, we denote the underlying space by Vϕ. The dimension
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of ϕ is the dimension of Vϕ, denoted by dim(ϕ). A morphism ϕ→ ψ of forms over F will be an
F -vector space morphism Vϕ→ Vψ which carries ϕ to ψ. If ϕ and ψ are isomorphic, we will write
ϕ' ψ. We will say that ϕ is proportional to ψ if there exists λ ∈ F ∗ such that ϕ' λψ, where λψ
is the form on Vψ defined by v 7→ λψ(v). If ϕ is a quasilinear p-form over F , then a subform ψ of
ϕ is the restriction of ϕ to a subspace of Vϕ. We write ψ ⊂ ϕ. The direct sum ϕ⊕ ψ and tensor
product ϕ⊗ ψ of forms ϕ, ψ over F are defined in the obvious way. If L/F is a field extension
and ϕ a quasilinear p-form over F , we write ϕL for the form over L obtained by the extension
of scalars. If ϕ is a quasilinear p-form over F , a vector v ∈ Vϕ is called isotropic if ϕ(v) = 0. We
say that the form ϕ is isotropic if Vϕ contains a non-zero isotropic vector; ϕ is called anisotropic
otherwise. By condition (2) in the definition, the subset of isotropic vectors in Vϕ is actually
an F -vector subspace of Vϕ, and ϕ is isotropic if and only if it has non-zero dimension. This
additivity condition also implies that ϕ is ‘diagonalised’ in every basis of Vϕ; that is, of the
form a1x

p
1 + · · ·+ anx

p
n. We will use the notation 〈a1, . . . , an〉 to denote the quasilinear p-form

a1x
p
1 + · · ·+ anx

p
n on the F -vector space Fn in its standard basis. If ϕ is a quasilinear

p-form over F , we define the value set

D(ϕ) := {ϕ(v) | v ∈ Vϕ}.

Since ϕ is additive, D(ϕ) is actually an F p-vector subspace of F . Clearly it is finite
dimensional of dimension 6dim(ϕ).

The classification of quasilinear p-forms over F is given by the following statement.

Proposition 2.2 [Hof04, Proposition 2.6]. Let ϕ be a quasilinear p-form over F of dimension
n, and let a1, . . . , am be a basis for D(ϕ) over F p. Then m6 n and there is an isomorphism of
forms over F :

ϕ' 〈a1, . . . , am〉 ⊕ 〈0, . . . , 0︸ ︷︷ ︸
n−m

〉.

Proof. Let W ⊆ Vϕ be the subspace of isotropic vectors. For each 1 6 i6m, let vi ∈ Vϕ be such
that ϕ(vi) = ai, and let U be the subspace of Vϕ spanned by the vi. Since the ai are linearly
independent over F p, the vi are linearly independent over F . Therefore, in order to prove the
statement, it suffices to show that Vϕ = U ⊕W . Clearly U ∩W = {0}. On the other hand, given
any v ∈ Vϕ, we can find λi ∈ F such that ϕ(v) =

∑m
i=1 λ

p
i ai. Then ϕ(v) = ϕ(

∑m
i=1 λivi), so that

v −
∑m

i=1 λivi is an isotropic vector. Therefore, v ∈ U +W and the statement is proved. 2

The isomorphism class of a quasilinear p-form ϕ over F is therefore determined by two
invariants: the dimension of the subspace of isotropic vectors and the F p-vector space D(ϕ). In
particular, the theory is essentially vacuous over perfect fields (i.e. when F = F p), which is why
we assume that F is imperfect. In the case of anisotropic forms, we get the following corollary.

Corollary 2.3. Let ϕ and ψ be anisotropic quasilinear p-forms over F . Then ψ is isomorphic
to a subform of ϕ if and only if D(ψ)⊂D(ϕ).

If ϕ is an arbitrary quasilinear p-form over F , it follows from Proposition 2.2. that there is
a unique (up to isomorphism) anisotropic subform ϕan ⊂ ϕ such that ϕ= ϕan ⊕ 〈0, . . . , 0〉. The
form ϕan is called the anisotropic part of ϕ. The integer i0(ϕ) := dim(ϕ)− dim(ϕan) is called
the defect index of ϕ. By the proof of Proposition 2.2, i0(ϕ) is nothing else but the dimension
of the subspace of isotropic vectors in Vϕ. We write ϕ∼ ψ whenever ϕan ' ψan for forms ϕ,
ψ over F . This is obviously an equivalence relation on the set of isomorphism classes of
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quasilinear p-forms over F . Another consequence of Proposition 2.2 which will be used frequently
is the following lemma.

Lemma 2.4. Let ϕ= 〈a1, . . . , an〉 be a quasilinear p-form over F , and let L/F be any
field extension. Then there is a subset {aj1 , . . . , ajm} ⊂ {a1, . . . , an} such that (ϕL)an '
〈aj1 , . . . , ajm〉L.

Proof. Since D(ϕL) = Lp · a1 + · · ·+ Lp · an, we can find a subset {aj1 , . . . , ajm} ⊂ {a1, . . . , an}
which constitutes a basis of D(ϕL) over Lp. The statement then follows from Proposition 2.2. 2

We now introduce a special class of forms. In the theory of quadratic forms over fields of
characteristic 6= 2, an important role is played by the class of so-called Pfister forms (namely,
tensor products of binary forms which represent 1). The set of isomorphism classes of n-fold
Pfister forms over such a field k is in bijection with the set of pure symbols in the torsion Milnor
K-group KM

n (k)/2KM
n (k). The projective quadric defined by an n-fold Pfister form 〈〈a1, . . . , an〉〉

is a splitting variety in the sense that for any extension L/k, the quadric has an L-rational point
if and only if the symbol {a1, . . . , an} is divisible by 2 in KM

n (L). Let us now recall the equal
characteristic analogue of the norm residue isomorphism theorem (formerly the Bloch–Kato
conjecture), due to Bloch, Kato and Gabber.

Theorem 2.5 [BK86, Kat82]. For any field F of characteristic p > 0, there are isomorphisms
of abelian groups

KM
n (F )/pKM

n (F ) ∼−→ ker(℘ : Ωn
F → Ωn

F /dΩn−1
F )

{a1, . . . , an} 7→ da1

a1
∧ · · · ∧ dan

an
.

Here, (Ω•F , d) is the de Rham complex of absolute differential forms over F , and ℘ is the inverse
Cartier operator (see [Kat82] for details). It follows from this result that for any a1, . . . , an ∈ F ∗,
the pure symbol {a1, . . . , an} is divisible by p in KM

n (F ) if and only if [F p(a1, . . . , an) : F p]< pn.
Consider the quasilinear p-form

〈〈a1, . . . , an〉〉 :=
∑

06j1,...,jn6p−1

( n∏
i=1

ajii

)
xpj1,...,jn

of dimension pn on the F -vector space F p
n

in its standard basis. Clearly 〈〈a1, . . . , an〉〉 '
〈〈a1〉〉 ⊗ · · · ⊗ 〈〈an〉〉. By the definition, we have D(〈〈a1, . . . , an〉〉L) = Lp(a1, . . . , an) for every field
extension L/F . It therefore follows from Proposition 2.2 that the form 〈〈a1, . . . , an〉〉L is isotropic
if and only if [Lp(a1, . . . , an) : Lp]< pn, which in turn holds if and only if {a1, . . . , an}= 0
in KM

n (L)/pKM
n (L). The (projective) hypersurfaces defined by the forms 〈〈a1, . . . , an〉〉, which

are called quasi-Pfister forms, may therefore be regarded (in the above sense) as splitting
varieties in the equal characteristic setting. Moreover, it turns out that the quasi-Pfister forms
exhibit all of the same properties as the Pfister quadratic forms in the mixed characteristic:
they are precisely those quasilinear p-forms which are ‘multiplicative’; up to proportionality,
the anisotropic quasi-Pfister forms are characterised by the degree to which they split over the
generic point of the associated hypersurface; they have the ‘roundness’ property, etc. We refer
to the article [Hof04] for further details.

It will be convenient to record here the following observation concerning the splitting of
quasi-Pfister forms over extensions of the base field.
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Lemma 2.6. Let π = 〈〈a1, . . . , an〉〉 be an anisotropic quasi-Pfister form over F . Let L/F be
a field extension such that πL is isotropic. Then there is a proper subset {aj1 , . . . , ajm} ⊂
{a1, . . . , an} such that (πL)an ' 〈〈aj1 , . . . , ajm〉〉L.

Proof. Let m be such that [Lp(a1, . . . , an) : Lp] = pm. Since πL is isotropic, we have m< n.
Now, we may choose a subset {aj1 , . . . , ajm} of {a1, . . . , an} such that Lp(a1, . . . , an) =
Lp(aj1 , . . . , ajm). Then the quasi-Pfister form 〈〈aj1 , . . . , ajm〉〉L is anisotropic, and we have

D((πL)an) =D(πL) = Lp(a1, . . . , an) = Lp(aj1 , . . . , ajm) =D(〈〈aj1 , . . . , ajm〉〉L).

The statement therefore follows from Corollary 2.3. 2

To the arbitrary form ϕ, we associate a certain anisotropic quasi-Pfister form. Let us first
recall the following invariant.

Definition 2.7 [Hof04, HL04]. Let ϕ be a quasilinear p-form over F . The norm field of ϕ is
the field

N(ϕ) := F p
(
a

b

∣∣∣∣ a, b ∈D(ϕ) ∩ F ∗
)
.

Note that if two forms ϕ and ψ are proportional over F , then we haveN(ϕ) =N(ψ). The norm
field invariant was first introduced in the context of quasilinear quadratic forms by Hoffmann and
Laghribi in [HL04]. It turns out that this is a birational invariant of quasilinear p-hypersurfaces
(see Proposition 4.10), and we will exploit this for the proofs of our main results. A more direct
description of the norm field is given by the following lemma.

Lemma 2.8. Let a0, a1, . . . , an ∈ F with a0 6= 0, and let ϕ denote the quasilinear p-form
〈a0, a1, . . . , an〉 over F . Then

N(ϕ) = F p
(
a1

a0
, . . . ,

an
a0

)
.

Proof. Since the norm field does not change when we multiply ϕ by a scalar, we may assume
that a0 = 1. In this case, it is clear that F p(a1, . . . , an)⊆N(ϕ). But the reverse inclusion also
holds, since D(ϕ) = F p + F p · a1 + · · ·+ F p · an ⊆ F p(a1, . . . , an). 2

It follows that N(ϕ) is finite dimensional over its subfield F p for any form ϕ over F . Moreover,
if a1, . . . , am ∈ F are such that N(ϕ) = F p(a1, . . . , am), then we have N(ϕL) = Lp(a1, . . . , am)
for all field extensions L/F . Note that the dimension of N(ϕ) as an F p-vector space is always a
power of p. One may therefore make the following definition.

Definition 2.9. The integer lndeg(ϕ) := logp([N(ϕ) : F p]) is called the (logarithmic) norm
degree of ϕ.

Remark 2.10. In [Hof04], the norm degree of a form ϕ over F is defined to be the integer
ndegF (ϕ) := plndeg(ϕ). For our purposes, it will be more convenient to take the base p-logarithm;
for example, see Theorem 4.2 for a result of Schröer which shows that the integer lndeg(ϕ)
determines the size of the singular (non-regular) locus of the projective hypersurface {ϕ= 0}.

Finally, we make the following definition.

Definition 2.11 [Hof04, HL04]. Let ϕ be a quasilinear p-form over F . If lndeg(ϕ) =m, and
a1, . . . , am ∈ F ∗ are such that N(ϕ) = F p(a1, . . . , am), then the anisotropic quasi-Pfister form
ν̂(ϕ) := 〈〈a1, . . . , am〉〉 is called the norm form of ϕ.
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By Corollary 2.3, this does not depend on the choice of generators ai up to isomorphism.
Note that we have ν̂(ϕ) = ν̂(ϕan), and for any field extension L/F , we have ν̂(ϕL)' (ν̂(ϕ)L)an
by the proof of Lemma 2.6. By definition, the dimension of ν̂(ϕ) is nothing else but plndeg(ϕ). If
ϕ is anisotropic, then by Corollary 2.3 and Lemma 2.8, ϕ is proportional to a subform of ν̂(ϕ).

3. Quasilinear p-forms over extensions of the base field

In this section we record some general observations about the behaviour of quasilinear p-forms
and their invariants over extensions of the base field. Again, most of the statements here can be
found in [Hof04].

The invariant lndeg(ϕ) defined above gives a useful necessary (but not sufficient) condition
for an anisotropic quasilinear p-form to become isotropic over an extension of the base field.

Proposition 3.1 [Hof04, Proposition 5.2]. Let ϕ be an anisotropic quasilinear p-form over F ,
and let L/F be a field extension over which ϕ becomes isotropic. Then lndeg(ϕL)< lndeg(ϕ).

Proof. Recall that for any extension E/F , the integer plndeg(ϕE) is equal to the dimension of
the anisotropic part of the norm form ν̂(ϕ) over E. Proving the statement therefore amounts to
checking that ν̂(ϕ) becomes isotropic over L. But this is evident, because ϕ is proportional to a
subform of ν̂(ϕ). 2

Corollary 3.2. Let ϕ be an anisotropic quasilinear p-form over F , and let a ∈ F\F p. If ϕF (
p√
a)

is isotropic, then a ∈N(ϕ).

Proof. Let m= lndeg(ϕ), and let a1, . . . , am ∈ F ∗ be such that N(ϕ) = F p(a1, . . . , am). By
Proposition 3.1, the field N(ϕF (

p√
a)) = F ( p√a)p(a1, . . . , am) = F p(a1, . . . , am, a) has dimension

6pm−1 over F p(a) = F ( p√a)p. It must therefore have dimension pm over F p, and so a ∈
F p(a1, . . . , am) =N(ϕ). 2

This allows us to give another characterisation of the norm field for anisotropic forms.

Corollary 3.3. Let ϕ be an anisotropic quasilinear p-form over F . Let S be the set of all
a ∈ F such that ϕF (

p√
a) is isotropic. Then N(ϕL) = Lp(S) for all field extensions L/F .

Proof. By the remarks following Lemma 2.8, it suffices to prove this for L= F . Since N(ϕ) is
invariant under multiplying ϕ by a scalar, we may assume that ϕ= 〈1, a1, . . . , an〉 for some
ai ∈ F ∗. Then N(ϕ) = F p(a1, . . . , an) by Lemma 2.8. Since ϕF ( p√ai) is clearly isotropic for all
1 6 i6 n, we have N(ϕ)⊂ F p(S). The reverse inclusion follows from Corollary 3.2. 2

Let L/F be a finitely generated field extension. Recall that L/F is called separably generated
if L can be realised as a purely transcendental extension of F followed by a separable algebraic
extension. If L/F is separably generated, then there are several rather direct ways to see that
any anisotropic quasilinear p-form over F remains anisotropic over L. More generally, we have
the following proposition.

Proposition 3.4. Let L/F be a finitely generated field extension. Then there exists an
anisotropic quasilinear p-form ϕ over F such that ϕL is isotropic if and only if L/F is not
separably generated.

Proof. The extension L/F is not separably generated if and only if Lp/F p is not separably
generated. By [Lan02, Proposition 4.1 in ch. VIII] (we refer to the proof rather than the statement
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itself), the latter is true if and only if Lp and F are not linearly disjoint over F p, which is a
precise translation of the condition in our statement. 2

In particular, we have the following corollary.

Corollary 3.5 [Hof04, Proposition 5.3]. Let ϕ be an anisotropic quasilinear p-form over F ,
and let L/F be a separably generated field extension. Then ϕL is anisotropic. Moreover,
lndeg(ϕL) = lndeg(ϕ).

Proof. The first assertion is implicit in Proposition 3.4. The second statement follows by applying
the first statement to the norm form ν̂(ϕ). 2

Remark 3.6. For finite separable extensions, the first part of this statement may be viewed as
a replacement for Springer’s theorem from the theory of quadratic forms, which says that an
anisotropic quadratic form remains anisotropic over any odd degree extension of the base field.

Thus in order to study the isotropy behaviour of quasilinear p-forms over extensions of the
base field, we are essentially reduced to considering finite purely inseparable extensions. We
conclude this section by collecting a couple of simple facts with this in mind.

Lemma 3.7. Let ϕ be a quasilinear p-form over F , and let L/F be a finite extension of degree n.
If ϕL is isotropic, then ϕ contains a subform of dimension 6n which becomes isotropic over L.

Proof. Let µ1, . . . , µn be a basis for L over F , and suppose that w ∈ Vϕ ⊗F L is a non-zero
isotropic vector for ϕL. Then we can write

w = v1 ⊗ µ1 + · · ·+ vn ⊗ µn
for some vi ∈ Vϕ. The vi span a non-zero subspace W ⊂ Vϕ of dimension 6n, and the restriction
ϕ|W becomes isotropic over L. 2

Lemma 3.8. Let ϕ be an anisotropic quasilinear p-form over F , and let L/F be a degree p
extension. Then:

(1) dim(ϕL)an > (1/p) dim(ϕ);

(2) lndeg(ϕL) > lndeg(ϕ)− 1, with equality if ϕL is isotropic.

Proof. For any extension E/F , the dimension of (ϕE)an is equal to the dimension of the
Ep-vector space D(ϕE) by Proposition 2.2. In order to prove statement (1), we therefore have
to show that dimLp(D(ϕL)) > (1/p) dimF p(D(ϕ)). But this is obvious, because

p · dimLp(D(ϕL)) = dimF p(D(ϕL)) > dimF p(D(ϕ)).

The inequality in statement (2) now follows by applying statement (1) to the norm form ν̂(ϕ).
In the case where ϕL is isotropic, equality holds by Proposition 3.1. 2

4. Quasilinear p-hypersurfaces

In this section we present some basic observations concerning quasilinear p-hypersurfaces and
rational maps between them. We start with the following lemma.

Lemma 4.1. Let F be a field of characteristic p > 0. Let f = a0x
p
0 + a1x

p
1 + · · ·+ anx

p
n ∈

F [x0, . . . , xn] be a polynomial, and assume that a0 6= 0. Then f is reducible in F [x0, . . . , xn] if
and only if ai/a0 ∈ F p for all i ∈ [1, n].
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Proof. We may assume that a0 = 1. If ai ∈ F p for all i ∈ [1, n], then f = (
∑n

i=0
p
√
aixi)p.

Conversely, if f is reducible in F [x0, . . . , xn], then it is certainly reducible in F (x1, . . . , xn)[x0].
It follows that a1x

p
1 + · · ·+ anx

p
n is a pth-power in F (x1, . . . , xn), and this easily implies that

ai ∈ F p for all i ∈ [1, n]. 2

Now, let ϕ be a quasilinear p-form over F of dimension d+ 2. We consider the projective
hypersurface Xϕ := Proj(S•(V ∗ϕ )/(ϕ))⊂ P(Vϕ) of dimension d over F . A scheme of this type will
be called a quasilinear p-hypersurface. By Lemmas 2.8 and 4.1, the scheme Xϕ is integral if and
only if lndeg(ϕ)> 0. In particular, Xϕ is integral whenever ϕ is anisotropic. If lndeg(ϕ)> 0, then
we let F (ϕ) denote the field of rational functions on Xϕ. Note that F (ϕ) may be realised as a
purely transcendental extension of F followed by a purely inseparable extension of degree p. If
L/F is any extension of fields, then XϕL is canonically isomorphic to (Xϕ)L, and by construction,
Xϕ has an L-rational point if and only if ϕL is isotropic. In particular, the anisotropic form ϕ
becomes isotropic over the field F (ϕ). We will say that Xϕ is isotropic (respectively anisotropic)
if ϕ is isotropic (respectively anisotropic), and we define i0(Xϕ) := i0(ϕ). By Corollary 3.5, Xϕ

is isotropic if and only if it has a zero cycle of degree 1. Moreover, if Xϕ is isotropic, then
Proposition 2.2 shows that Xϕ is a cone over Xϕan with vertex given by the linear subspace of
dimension i0(Xϕ)− 1 corresponding to the subspace of isotropic vectors in Vϕ. It follows that
for any i> 0, we have i0(Xϕ)> i if and only if Xϕ has a dimension i cycle of degree prime to p
(where by degree we mean the degree as a cycle on the ambient projective space).

A quasilinear p-hypersurface X over F is a twisted form of the pth infinitesimal
neighbourhood of a hyperplane in some projective space Pn

F
. In particular, the smooth locus

of X is empty. Still, since the base field F is assumed to be imperfect, it is interesting to ask
when X is a regular scheme. The following result, due to Schröer, shows that this is rarely the
case.

Theorem 4.2 [Sch10, Theorem 3.3]. Let ϕ be a quasilinear p-form over F of dimension >2.
Then Xϕ is a regular scheme if and only if lndeg(ϕ) = dim(ϕ)− 1. If Xϕ is not regular, then the
non-regular locus has codimension lndeg(ϕ) in Xϕ.

The remainder of this section consists of some general observations concerning rational
maps between quasilinear p-hypersurfaces. Since an isotropic quasilinear p-hypersurface is a
cone over its anisotropic part (and, hence, stably birational to its anisotropic part), we may
restrict our attention to the anisotropic case. Note that if ϕ and ψ are quasilinear p-forms
over F of dimension >2 with lndeg(ψ)> 0, then the existence of a rational map Xψ 99KXϕ

is equivalent to the isotropy of the form ϕF (ψ). Indeed, given a rational map Xψ 99KXϕ, the
closure of its graph in Xψ ×Xϕ pulls back to a rational point on the generic fibre (Xϕ)F (ψ)

of the canonical projection Xψ ×Xϕ→Xψ. Conversely, any rational point of (Xϕ)F (ψ) can be
viewed as the generic point of a closed subvariety of Xψ ×Xϕ birational to Xψ over F ; using the
other projection Xψ ×Xϕ→Xϕ, we get a rational map Xψ 99KXϕ. We will switch between
the algebraic and geometric terminology where we feel it is appropriate.

It will be useful to observe the following simple fact.

Lemma 4.3. Let ϕ and ψ be anisotropic quasilinear p-forms over F . Then:

(1) dim(ϕF (ψ))an > (1/p) dim(ϕ);

(2) lndeg(ϕF (ψ)) > lndeg(ϕ)− 1, with equality if ϕF (ψ) is isotropic.
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Proof. Since F (ψ) can be realised as a purely transcendental extension of F followed by a degree
p extension, this follows from Corollary 3.5 and Lemma 3.8. 2

Now, a basic question here is the following question.

Question 4.4. Let X, Y and Z be anisotropic quasilinear p-hypersurfaces over F . Suppose that
there exist rational maps X 99K Y and Y 99K Z. Does there exist a rational map X 99K Z?

One approach to this problem is suggested by the following classical result.

Proposition 4.5. Let X, Y and Z be varieties over a field k with Z complete, and suppose
that there are rational maps X 99K Y and Y 99K Z. If the image of the generic point of X under
the rational map X 99K Y is a regular point of Y , then there exists a rational map X 99K Z.

Proof. This is a standard application of the valuative criterion of properness. More explicitly,
let y ∈ Y be the image of the generic point of X under the rational map X 99K Y . Since y
is regular, there is a valuation ring R of the function field k(Y ) with residue field k(y). By
the valuative criterion of properness, the morphism Spec k(Y )→ Z extends to a morphism
SpecR→ Z. Passing to the residue field we, get a morphism Spec k(y)→ Z. Finally, composing
this with the natural morphism Spec k(X)→ Spec k(y) gives a morphism Spec k(X)→ Z, as we
wanted. 2

Corollary 4.6. Let Y be a complete variety over F , and let ϕ and ψ be anisotropic quasilinear
p-forms of dimension >2 over F such that ψ is proportional to a subform of ϕ. If there exists a
rational map Xϕ 99K Y , then there exists a rational map Xψ 99K Y .

Proof. It suffices to treat the case where ψ is a codimension 1 subform of ϕ. In this case, Xϕ is
regular at the generic point of Xψ, because the latter is an effective Cartier divisor in Xϕ. The
statement therefore follows from Proposition 4.5. 2

Now observe that the statement of Question 4.4 depends not on the variety X, but only on
its generic point. Moreover, the function field F (X) can be realised as a purely transcendental
extension of F followed by a purely inseparable extension of degree p. Replacing the base field
F with a suitable purely transcendental extension of it, we therefore reduce to the case where X
is just a point (of degree p). Using Lemma 3.7 and Corollary 4.6, we can further reduce to the
case where dim(Y ) 6 p− 2. Taking Proposition 4.5 into consideration, we see that Question 4.4
can be settled affirmatively with a positive answer to the following question.

Question 4.7. Let Y be an anisotropic quasilinear p-hypersurface of dimension 6p− 2 over F ,
and let y ∈ Y be a closed point of degree p. Is it true that there exists a regular closed point
z ∈ Y such that F (z)∼= F (y) over F?

Of course, this is trivially true in the case where p= 2. Therefore Question 4.4 has a positive
answer for quasilinear quadrics, as was well known previously. For larger primes p, it was
essentially asked in [Hof04] whether Question 4.7 has a positive answer with the much stronger
condition that the point z be the intersection of the hypersurface Y with a line in the ambient
projective space (see Question B in § 5 of that paper). In general, this is not the case, even for
p= 3. To give an explicit example, let F = F3(s, t), where F3 is the field with three elements,
and s, t are independent variables. Then one can easily check that the anisotropic cubic form
〈1, s+ ts2, t〉 becomes isotropic over F ( 3

√
s), but contains no two-dimensional subform which
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becomes isotropic over the same extension. Nevertheless, the weaker assertion we make here
holds when p= 3.

Proposition 4.8. Question 4.7 (and, hence, Question 4.4) has a positive answer for p= 2 and
p= 3.

Proof. If Y is just a point, then there is nothing to prove. We may therefore assume that
p= 3 and dim(Y ) = 1. Let ϕ be a three-dimensional anisotropic form over F which defines the
hypersurface Y . By Lemma 2.8, we either have lndeg(ϕ) = 1 or lndeg(ϕ) = 2. In the latter case,
Y is a regular at all of its points by Theorem 4.2, and again there is nothing to prove. We
are therefore left with the case where lndeg(ϕ) = 1. Since ϕ becomes isotropic over the residue
field F (y), it follows from Proposition 3.1 that we have lndeg(ϕF (y)) = 0. In other words, the
subspace of isotropic vectors for ϕF (y) is two dimensional. For dimension reasons, it follows that
every two-dimensional subform of ϕ over F becomes isotropic over F (y). So if z is a closed point
of Y defined by any two-dimensional subform of ϕ, we therefore have F (z)∼= F (y) over F . Since
all such points are regular, the statement is proved. 2

Actually, the proof of Proposition 4.8 shows that for any prime p, Question 4.7 has a positive
answer whenever dim(Y ) 6 1. In particular, for the prime 5 we only need to treat the case where
dim(Y ) = 2 or dim(Y ) = 3. Suppose that dim(Y ) = 2, and let ϕ be a four-dimensional anisotropic
form defining Y . By Lemma 2.8, we have 1 6 lndeg(ϕ) 6 3. Again, the proof of Proposition 4.8
shows that Question 4.7 has a positive answer if lndeg(ϕ) = 1 or lndeg(ϕ) = 3. Therefore, the only
interesting case is where lndeg(ϕ) = 2. The following example suggests that things are already
rather more complicated in this situation.

Example 4.9. Let p= 5, and let a, b ∈ F ∗ be such that [F 5(a, b) : F 5] = 52 = 25. Choose a
polynomial g ∈ F 5[s, t] of degree 64 in both variables s, t so that the form

ϕ= 〈1, a, b, g(a, b)〉

is anisotropic over F . By the definition of ϕ, we have lndeg(ϕ) = 2. Moreover, the condition on
the coefficients a, b implies that there are derivations Da, Db : F → F satisfying:

(1) Da(a) = 1, Da(b) = 0; and

(2) Db(a) = 0, Db(b) = 1.

For indeterminates T0, T1, T2, T3, we can extend these to derivations Da, Db : F [T0, . . . , T3]→
F [T0, . . . , T3] by sending the variables to zero. Now, let us identify our form ϕ with the
polynomial T 5

0 + aT 5
1 + bT 5

2 + g(a, b)T 5
3 ∈ F [T0, . . . , T3]. Then the derivatives

Da(ϕ) = T 5
1 +

∂g

∂s
(a, b)T 5

3 ,

and

Db(ϕ) = T 5
2 +

∂g

∂t
(a, b)T 5

3

necessarily vanish at the non-regular points of the hypersurface Xϕ. A direct calculation then
shows that the non-regular locus of Xϕ consists of just one point, with residue field isomorphic
to

L= F

(
5

√
∂g

∂s
(a, b), 5

√
∂g

∂t
(a, b), 5

√
g(a, b)− a∂g

∂s
(a, b)− b∂g

∂t
(a, b)

)
.
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As far as Question 4.7 is concerned, we are only interested in points of minimal degree (in this
case, degree 5), so the first task here is to determine conditions on the polynomial g under
which [L : F ] = 5. One can hope that the restrictions imposed on g are sufficiently strong to
force the existence of more than one L-rational point on the hypersurface Xϕ; by the proof
of Proposition 4.8, this would be enough to provide a positive answer to Question 4.7 for the
form ϕ.

We conclude this section by pointing out the following important consequence of Corollary 4.6.
It was first proved by Hoffmann and Laghribi for quasilinear quadratic forms in [HL04], and was
later extended to arbitrary quasilinear p-forms by Hoffmann in [Hof04].

Proposition 4.10 [Hof04, Lemma 7.12]. Let ϕ and ψ be anisotropic quasilinear p-forms over
F of dimension >2. If there exists a rational map Xψ 99KXϕ, then N(ψ)⊂N(ϕ).

Proof. Since any two forms which are proportional have the same norm field, we may assume
that ψ = 〈1, a1, . . . , an〉 for some ai ∈ F ∗. For each i ∈ [1, n], let τi denote the binary subform
〈1, ai〉 of ψ. By Corollary 4.6, there are rational maps Xτi 99KXϕ for all i. In other words, ϕ
becomes isotropic over all of the fields F (τi)∼= F ( p

√
ai). By Corollary 3.2, we therefore have

ai ∈N(ϕ) for all i, and hence N(ψ) = F p(a1, . . . , an)⊂N(ϕ). 2

This result shows that the norm field and norm degree are birational invariants of quasilinear
p-hypersurfaces. We will make use of this in the next section.

5. The Izhboldin dimension and the main theorem

In this section, we prove the main result of the paper, Theorem 5.12.

Let ϕ be an anisotropic quasilinear p-form of dimension >2 over F . In analogy with the
theory of quadratic forms, we define the integers

i1(Xϕ) = i1(ϕ) := i0(ϕF (ϕ))

and

dimIzh(Xϕ) := dim(Xϕ)− i1(Xϕ) + 1.

The latter integer will be called the Izhboldin dimension of Xϕ.

Example 5.1. It follows from the first part of Lemma 4.3 that i1(ϕ) 6 dim(ϕ)− (1/p)dim(ϕ)
for any anisotropic form of dimension >2. Generally speaking, this bound is sharp. Indeed, if
π is an anisotropic quasi-Pfister form of dimension pn, then it follows from Lemma 2.6 that
i1(π) = pn − pn−1.

Example 5.2. An algebraic variety X is called incompressible if every rational map from X to
itself is dominant. In the theory of quadratic forms, an important result of Vishik says that
any anisotropic quadric X over a field of characteristic 6= 2 with i1(X) = 1 is incompressible
(see [Vis99] or [Kar00, Theorem 6.4]). This result has a key role to play in the proof of
Theorem 1.3. In our setting, the corresponding statement is trivial. Indeed, if X is an anisotropic
quasilinear p-hypersurface over F with i1(X) = 1, then X only has one rational point over its
function field F (X). In other words, there is only one rational map from X to itself. This rational
map is, of course, the identity.
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In fact, an anisotropic quasilinear p-hypersurface X is incompressible if and only if i1(X) = 1,
as the following lemma shows.

Lemma 5.3. Let ϕ be an anisotropic quasilinear p-form over F of dimension > 2, and let ψ ⊂ ϕ
be a subform of codimension 6 i1(ϕ)− 1. Then the form ψF (ϕ) is isotropic.

Proof. The point is that the subspace of isotropic vectors for ϕF (ϕ) must intersect the underlying
space of ψF (ϕ) non-trivially for dimension reasons. 2

We are going to show (as a consequence of the main theorem) that it is impossible to find a
subform of codimension larger than i1(ϕ)− 1 which becomes isotropic over F (ϕ). First we will
need a couple of lemmas.

Lemma 5.4. Let ϕ be an anisotropic quasilinear p-form of dimension >2 over F , and let ψ ⊂ ϕ
be a subform of codimension 1. Then ϕF (ϕ) ∼ ψF (ϕ).

Proof. We can write ϕ= 〈a〉 ⊕ ψ for some a ∈ F ∗. But ψ represents a over the field F (ϕ), so the
statement follows from Proposition 2.2. 2

Lemma 5.5. Let ϕ be an anisotropic quasilinear p-form of dimension >2 over F . Then there
exists a purely transcendental field extension K/F and a subform ψ ⊂ ϕK of codimension
i1(ϕ)− 1 such that i1(ψ) = 1.

Proof. We may assume that ϕ= 〈1, a1, . . . , an〉 for some ai ∈ F ∗. Let m< n be such that
dim(ϕF (ϕ))an =m+ 1. Reordering the ai if necessary, we can assume that 〈1, a1, . . . , am〉F (ϕ) is
the anisotropic part of ϕF (ϕ) by Lemma 2.4. Now, let T1, . . . , Tn−1 be indeterminate variables.
Then the function field F (ϕ) is F -isomorphic to the field

F (T1, . . . , Tn−1)
(

p
√
a1T

p
1 + · · ·+ an−1T

p
n−1 + an

)
.

Let K = F (Tm+1, . . . , Tn−1), and consider the subform

ψ = 〈1, a1, . . . , am, am+1T
p
m+1 + · · ·+ an−1T

p
n−1 + an〉

of ϕK . Then we have

ψK(ψ) ∼ 〈1, a1, . . . , am〉K(ψ)

by Lemma 5.4. But the field K(ψ) is F -isomorphic to F (ϕ) by construction, so the form
〈1, a1, . . . , am〉K(ψ) is anisotropic. It follows that i1(ψ) = 1. 2

Remark 5.6. We will show later (see Proposition 6.1) that i1(ψ) = 1 for any subform ψ ⊂ ϕ of
codimension i1(ϕ)− 1 over the base field F . The example constructed above (modulo passing to
a purely transcendental extension of F ) will be sufficient for our more immediate concerns.

In the theory of quadratic forms, Theorem 1.3 is actually deduced as a consequence of the
following stronger statement. It was first proved over fields of characteristic different from 2
by Karpenko and Merkurjev. It was extended to smooth quadrics in characteristic 2 in the
book [EKM08] by Elman et al. and to arbitrary quadrics (smooth or otherwise) by Totaro.

Theorem 5.7 (see [KM03, Theorem 3.1] and [Tot08, Theorem 5.1]). Let X be an anisotropic
quadric over a field k, and let Y be a complete variety over k which has no closed points of odd
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degree. Suppose that Y has a closed point of odd degree over k(X). Then:

(1) dimIzh(X) 6 dim(Y );

(2) if dimIzh(X) = dim(Y ), then there exists a rational map Y 99KX.

Remark 5.8. Let X be an anisotropic quadric satisfying i1(X) = 1. In the terminology of [Hau12,
§ 10], Theorem 5.7 says that X is strongly 2-incompressible. For an arbitrary variety X, the
degree to which X fails to satisfy the weaker notion of incompressibility (see Example 5.2) can
be measured by the minimum dimension of the image of a rational map from X to itself. In the
case where the variety X is regular and complete, this integer is commonly referred to as the
canonical dimension of X. The first part of Theorem 5.7 implies that the canonical dimension of
a smooth anisotropic quadric is equal to the Izhboldin dimension dimIzh(X). This includes the
previously mentioned result which says that an anisotropic quadric X is incompressible if and
only if i1(X) = 1.

We will now prove an analogue of Theorem 5.7 for quasilinear p-hypersurfaces. The approach
given here is rather different from that for quadrics given in [KM03, Tot08]. In fact, the latter
approach does not work for quasilinear p-hypersurfaces whenever p > 2. Indeed, the argument
given in [KM03, Tot08] makes essential use of the fact that the Chow group of zero cycles on
a projective quadric injects to the integers via the degree map. This is also true for isotropic
quasilinear p-hypersurfaces, but is in general false in the anisotropic case (which is precisely
the case needed for the proof). For example, if p > 2, and X is a quasilinear p-hypersurface of
dimension 1 (i.e. a curve), then one can show that CH0(X) contains non-zero p-torsion if and
only if X is regular. The proof which we present here makes no use of intersection theory, but
rather exploits properties of the norm field and norm degree invariants introduced earlier. The
important observation is the following lemma.

Lemma 5.9. Let ϕ and ψ be anisotropic quasilinear p-forms of dimension >2 over F , and let L
be a field such that F ⊂ L⊂ F (ψ). If the form ϕF (ψ) is isotropic, then ϕL is isotropic if and only
if lndeg(ϕL)< lndeg(ϕ).

Proof. One direction was already proved in Proposition 3.1. The interesting part is the converse.
So suppose that lndeg(ϕL)< lndeg(ϕ), and suppose for the sake of contradiction that ϕL is
anisotropic. Then, since ϕF (ψ) is isotropic, we have lndeg(ϕF (ψ))< lndeg(ϕL) by Proposition 3.1.
But this implies that lndeg(ϕF (ψ)) 6 lndeg(ϕ)− 2, which is impossible by the second part of
Lemma 4.3. 2

Proposition 5.10. Let X and Y be anisotropic quasilinear p-hypersurfaces over F . Suppose
that there exists a rational map X 99K Y , and let Z denote (the closure of) its image in Y . Then
there exists a rational map Z 99KX.

Proof. Let ψ and ϕ be anisotropic forms over F defining X and Y , respectively. We need
to show that ψ becomes isotropic over the field F (Z). But we have a natural embedding
F (Z)⊂ F (ψ) over F , and since the form ψF (ψ) is isotropic, Lemma 5.9 shows that it is sufficient
to check that lndeg(ψF (Z))< lndeg(ψ). Now, since there exists a rational map X 99K Y , we have
an inclusion N(ψE)⊂N(ϕE) for all field extensions E/F by Proposition 4.10. Suppose that
lndeg(ψF (Z)) = lndeg(ψ). Since Z is a subvariety of Y , the form ϕF (Z) is isotropic and, hence,

lndeg(ϕF (Z))< lndeg(ϕ) (5.1)
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by Proposition 3.1. By part (2) of Lemma 4.3, we also have

lndeg(ψF (ψ)) = lndeg(ψ)− 1 = lndeg(ψF (Z))− 1. (5.2)

Now, since N(ψF (Z))⊂N(ϕF (Z)), it follows from (5.2) that lndeg(ϕF (ψ)) 6 lndeg(ϕF (Z))− 1.
But then combining this with (5.1), we get lndeg(ϕF (ψ)) 6 lndeg(ϕ)− 2, which is impossible by
the second part of Lemma 4.3. Hence, lndeg(ψF (Z))< lndeg(ψ), and the proof is complete. 2

Corollary 5.11. Let f : X 99K Y be a rational map of anisotropic quasilinear p-hypersurfaces
over F , and let Z denote (the closure of) its image in Y . If i1(X) = 1, then X and Z are birational
via f .

Proof. There exists a rational map Z 99KX by Proposition 5.10, and since i1(X) = 1, the
composition X 99K Z 99KX is the identity (see Example 5.2). 2

A point y on a variety Y over a field k will be called separable if the residue field extension
k(y)/k is separably generated. Note that a variety has no separable points if and only if it has
no separable closed points. Indeed, this follows from the well-known fact that any generically
smooth variety has a dense subset of separable closed points. Here is our version of Theorem 5.7.

Theorem 5.12. Let X be an anisotropic quasilinear p-hypersurface over F , and let Y be a
complete variety over F which has no separable points. Suppose that there exists a rational map
X 99K Y . Then:

(1) dimIzh(X) 6 dim(Y );

(2) if dimIzh(X) = dim(Y ), then there exists a rational map Y 99KX.

Proof. It follows immediately from Corollary 3.5 that passing to a purely transcendental
extension of the base field F changes nothing in the statement. By Lemma 5.5, we may therefore
assume that X has a plane section X ′ of codimension i1(X)− 1 with i1(X ′) = 1. Moreover, there
exists a rational map X ′ 99K Y by Corollary 4.6. Since dimIzh(X ′) = dimIzh(X), we may replace X
by X ′ and assume that i1(X) = 1 (or, equivalently, dimIzh(X) = dim(X)). Let Z denote the image
of the rational map X 99K Y . Since Y has no separable points, the field extension F (Z)/F is not
separably generated. It follows from Proposition 3.4 that there exists a rational map Z 99K Y ′

for some anisotropic quasilinear p-hypersurface Y ′ over F . Now, since the given rational map
X 99K Z is dominant, we can consider the composition f : X 99K Z 99K Y ′. By Corollary 5.11, X
is birational to its image in Y ′ via f . It follows that X and Z are birational, and part (1) of the
statement follows immediately. Moreover, if we have the equality dim(X) = dim(Y ), then X and
Y are actually birational, hence part (2) follows. 2

Remark 5.13. With a little more work, it is possible to replace the condition that there exists
a rational map X 99K Y in Theorem 5.12 with the weaker condition that YF (X) has a separable
point. The proof proceeds along similar lines, but some additional arguments are needed (for
example, one must invoke Theorem 7.6 below in order to reduce to the case where i1(X) = 1).
Even if we allow for this modification, our result is still weaker than the corresponding result for
quadrics (Theorem 5.7) since we assume that Y has no separable points. More precisely, in the
terminology of [Hau12], our result is weaker than the assertion that an anisotropic quasilinear
p-hypersurface X with i1(X) = 1 is strongly p-incompressible (see also Remark 5.8). Nonetheless,
Theorem 5.12 is sufficient for several interesting applications.
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We can now determine which subforms of an anisotropic quasilinear p-form ϕ become isotropic
over the field F (ϕ). The analogue of the first part of the following statement for quadratic forms
over fields of characteristic different from 2 is due to Vishik (see [Vis99, Corollary 3]).

Corollary 5.14. Let ϕ be an anisotropic quasilinear p-form over F of dimension >2, and let ψ
be a subform of ϕ. Then ψF (ϕ) is isotropic if and only if codimϕ(ψ) 6 i1(ϕ)− 1. In the case where
codimϕ(ψ) = i1(ϕ)− 1, there is only one rational map Xϕ 99KXψ, and moreover, it is dominant.

Proof. The fact that every subform ψ of codimension 6i1(ϕ)− 1 becomes isotropic over F (ϕ) was
proved in Lemma 5.3. The converse follows from the first part of Theorem 5.12. If codimϕ(ψ) =
i1(ϕ)− 1, there is only one rational map Xϕ 99KXψ, because otherwise the subspace of isotropic
vectors for ψF (ϕ) would have dimension >2 and we could find a codimension i1(ϕ) subform of ϕ
which becomes isotropic over F (ϕ). The map is dominant by part (1) of Theorem 5.12. 2

We would like to prove an analogue of Theorem 1.3 for quasilinear p-hypersurfaces. To this
end, the only obstruction is Question 4.4. We will illustrate this with a proof in the case when
p= 2 or p= 3 (where we have a positive answer to Question 4.4 by Proposition 4.8). The case
where p= 2 was previously proved by Totaro in [Tot08].

Theorem 5.15. Assume that p= 2 or p= 3, and let X and Y be anisotropic quasilinear
p-hypersurfaces over F . Suppose that there exists a rational map X 99K Y . Then:

(1) dimIzh(X) 6 dimIzh(Y );
(2) dimIzh(X) = dimIzh(Y ) if and only if there exists a rational map Y 99KX.

Proof. Let Y ′ ⊂ Y be a plane section of codimension i1(Y )− 1. By Corollary 5.14, we have a
dominant rational map Y 99K Y ′. Proposition 4.8 now implies that there exists a rational map
X 99K Y ′. By the first part of Theorem 5.12, we get dimIzh(X) 6 dim(Y ′) = dimIzh(Y ), which
proves part (1). If there also exists a rational map Y 99KX, then the same argument shows that
dimIzh(Y ) 6 dimIzh(X), and hence dimIzh(X) = dimIzh(Y ). On the other hand, if we are given
the equality dimIzh(X) = dimIzh(Y ), then there is a rational map Y ′ 99KX by the second part
of Theorem 5.12. Composing with the dominant rational map Y 99K Y ′, we get a rational map
Y 99KX, and this proves part (2). 2

Remark 5.16. Note that we do not need a positive answer to Question 4.4 in its entirety to
prove the analogue of Theorem 1.3. Indeed, we only need the case where Z is a plane section of
codimension i1(Y )− 1 in Y . For this special case, our question is easily seen to be equivalent to
the following question.

Question 5.17. Let Y be an anisotropic quasilinear p-hypersurface over F . Is it true that i1(Y )
is minimal among all defect indices attained by Y over extensions of the base field where Y
becomes isotropic?

It is a well-established fact that i1(X) satisfies the analogous ‘generic property’ when X is a
smooth anisotropic quadric. In our case, we have a positive answer to Question 5.17 when p= 2
or p= 3 by Proposition 4.8.

6. Further applications to rational maps between quasilinear hypersurfaces

In this section we use Theorem 5.12 to prove some more specific results concerning rational
maps between quasilinear p-hypersurfaces. In particular, we prove analogues of Hoffmann’s
Theorem 1.1 (Theorem 6.10) and Izhboldin’s Theorem 1.2 (Theorem 6.12).
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Let ϕ be an anisotropic quasilinear p-form over F of dimension >2, let j ∈ [1, i1(ϕ)], and let
ψ ⊂ ϕ be a subform of codimension i1(ϕ)− j. Then it is easy to see that i1(ψ) > j. Indeed, it
suffices to show that every codimension j − 1 subform of ψ becomes isotropic over the field F (ψ)
(see Proposition 2.2). But any such subform is isotropic over F (ϕ) by Lemma 5.3, and hence
isotropic over F (ψ) by Corollary 4.6. Theorem 5.12 now allows us to prove that equality holds.

Proposition 6.1. Let ϕ be an anisotropic quasilinear p-form over F of dimension >2, let
j ∈ [1, i1(ϕ)], and let ψ ⊂ ϕ be a subform of codimension i1(ϕ)− j. Then i1(ψ) = j.

Proof. Suppose that i1(ψ)> j. Then there is a subform σ ⊂ ψ of codimension j which becomes
isotropic over F (ψ). Let τ be a subform of ψ of codimension j − 1 which contains σ as a
codimension 1 subform. Then there exists a rational map Xτ 99KXσ by Corollary 4.6. Since τ
has codimension i1(ϕ)− 1 in ϕ, there is a dominant rational map Xϕ 99KXτ by Corollary 5.14.
But then taking the composition of these rational maps gives a rational map Xϕ 99KXσ, and
this is impossible by Corollary 5.14. 2

Remark 6.2. The analogue of Proposition 6.1 for quadratic forms in characteristic different from
2 was proved by Vishik in [Vis99] prior to Karpenko and Merkurjev’s Theorem 1.3.

We will now prove analogues of Theorems 1.1 and 1.2 for quasilinear p-hypersurfaces. First
we need to introduce the class of quasi-Pfister neighbours.

Definition 6.3. Let ϕ be a quasilinear p-form over F of dimension >2, and let n be the unique
positive integer satisfying pn−1 < dim(ϕ) 6 pn. We say that ϕ is a quasi-Pfister neighbour if ϕ is
proportional to a subform of a quasi-Pfister form of dimension pn. In this case, the variety Xϕ

will also be called a quasi-Pfister neighbour.

Remark 6.4. Quasi-Pfister neighbours are analogous to Pfister neighbours in the theory of
quadratic forms. For example, if ϕ is a neighbour of a quasi-Pfister form π over F , then for every
field extension L/F , ϕL is isotropic if and only if πL is isotropic. Indeed, if dim(π) = pn and πL
is isotropic, then Lemma 2.6 implies that the subspace of isotropic vectors for πL has dimension
at least pn − pn−1, and therefore must intersect the underlying space of ϕL non-trivially.

Recall from Example 5.1 that if π is an anisotropic quasi-Pfister form of dimension pn, then
i1(π) = pn − pn−1. Applying Proposition 6.1 to the case of an anisotropic quasi-Pfister neighbour,
we therefore get the following corollary.

Corollary 6.5. Let ϕ be an anisotropic quasi-Pfister neighbour over F , and let n be the unique
positive integer such that pn−1 < dim(ϕ) 6 pn. Then i1(ϕ) = dim(ϕ)− pn−1.

Now, the following observation is key here.

Proposition 6.6. Let ϕ be an anisotropic quasilinear p-form of dimension >2 over F . Then
there exists a field extension F̃ /F such that ϕ

F̃
is an anisotropic quasi-Pfister neighbour.

Proof. Let π = ν̂(ϕ) be the norm form of ϕ. Recall that ϕ is proportional to a subform of π. Let
n be the unique positive integer such that pn−1 < dim(ϕ) 6 pn. If dim(π) = pn, then ϕ is already
a quasi-Pfister neighbour (of π). We can therefore assume that dim(π) > pn+1. In particular, we
have dimIzh(Xπ) > pn − 1 by Example 5.1. Since dim(Xϕ) 6 pn − 2, part (1) of Theorem 5.12
implies that there are no rational maps Xπ 99KXϕ. In other words, ϕ remains anisotropic over
the field F (π). Now, the anisotropic part of πF (π) is nothing else but the norm form π′ = ν̂(ϕF (π))
of ϕ over F (π). We have dim(π′)< dim(π), and since ϕF (π) is anisotropic, ϕF (π) is proportional

349

https://doi.org/10.1112/S0010437X12000632 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000632


S. Scully

to a subform of π′. Repeating this procedure as many times as is necessary, we eventually produce
an extension F̃ /F over which ϕ becomes an anisotropic quasi-Pfister neighbour (of the norm
form ν̂(ϕ

F̃
)). 2

Remark 6.7. We should point out that the analogous statement for non-degenerate quadratic
forms is certainly not true in general (see [HI00] for a detailed discussion of this problem for
quadratic forms over fields of characteristic different from 2).

Corollary 6.8. Let ϕ be an anisotropic quasilinear p-form of dimension >2 over F , and let n
be the unique positive integer such that pn−1 < dim(ϕ) 6 pn. Then i1(ϕ) 6 dim(ϕ)− pn−1.

Proof. By Proposition 6.6, there is an extension F̃ /F such that ϕ
F̃

is an anisotropic quasi-
Pfister neighbour. By Corollary 6.5, we then have i1(ϕ

F̃
) = dim(ϕ)− pn−1. Since we have a

natural embedding F (ϕ)⊂ F̃ (ϕ
F̃

), we get

i1(ϕ) = i0(ϕF (ϕ)) 6 i0(ϕ
F̃ (ϕ

F̃
)
) = i1(ϕ

F̃
) = dim(ϕ)− pn−1,

which is what we wanted. 2

Example 6.9. Let ϕ be an anisotropic quasilinear p-form of dimension pn + 1 for some n> 0.
Then i1(ϕ) = 1.

Now we can prove an analogue of Theorem 1.1 for quasilinear p-hypersurfaces.

Theorem 6.10. Let X and Y be anisotropic quasilinear p-hypersurfaces over F . If there exists
n> 1 such that dim(Y ) 6 pn − 2< dim(X), then there are no rational maps X 99K Y .

Proof. By part (1) of Theorem 5.12, it is sufficient to show that dimIzh(X)> pn − 2, and this
follows from Corollary 6.8. 2

Remark 6.11. The analogue of Corollary 6.8 for quadratic forms over fields of characteristic
different from 2 was originally proved by Hoffmann as a corollary of Theorem 1.1 (see [Hof95]).
Here the roles are reversed. The difference is that we were able to use Theorem 5.12 to prove
Proposition 6.6, but, as we have remarked above, the analogue of Proposition 6.6 for non-
degenerate quadratic forms is false in general. Corollary 6.8 and Theorem 6.10 were proved
in the case p= 2 by Hoffmann and Laghribi in [HL06] using different methods.

We also get the following analogue of Izhboldin’s Theorem 1.2. The case where p= 2 was
proved using different methods by Hoffmann and Laghribi in [HL06].

Theorem 6.12. Let X and Y be anisotropic quasilinear p-hypersurfaces over F with dim(Y ) =
pn − 1 6 dim(X) for some n> 0. Suppose that there exists a rational map X 99K Y . Then there
exists a rational map Y 99KX. If in addition we have dim(X) = pn − 1, then X and Y are
birational.

Proof. Let X ′ ⊂X be a plane section of dimension pn − 1. By Corollary 4.6, there exists
a rational map X ′ 99K Y . By Example 6.9, we have that i1(X ′) = 1. It then follows from
Corollary 5.11 that X ′ is birational to Y , whence the result. 2

Note that in the case where dim(X) = dim(Y ) = pn − 1 for some n> 0, we get the stronger
assertion (in comparison with Theorem 1.2) that X and Y are birational. For non-quasilinear
quadrics, this is still an open problem (see also Conjecture 7.1).
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Remark 6.13. In a recent article [Hau12], Haution has shown that any degree p hypersurface
of dimension p− 1 (over an arbitrary field) which has no closed points of degree prime to
p is strongly p-incompressible (see Remark 5.13). In particular, an anisotropic quasilinear
p-hypersurface of dimension p− 1 is strongly p-incompressible. For such varieties, this statement
is stronger than the results established above in the present article (see Remark 5.13). The proof
uses an extension of Zainoulline’s degree formula for the Euler characteristic (see [Zai10]) to
fields of arbitrary characteristic, and also to non-smooth varieties of sufficiently small dimension.
The Euler characteristic (of the structure sheaf) does not, however, distinguish between degree
p hypersurfaces of dimension >p− 1, so this invariant can only be used to explain the first
level of the ‘separation’ exhibited by Theorems 6.10 and 6.12. We remark any smooth degree
p hypersurface of dimension pn − 1 (for any n> 0) over a field of characteristic 6=p which has
no closed points of degree prime to p is strongly p-incompressible by the degree formulas of
A. Merkurjev (generalising those of Rost; see [Mer03]). It is not known at present whether the
degree formulas used to prove this hold in arbitrary characteristic.

7. Birational geometry of quasilinear hypersurfaces

In this section we consider the extension of the results obtained by Totaro on the birational
geometry of quadrics in [Tot08] to quasilinear hypersurfaces of higher degree.

An old problem of O. Zariski asks whether two stably birational varieties of the same
dimension over a field are actually birational. It is well known that this is false in general,
but in the case where both varieties are smooth anisotropic quadrics, it is still an important
open problem. Using the fact that a smooth isotropic quadric is a rational variety, one easily
shows that two smooth anisotropic quadrics X and Y over a field are stably birational if and only
if there exist rational maps X 99K Y and Y 99KX. We can therefore ask the following question
for arbitrary quadrics.

Conjecture 7.1 (Quadratic Zariski problem). Let X and Y be anisotropic quadrics of the
same dimension over a field k. Suppose that there exist rational maps X 99K Y and Y 99KX. Is
it true that X and Y are birational?

In a series of papers [Tot07, Tot08, Tot09], Totaro has suggested a new approach to this
problem by means of a related conjecture concerning rulings on quadrics. We will say that a
variety X over a field k is ruled if X is birational to Y × P1

k for some variety Y over k. Totaro
has observed the following consequence of Vishik’s result stating that an anisotropic quadric
with first Witt index equal to 1 is incompressible.

Theorem 7.2 [Tot08, Corollary 3.2]. Let X be an anisotropic quadric over a field k. If i1(X) =
1, then X is not ruled.

Moreover, he has stated the following conjecture.

Conjecture 7.3 [Tot07, Conjecture 3.1]. Let X be an anisotropic quadric over a field k. Then
X is ruled if and only if i1(X)> 1.

This is formulated more precisely as follows.

Conjecture 7.4 [Tot09, Conjecture 1.1]. Let X be an anisotropic quadric over a field k. Then
X is birational to X ′ × Pi1(X)−1

k for some subquadric X ′ ⊂X of codimension i1(X)− 1.
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Many results are known on all of these problems for quadrics of small dimension. In [Tot08],
Totaro proves Conjecture 7.4 for the entire class of quasilinear quadrics, and then uses it to
prove the quasilinear case of Conjecture 7.1. The same approach should work for quasilinear
hypersurfaces of higher degree. The analogue of Theorem 7.2 is trivial in this setting.

Proposition 7.5. Let X be an anisotropic quasilinear p-hypersurface over F . If i1(X) = 1, then
X is not ruled.

Proof. Suppose that X is birational to Y × P1
F for some variety Y over F . Then we can construct

a rational map X 99KX as the composition

X 99K Y × P1
F

prY−−−→ Y ↪→ Y × P1
F 99KX,

where the second map is the canonical projection and the third map is the embedding of Y
in Y × P1

F at a rational point of P1
F . Note that the composition is defined because the third

map embeds Y as an effective Cartier divisor in Y × P1
F (see Proposition 4.5). But the resulting

rational map is not dominant by construction, and this contradicts the fact that the only rational
map from X to itself is the identity (see Example 5.2). 2

We can now prove an analogue of Conjecture 7.4 for quasilinear hypersurfaces of higher
degree. Given the results of § 5, the proof for the case p= 2 given by Totaro in [Tot08] carries
over verbatim to all primes p. We reproduce the argument here for the reader’s convenience.

Theorem 7.6. Let X be an anisotropic quasilinear p-hypersurface over F , and let X ′ ⊂X be

a plane section of codimension i1(X)− 1. Then X is birational to X ′ × Pi1(X)−1
F .

Proof. For simplicity of notation, let us put r = i1(X). Let ϕ be an anisotropic form over F
which defines the variety X, and let ψ ⊂ ϕ be a subform of codimension r − 1 which defines its
subvariety X ′. By Corollary 5.14, there exists a dominant rational map π : X 99KX ′ via which
we may view F (ψ) as a subfield of F (ϕ). In particular, the defect index of ϕ over F (ψ) is no
more than r. On the other hand, it must be at least this large. Indeed, if σ ⊂ ϕ is any subform
of codimension r − 1, then σF (ψ) is isotropic by Corollary 4.6 (with Y =Xσ, and ϕ, ψ as given).
Hence, ϕ has the same defect index over F (ψ) as it does over F (ϕ). Let v0, . . . , vr−1 be a basis
of the subspace of isotropic vectors for the form ϕF (ψ). The vi may be regarded as rational maps
from X ′ to the affine hypersurface {ϕ= 0}. Define a rational map f : X ′ × Pr−1

F 99KX over F
by the assignment

(x′, [λ0 : · · · : λr−1]) 7→ [λ0v0(x′) + · · ·+ λr−1vr−1(x′)].

Now, the identity map X →X corresponds to some isotropic line in the space Vϕ ⊗F F (ϕ). Since
ϕ has the same index over F (ψ) as it does over F (ϕ), there are rational functions fi ∈ F (ϕ) such
that [f0 · (v0 ◦ π) + · · ·+ fr−1 · (vr−1 ◦ π)] is the identity map from X to itself. Define a rational
map g : X 99KX ′ × Pr−1

F by the assignment

x 7→ (π(x), [f0(x), . . . , fr−1(x)]).

By construction, the composition f ◦ g is the identity on X. Therefore, g is a birational
isomorphism, and the statement is proved. 2

Finally, we make some remarks concerning an analogue of the quadratic Zariski problem
for quasilinear hypersurfaces of higher degree. Unfortunately, the obstruction here is again
Question 4.4. As with Theorem 5.15, we illustrate this with a proof for quasilinear quadrics
and cubics (for which we know that Question 4.4 has a positive answer).
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Theorem 7.7. Assume that p= 2 or p= 3, and let X and Y be anisotropic quasilinear
p-hypersurfaces of the same dimension over F . Suppose that there exist rational maps X 99K Y
and Y 99KX. Then X and Y are birational.

Proof. Let X ′ ⊂X and Y ′ ⊂ Y be plane sections of codimensions i1(X)− 1 and i1(Y )− 1,
respectively. By Theorem 7.6, X is birational to X ′ × Pi1(X)−1

F and Y is birational to Y ′ ×
Pi1(Y )−1
F . Moreover, we have i1(X) = i1(Y ) by Theorem 5.15 (here we are using the statement of

Question 4.4). In order to prove the statement, it therefore suffices to show that X ′ and Y ′ are
birational. Now, we have rational maps X ′ 99K Y and Y 99K Y ′ by Corollary 4.6 and Lemma 5.3,
respectively. By Proposition 4.8, we therefore have a rational map X ′ 99K Y ′ (again, we are using
the statement of Question 4.4). Since i1(X) = 1 and dim(X ′) = dim(Y ′), X ′ and Y ′ are birational
by Corollary 5.11. 2

Remark 7.8. As with Theorem 5.15, we do not need a positive answer to Question 4.4 in its
entirety, but only a positive answer to Question 5.17.

Still, using some of the results we have obtained, we can give partial results towards a
positive solution to the Zariski problem for all primes p. By Corollary 5.11, the conjecture is
true whenever i1(X) = 1. In particular, it is true whenever dim(X) = dim(Y ) = pn − 1 for some
n> 0 by Example 6.9. We can improve this to include dimensions which are ‘sufficiently close’
to the form pn − 1. First we need the case of quasi-Pfister neighbours.

Proposition 7.9. Let X and Y be quasi-Pfister neighbours of the same dimension over F .
Suppose that there are rational maps X 99K Y and Y 99KX. Then X and Y are birational.

Proof. Let X ′ ⊂X and Y ′ ⊂ Y be plane sections of codimensions i1(X)− 1 and i1(Y )− 1,
respectively. From the proof of Theorem 7.7, the only thing left to check is that we have rational
maps X ′ 99K Y ′ and Y ′ 99KX ′. Now, let ϕ and ψ be quasi-Pfister forms over F such that X
is a neighbour of Xϕ and Y is a neighbour of Xψ. Then there exist rational maps X ′ 99KXψ

and Y ′ 99KXϕ by Corollary 4.6. But by Corollary 6.5, X ′ and Y ′ are also neighbours of Xϕ and
Xψ, respectively. In particular, for any variety Z over F , there exists a rational map Z 99KX ′

(respectively Z 99K Y ′) if and only if there exists a rational map Z 99KXϕ (respectively Z 99KXψ;
see Remark 6.4). Therefore, we have rational maps X ′ 99K Y ′ and Y ′ 99KX ′, and the proof is
complete. 2

Remark 7.10. For example, any two neighbours of the same quasi-Pfister hypersurface which
have the same dimension are birational. Together, Propositions 6.6 and 7.9 show that the
analogue of the quadratic Zariski problem is true up to making an extension of the base field
which preserves the anisotropy of the quasilinear hypersurfaces involved.

We conclude with the following result, which settles the Zariski problem in a large number
of cases.

Proposition 7.11. Let X and Y be anisotropic quasilinear p-hypersurfaces of the same
dimension d over F . Suppose that there exist rational maps X 99K Y and Y 99KX, and let
n be the unique non-negative integer satisfying pn < d+ 2 6 pn+1. If d6 pn + n, then X and Y
are birational.

Proof. Let ϕ and ψ be anisotropic forms defining X and Y , respectively. By Proposition 4.10,
we have lndeg(ϕ) = lndeg(ψ). Let us denote this integer by m. If m= n+ 1, then X and Y
are quasi-Pfister neighbours, and we are done by Proposition 7.9. We can therefore assume
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that m> n+ 2. Now, let X ′ ⊂X and Y ′ ⊂ Y be plane sections of codimensions i1(X)− 1 and
i1(Y )− 1, respectively. As before, we only need to show that there exist rational maps X ′ 99K Y ′

and Y ′ 99KX ′. By Corollary 4.6 and Lemma 5.3, we have rational maps X ′ 99K Y and Y 99K Y ′

(respectively rational maps Y ′ 99KX and X 99KX ′), and by Proposition 4.5 it will be sufficient to
prove that Y (respectively X) is regular at the image of the generic point of X ′ (respectively Y ′).
We may therefore assume that X and Y are not regular. Note that we have i1(X ′) = i1(Y ′) = 1
by Proposition 6.1. It therefore follows from Corollary 5.11 that we may also assume that the
given rational maps X ′ 99K Y and Y ′ 99KX are closed embeddings of subvarieties. Now, the non-
regular locus of X (respectively Y ) has codimension m> n+ 2 by Theorem 4.2. On the other
hand, the separation theorem (Theorem 6.10) implies that

codimY (X ′) = d− dim(X ′) 6 d− (pn − 1),

and similarly codimX(Y ′) 6 d− (pn − 1). Hence, if d6 pn + n, then we have

codimY (X ′), codimX(Y ′) 6 n+ 1<m,

and so Y (respectively X) is regular at the generic point of X ′ (respectively Y ′). 2
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