A CHARACTERIZATION OF PRUFER DOMAINS

H. H. Storrer*

(received 3rd May, 1969)

The purpose of this note is to give a new characterization of Prufer domains using the concept of ring epimorphism, and to indicate some connections with well-known properties of Prufer domains. All rings are commutative and have a unit element.

An extension $R \subseteq S$ of rings is called epimorphic, if the injection map is an epimorphism in the category of commutative rings, i.e. cancellable on the right. $R \subseteq S$ is epimorphic if and only if the natural map $S \otimes_R S \to S$ is an isomorphism (see e.g. [8]).

We will say, that $R \subseteq S$ is a completely epimorphic extension, if $R \subseteq T$ is epimorphic for all rings T "between" R and S, i.e. $R \subseteq T \subseteq S$. This is clearly equivalent to the following condition: for all $s \in S$, we have $s \otimes 1 = 1 \otimes s$ in $R[s] \otimes_R R[s]$.

A homomorphism $R \to S$ is called flat, if S is a flat R-module, and an extension $R \subseteq S$ is called essential, if each non-zero ideal of S has non-zero intersection with R.

LEMMA 1. A completely epimorphic extension $R \subseteq S$ is essential.

<u>Proof.</u> If $0 \neq s \in S$, then $s \otimes 1 = 1 \otimes s$ in $R[s] \otimes_R R[s]$. By [1, Chapter 1, §2, No. 11, Lemma 10], there exist elements $x_j \in R[s]$ and $a_{jk} \in R$ (j = 0, ..., m, k = 0, ..., n) such that, among other relations,

$$s = \sum_{j=0}^{m} x_j a_{j0} \quad \text{and}$$

$$\sum_{k=0}^{n} a_j s^k = 0 \quad (j = 0, \dots, m).$$

Canad. Bull. Math. vol. 12, no. 6, 1969

^{*} NRC Postdoctoral Fellow

Since $s \neq 0$, there is at least one index i, such that $a_{i0} \neq 0$ and we can write

$$-a_{i0} = s(\sum_{k=1}^{n} a_{ik}^{k}),$$

which implies the statement of the lemma.

LEMMA 2 (Lazard [5]). If $R \subseteq S$ is epimorphic and flat, and if T is a ring between R and S, such that $R \subseteq T$ is flat, then $R \subseteq T$ is epimorphic.

Proof. The following diagram is commutative:

Since T and S are flat, i \otimes i is a monomorphism, hence T $\underset{\mathsf{R}}{\otimes}$ T \rightarrow T is an isomorphism.

LEMMA 3. If $R \subseteq S$ is completely epimorphic, then every T between R and S is integrally closed.

<u>Proof.</u> Suppose there exists a T which is not integrally closed and let $s \not \in T$ be integral over T. Then T[s] is a finitely generated T-module and $T \subseteq T[s]$ is not epimorphic by [4, Proposition 1.5]. This implies of course, that $R \subseteq T[s]$ is not epimorphic.

If R is an integral domain with quotient field K, then a ring between R and K is called an overring of R. Every essential epimorphic extension, and in particular every completely epimorphic extension of an integral domain is isomorphic to an overring [8, Corollary 9.11].

However, not every overring of an integral domain is an epimorphic extension, as it will be shown in the next proposition.

A Prufer domain is an integral domain, such that every finitely generated ideal is invertible. A Dedekind domain is a noetherian Prufer domain.

PROPOSITION. Let R be an integral domain with quotient field K. Then R is a Prufer domain if and only if R \subseteq K is completely epimorphic.

<u>Proof.</u> If R is Prufer, then the tensor product of torsion-free modules is torsion-free [2, VII, Proposition 4.5], hence, for any $s = a/b \in K$, $b(s \otimes 1 - 1 \otimes s) = 0$ in $R[s] \otimes_R R[s]$ implies $s \otimes 1 = 1 \otimes s$. The converse follows from Lemma 3 and a result of Davis [3].

The proof gives us a little bit more information.

COROLLARY 1. If R is an integral domain with quotient field K, then the following conditions are equivalent:

- (i) R is a Prufer domain;
- (ii) the tensor-product of torsion-free modules is torsion-free;
- (iii) $R[s] \otimes_{D} R[s]$ is torsion-free for all $s \in K$.

COROLLARY 2. If R is a Prufer domain, then the following conditions for a ring $T \supseteq R$ are equivalent:

- (i) T is isomorphic (over R) to an overring of R;
- (ii) R ⊆ T is essential and epimorphic;
- (iii) R ⊆ T is completely epimorphic.

This follows from the proposition and [8, Corollary 9.11]. With the appropriate definition of "overring", this corollary generalizes to semihereditary rings.

Some well-known properties of Prufer domains can now be deduced from the preceding results; we list two examples.

COROLLARY 3. Every overring of a Prufer domain is a Prufer domain.

COROLLARY 4 (Richman [7]). An integral domain is Prufer if and only if every overring is flat.

This is a consequence of Lemma 2 and the fact, that a torsion-free module over a Prufer domain is flat [2, VII, Proposition 4.2.].

We finally give a new proof of a result, which was first established in [6].

COROLLARY 5. Every overring of a Dedekind domain is a Dedekind domain.

<u>Proof.</u> By Corollary 3, every overring T is a Prufer domain, and it remains to show, that every T is noetherian. This follows from [4, Corollary 2.3.], since R is noetherian and $R \subseteq T$ is a flat epimorphism.

REFERENCES

- 1. N. Bourbaki, Algèbre commutative, Chapitres 1 et 2. (Act. Sci. Ind. 1290, Hermann, Paris, 1961).
- 2. H. Cartan, and S. Eilenberg, Homological algebra. (Princeton University Press, 1956).
- E.D. Davis, Overrings of commutative rings II. Integrally closed overrings. Trans. Amer. Math. Soc. 110 (1964) 196-212.
- 4. D. Lazard, Epimorphismes plats d'anneaux. C.R. Acad. Sci. Paris 266 (1968) 314-317.
- 5. D. Lazard, Epimorphismes plats. Séminaire P. Samuel (Algèbre commutative) 1967/68, Exposé No. 4. (Secrétariat mathématique, Paris 1968).
- 6. S. MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories. Amer. J. Math. 61 (1939) 771-782.
- 7. F. Richman, Generalized quotient rings. Proc. Amer. Math. Soc. 19 (1965) 794-799.
- 8. H.H. Storrer, Epimorphismen von kommutativen Ringen. Comm. Math. Helv. 43 (1968) 378-401.

McGill University

Present address: Cornell University Ithaca

812