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It is customary to define a vector space in some such manner as: A
vector space over a field F is a set V of elements a, b, • • • called vectors,
having the following properties: For arbitrary a,b,ceV;X,/ieF.

Al. There is a mapping of F x F into V which is called addition of
vectors. The image of the pair (a,b) eVxV is called the sum of a and b,
and is denoted by a-\-b.

A2. There is a mapping of F x F into V which is called multiplication
of vectors by scalars. The image of the pair (A, a) e FxV is called the
product and is denoted by Xa.

A3. a+(b+c) = (a+b)+c

A4. a+b = b+a

A5. 1 • a = a

A6. X(jia) = {X[i)a

A7. (X+fi)a = Xa-\-[ia

A8. X(a+b) = la+Xb

A 9 . T h e r e i s a v e c t o r o eV so t h a t f o r e v e r y aeV

o-\-a = a

A10. For each a e V there is a vector —a e V so that

a+(—a) = o

It is not at all evident that A9 and A10 are respectively independent
of the preceding axioms, and it is to this question that we address ourselves.
We observe that authors of elementary texts wherein one finds vector spaces
defined in extenso are often vague on the question of independence. Thus
P. R. Halmos [2] observes that 'These axioms are not claimed to be in-
dependent, they are merely a convenient characterisation'; on the other
hand an apparent excess of economy leads N. H. Kuiper [3] to define
finite dimensional vector spaces by axioms Al, • • •, A8; these axioms he
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then asserts force the existence of a set of generators {«i}iej so that every
a e V is of the shape 2«e/ ^ia« (^ e F) • • • a further axiom that there be a
finite set of generators is then shown to imply A9 and A10.

Interestingly we will see that not only is A9 independent of Al, • • •, A8
but indeed A10 is independent of Al, • • •, A9. Further it is not the case
that Al, • • •, A8 suffice to force the existence of a set of generators in the
required sense, so that this property is also independent of Al, • • •, A8. In
particular we see that it is not the case that for arbitrary a eV the vector
0 • a is the zero vector in the sense of A9.

LEMMA. In the presence of Al, • • •, A8,

Al l : for arbitrary a, b eV 0 • a = 0 • b is equivalent to A9, A10.
For if Al, • • •, A8, Al l then

0 • a + b = 0 • b + b = O - b + l - b = ( 0 + 1 ) 6 = l - b = b

«+(—l)a = 1 • a+(—l)a = (l + (—1))« = 0 • a

and we have A9 with 0 • a = o = 0 • b, and A10 with —a = (—1)«.
Conversely if Al, • • •, A8, A9, A10

0-a+b = o+ (0 • a+b) = (o+0 • a)+b = ((a+(-a))+0 • a)+b
= ((a+0 • a) + (-a))+b = ((1 • a+0 • a) + (-a))+b
= ((i+o)a+(-«))+6 = (1 • a+(-a))+b
= (a+{~a))+b = o+b = b

hence in particular for arbitrary a e V

o = 0- a+o = 0+0 • a = 0 • a
and we have All .

It is of course an immediate consequence of the lemma that to prove
the independence of A9, A10 from Al, • • • A8 we need only construct a
system which has Al, • • • A8 but lacks Al l . Such a system S, which we
call a semi-vector space, will be an additive commutative semigroup by
Al, A3, A4 with 'idempotents' 0 • a for each a e V (for 0 • a + 0 • a = 0 • a)
by A2, A7.

THEOREM 1. A semi-vector space S is the disjoint union of maximal sub-
vector spaces Va, Vb, • • • called the components of S, with the property that
a, b are in the same component V of S if and only if 0 • a = 0 • b.

By Zorn's Lemma we may easily prove this result directly. We however
observe that it is an immediate result of Theorem 1.11 of A. H. Clifford
and G. B. Preston 'Algebraic Theory of Semigroups' [1] whereby each
(distinct) idempotent lies in its own maximal subgroup of the semigroup
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S. Conversely by A2, A5, A7 each a e S lies in the maximal subgroup
containing the idempotent 0 • a. Finally each subgroup is by A4, • • •, A8
a sub-vector space of S.

We may represent each component Va, Vb, • • • of S by an arbitrary
element a, b, • • • therein, and let Y be the set of such representatives. We
observe that the sum a'-\-b' of arbitrary a' eVa, V e Vb always lies in the
unique component Vc whose idempotent is 0 • c = 0 • a-\-0 • b. Then Y
becomes a (lower) semilattice by defining the meet a A b of two elements,
a, b e Y as that element c e Y such that Va-\-Vb Q Vc; the partial ordering
so induced in Y is (isomorphic to) the natural partial ordering of the idem-
potentsof S;i.e. 0 • c ^ 0 • a means 0 • a + 0 • c = 0 • c (see Section 18 of [1]).
We thus have

THEOREM V. S = U{Va : a e Y} is the union of the semilattice Y of
maximal sub-vector spaces {components) of S; Y is the semilattice of idem-
potents of S (more exactly, isomorphic thereto).

For completeness we mention the properties of the 'fine-structure' of S.
WTe write a Sj: b a,b e Y whenever 0 • a 5: 0 • b or equivalently Va-\-Vb C Vb.

We define for a ^ b the mapping cobaa' = 0 • b-\-a' (a' e Va). Then
mKa is a linear transformation of the vector space Va into Vb; further if
a 22 b 2: c then (ocbcob „ = wca, and <wao is the identy mapping of Va.
Next we note that if a' eVa, V eVb then a'-\-b' = cocaa'+(oCtbb' where
c = a A b. As an immediate consequence of Theorem 4.11 of [1] we then
have

THEOREM 2. Let Y be any semilattice and to each element a of Y assign
a vector space Va over the field F, such that Va and Vh are disjoint if a =£b
in Y. To each pair a, b e Y such that a > b assign a linear transformation
mb a of Va into Vb such that if a > b > c then

Let a>aa be the identity automorphism of Va. Let S be the union of all the
vector spaces Va(a e Y) and define the sum of any two elements a', b'
(a'eVa,b'eVb)by

a'+b' = a>Ctaa'+a>c>bb'

where c is the meet a A J of a, b in the semilattice Y.
Then S is a semi-vector space over F. Conversely every such semi-vector

space can be constructed in this manner.
Clearly every semi-vector space with more than one component, and

with semilattice Y not containing z such that z 25 a for all a e Y, is an
algebraic structure with properties Al, • • •, A8 but lacking A9 and A10.
On the other hand if Y contains a maximal element z then the idempotent

https://doi.org/10.1017/S1446788700004365 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004365


428 A. J. van der Poorten [4]

0 • z' (z' e Vz) is in fact a unique o of S in the sense of A9, and thus we
obtain structures with properties Al, • • • A9 but without A10. Thus the
axioms A9, A10 are independent of Al, • • • A8 and axiom A10 is independent
of Al, • • •, A9.

As trivial examples of semi-vector spaces we mention the space 5X

with elements 0 • a, 0 • b, 0 • c and addition 0 • a-\-0 • b = 0 • c, which has
Al, • • • A8 but lacks A9, A10. On the other hand the subspace S2 with
elements 0 • a, 0 • c and 0 • a-\-0 • c = 0 - c i s a semi-vector space with zero
0 • a but without additive inverse for 0 • c, and thus has Al, • • • A9 but
lacks A10. Sx and 52 are of course semi-vector spaces over any field F
with zero 0.

We also observe that a semi-vector space with more than one component
does not have a set of generators {at}ieI such that every a e S is of the shape
^Liei^tai (̂ t e ^ ) ' f°r every such sum lies in the unique component con-
taining the idempotent 2»ei 0 • a4. Thus a semivector space with a set of
generators is a vector-space.

Finally we mention that the Weber-Huntington axioms for a group
[4] assure that the property: for any a, b e S there is a c e S such that
a-\-c = b; makes a semi-vector space S a vector space. We can see that
this is so by observing that this property cannot hold in a space with more
than one component; in the presence of Al, • • •, A8 (indeed in the presence
of Al, A3, A4) this property is thus equivalent to A9, A10.

My thanks are due to the Editor of the Journal and the referees for
their helpful advice.
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