THE RATIONALITY OF THE MODULI SPACE OF ONE-POINTED INEFFECTIVE SPIN HYPERELLIPTIC CURVES VIA AN ALMOST DEL PEZZO THREEFOLD

HIROMICHI TAKAGI and FRANCESCO ZUCCONI

Abstract

Using the geometry of an almost del Pezzo threefold, we show that the moduli space $\mathcal{S}_{g, 1}^{0, \text { hyp }}$ of genus g one-pointed ineffective spin hyperelliptic curves is rational for every $g \geqslant 2$.

§0. Introduction

Throughout this paper, we work over \mathbb{C}, the complex number field.

0.1 Results

The purpose of this paper is to show the following result:
Theorem 0.1.1. The moduli space $\mathcal{S}_{g, 1}^{0, \text { hyp }}$ of one-pointed genus g hyperelliptic ineffective spin curves is an irreducible rational variety.

We have the following immediate corollary:
Corollary 0.1.2. The moduli space $\mathcal{S}_{g}^{0, \text { hyp }}$ of genus g hyperelliptic ineffective spin curves is an irreducible unirational variety.

Now we give necessary definitions and notions to understand the statements of the above results. We recall that a couple (C, θ) is called a genus g spin curve if C is a genus g curve and θ is a theta characteristic on C, namely, a half canonical divisor of C. If the linear system $|\theta|$ is empty, then θ is called an ineffective theta characteristic, and we also say that such a spin curve is ineffective. A hyperelliptic spin curve (C, θ) means that C is hyperelliptic. A pair of a spin curve (C, θ) and a point $p \in C$ is called a one-pointed spin curve. One-pointed spin curves (C, θ, p) and $\left(C^{\prime}, \theta^{\prime}, p^{\prime}\right)$ are said to be isomorphic to each other if there exists an isomorphism $\xi: C \rightarrow C^{\prime}$ such that $\xi^{*} \theta^{\prime} \simeq \theta$ and $\xi^{*} p^{\prime}=p$. Finally, we denote by $\mathcal{S}_{g, 1}^{0, \text { hyp }}\left(\right.$ resp. $\left.\mathcal{S}_{g}^{0, \text { hyp }}\right)$ the coarse

[^0]© 2017 Foundation Nagoya Mathematical Journal
moduli space of isomorphism classes of one-pointed genus g hyperelliptic ineffective spin curves (resp. genus g hyperelliptic ineffective spin curves).

0.2 Background

Main motivations of our study are the rationalities of the moduli spaces of hyperelliptic curves [2], [7] and of pointed hyperelliptic curves [3].

One feature of the paper is that the above rationality is proved via the geometry of a certain smooth projective threefold. We developed such a method in our previous works [11-13]. In these works, we established the interplay between

- even spin trigonal curves, where even spin curve means that the considered theta characteristics have even-dimensional spaces of global sections; and
- the quintic del Pezzo threefold B, which is known to be unique up to isomorphisms and is isomorphic to a codimension three linear section of $\mathrm{G}(2,5)$.

The relationship between curves and 3-folds are a kind of mystery but many such relationships have been known to nowadays. A common philosophy of such works is that a parameter space of certain objects in a certain threefold is an algebraic curve with some extra data. In [11, Cor. 4.1.1], we showed that a genus $d-2$ trigonal curve appears as the family of lines on B which intersect a fixed another rational curve of degree $d \geqslant 2$, and, in [12, Prop. 3.1.2], we constructed a theta characteristic on the trigonal curve from the incidence correspondence of intersecting lines on B. The mathematician who first met such an interplay is S. Mukai, who discovered that lines on a genus twelve prime Fano threefold V is parameterized by a genus three curve, and constructed a theta characteristic on the genus three curve from the incidence correspondence of intersecting lines on $V[9,10]$. In our previous works [11-13], we interpreted Mukai's work from the view point of the quintic del Pezzo threefold B and generalized it.

The study of this paper is directly related to our paper [13], in which we showed that the moduli of even spin genus four curves is rational by using the above mentioned interplay.

0.3 Methods

We are going to show our main result also by using such an interplay, but we replace the quintic del Pezzo threefold by a certain degeneration of it. This is a new feature of this paper. The degeneration is a quintic del Pezzo threefold with one node, which is also known to be unique up
to isomorphisms and is isomorphic to a codimension three linear section of $\mathrm{G}(2,5)$ by [4]. Moreover, it is not factorial at the node, and hence it admits two small resolutions, which we call B_{a} and B_{b} in this paper. Actually, we do not work on this singular threefold directly but work on small resolutions, mainly on B_{a}. Along the above mentioned philosophy, we consider a family of "lowest degree" rational curves on B_{a}, which we call B_{a}-lines, intersecting a fixed another "higher degree" rational curve R. Then we show such $B_{a^{-}}$ lines are parameterized by a hyperelliptic curve C_{R}, and we construct an ineffective theta characteristic θ_{R} on it from the incidence correspondence of intersecting B_{a}-lines. Then we may reduce the rationality problem of the moduli to that of a certain quotient of family of rational curves on B_{a} by the group acting on B_{a}, and solve the latter by computing invariants.

0.4 Structure of the paper

Finally, we sketch the structure of the paper. In Section 1, we define a projective threefold B_{a}, which is the key variety for our investigation of onepointed ineffective spin hyperelliptic curves. In this section, we also review several properties of B_{a}. In Section 2, we construct the above mentioned families of rational curves R on B_{a}, and the family of B_{a}-lines. Then, in Section 3, we construct hyperelliptic curves C_{R} as the parameter space of one-pointed B_{a}-lines intersecting each fixed R. In Section 4, we construct an ineffective theta characteristic θ_{R} on C_{R} from the incidence correspondence of intersecting B_{a}-lines parameterized by C_{R}. We also remark that C_{R} comes with a marked point from its construction. Finally in this section, we interpret the moduli $\mathcal{S}_{g, 1}^{0, \text { hyp }}$ by a certain group quotient of the family of R. One crucial point for this is to show that a general one-pointed ineffective spin hyperelliptic curve conversely comes from a smooth rational curve R on B_{a} (Theorem 4.2.1). Then, in Section 5, we show the rationality of the latter by computing invariants.

§1. The key projective threefold B_{a}

1.1 Definition of B_{a}

The key variety to show the rationality of $\mathcal{S}_{g, 1}^{0, \text { hyp }}$ is the threefold, which we denote by B_{a} in this paper, with the following properties:
(1) B_{a} is a smooth almost del Pezzo threefold, which is, by definition, a smooth projective threefold with nef and big but nonample anticanonical divisor divisible by 2 in the Picard group.
(2) If we write $-K_{B_{a}}=2 M_{B_{a}}$, then $M_{B_{a}}^{3}=5$.
(3) $\rho\left(B_{a}\right)=2$.
(4) B_{a} has two elementary contractions, one of which is the anticanonical model $B_{a} \rightarrow B$ and it is a small contraction, and another is a \mathbb{P}^{1}-bundle $\pi_{a}: B_{a} \rightarrow \mathbb{P}^{2}$.

1.2 Descriptions of B_{a}

(1.2.a) Fujita's description

Many people met the threefold B_{a} in several contexts. The first one is probably Fujita. In his classification of singular del Pezzo threefolds [4], B_{a} appears as a small resolution of a quintic del Pezzo threefold B. Here we do not review Fujita's construction of B_{a} in detail except that we sum up his results as follows:

Proposition 1.2.1. The projective variety B_{a} is unique up to isomorphism. In other words, B_{a} is characterized by the properties (1)-(4) as above. Moreover, the anticanonical model $B_{a} \rightarrow B$ contracts a single smooth rational curve, say, γ_{a} to a node of B. In particular the normal bundle of γ_{a} is $\mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus 2}$.

(1.2.b) Associated rank two bundle

Fujita treats B_{a} less directly, so descriptions of B_{a} by [8], [6], [14] and [5], which we review below, are more convenient for our purpose.

By $[8, \S 3]$ and $\left[6\right.$, Thm. 3.6], we may write $B_{a} \simeq \mathbb{P}(\mathcal{E})$ with a stable rank two bundle \mathcal{E} on \mathbb{P}^{2} with $c_{1}(\mathcal{E})=-1$ and $c_{2}(\mathcal{E})=2$ fitting in the following exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}(-3) \rightarrow \mathcal{O}(-1)^{\oplus 2} \oplus \mathcal{O}(-2) \rightarrow \mathcal{E} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

Let $H_{\mathcal{E}}$ be the tautological divisor for \mathcal{E} and L the π_{a}-pullback of a line in \mathbb{P}^{2}. By the canonical bundle formula for projective bundle, we may write

$$
\begin{equation*}
-K_{B_{a}}=2 H_{\mathcal{E}}+4 L \tag{1.2}
\end{equation*}
$$

Therefore, by the definition of $M_{B_{a}}$ as in Section 1.1, we see that $M_{B_{a}}$ is the tautological line bundle associated to $\mathcal{E}(2)$.

Generally, let \mathcal{F} be a stable bundle on \mathbb{P}^{2} with $c_{1}(\mathcal{F})=-1$. In [5], Hulek studies jumping lines for such an \mathcal{F}, where a line j on \mathbb{P}^{2} is called a jumping line for \mathcal{F} if $\mathcal{F}_{\mid \mathrm{j}} \not 千 \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$. We also recall that a line I on \mathbb{P}^{2} is called a jumping line of the second kind for \mathcal{F} if $h^{0}\left(\mathcal{F}_{\mid 21}\right) \neq 0$, where 21 is the double line supported on the line I. In [5, Thm. 3.2.2], it is shown that the locus
$C(\mathcal{F})$ in the dual projective plane $\left(\mathbb{P}^{2}\right)^{*}$ parameterizing jumping lines of the second kind is a curve of degree $2\left(c_{2}(\mathcal{F})-1\right)$.

Therefore, in our case, $C(\mathcal{E})$ is a conic. The following properties of \mathcal{E} are crucial in this paper:

Proposition 1.2.2.
(1) \mathcal{E} is unique up to an automorphism of \mathbb{P}^{2};
(2) $C(\mathcal{E}) \subset\left(\mathbb{P}^{2}\right)^{*}$ is a line pair, which we denote by $\ell_{1} \cup \ell_{2}$;
(3) \mathcal{E} has a unique jumping line $\subset \mathbb{P}^{2}$, which we denote by j , and the point [j] in the dual projective plane $\left(\mathbb{P}^{2}\right)^{*}$ is equal to $\ell_{1} \cap \ell_{2}$; and
(4) $\mathcal{E}_{\mathrm{j}} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$.

Proof. The claims (1)-(3) follow from [5, Prop. 8.2], and the claim (4) follows from [5, Prop. 9.1].

Notation 1.2.1. For a line $\mathrm{m} \subset \mathbb{P}^{2}$, we set $L_{\mathrm{m}}:=\pi_{a}^{-1}(\mathrm{~m}) \subset B_{a}$. We denote by $C_{0}(\mathrm{~m})$ the negative section of L_{m}.

Here we can interpret the jumping line of \mathcal{E} by the birational geometry of B_{a} as follows:

Corollary 1.2.3. It holds that
(1) the π_{a}-image on \mathbb{P}^{2} of the exceptional curve γ_{a} of $B_{a} \rightarrow B$ is the jumping line j; and
(2) the curve γ_{a} is the negative section of L_{j}.

Proof. (1) By the uniqueness of γ_{a} as in Proposition 1.2.1, we have only to show that the negative section $C_{0}(\mathrm{j})$ of L_{j} is numerically trivial for $-K_{B_{a}}$. By Proposition 1.2.2(4), we have $H_{\mathcal{E}} \cdot C_{0}(\mathrm{j})=-2$. Therefore, since $-K_{B_{a}}=2 H_{\mathcal{E}}+4 L_{\mathrm{j}}$, we have $-K_{B_{a}} \cdot C_{0}(\mathrm{j})=2 \times(-2)+4=0$.

The assertion (2) follows from the proof of (1).

1.3 Two-ray link

By [6, Thm. 3.5 and 3.6] and [14, Thm. 2.3], a part of the birational geometry of B_{a} is described by the following two-ray link:

where
(i) $B_{a} \longrightarrow B_{b}$ is the flop of a single smooth rational curve γ_{a}.
(ii) π_{b} is a quadric bundle.
(iii) Let L be the pullback of a line by π_{a}, and H a fiber of π_{b}. Then it holds that

$$
\begin{equation*}
-K=2(H+L) \tag{1.4}
\end{equation*}
$$

where we consider this equality both on B_{a} and B_{b}, and $-K$ denotes both of the anticanonical divisors.

Notation 1.3.1.

(1) We denote by γ_{a} and γ_{b} the flopping curves on B_{a} and B_{b}, respectively.
(2) It is important to notice that there exist exactly two singular $\pi_{b^{-}}$ fibers, which are isomorphic to the quadric cone (this follows from the calculation of the topological Euler number of B_{a} and invariance of Euler number under flop). We denote them by F_{1} and F_{2}.

Though we mainly work on B_{a}, the threefold B_{b} is also useful to understand the properties of B_{a} related to the jumping lines of the second kind since the definition of such jumping lines is less geometric (see Section 2.4).

1.4 Group action on B_{a}

In this subsection, we show that B_{a} has a natural action by the subgroup of $\operatorname{Aut}\left(\mathbb{P}^{2}\right)^{*}$ preserving $\ell_{1} \cup \ell_{2}$. This fact should be known for experts but we do not know appropriate literatures.

Our way to see this is based on the elementary transformation of the \mathbb{P}^{1} bundle $\pi_{a}: B_{a} \rightarrow \mathbb{P}^{2}$ centered at the flopping curve γ_{a}. This make it possible to describe the group action quite explicitly.

Proposition 1.4.1. Let $\mu: \widetilde{B}_{a} \rightarrow B_{a}$ be the blow-up along the flopping curve γ_{a}. Let $\nu: \widetilde{B}_{a} \rightarrow B_{c}$ be the blow down over \mathbb{P}^{2} contracting the strict transform of $L_{\mathrm{j}}=\pi_{a}^{-1}(\mathrm{j})$ to a smooth rational curve γ_{c} (the existence of the blow down follows from Mori theory in a standard way). Then $B_{c} \simeq \mathbb{P}^{1} \times \mathbb{P}^{2}$.

Moreover, γ_{c} is a divisor of type $(1,2)$ in $\mathbb{P}^{1} \times \mathrm{j}$.

Proof. This follows from [4, p.166, (si111o) Case (a)].
To describe B_{c}, let $\left(x_{1}: x_{2}\right)$ be a coordinate of \mathbb{P}^{1} and $\left(y_{1}: y_{2}: y_{3}\right)$ be a coordinate of \mathbb{P}^{2}. By a coordinate change, we may assume that $j=\left\{y_{3}=\right.$ $0\} \subset \mathbb{P}^{2}$ and the two ramification points of $\gamma_{c} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{2} \xrightarrow{p_{1}} \mathbb{P}^{1}$ are $(0: 1) \times$ $(1: 0: 0)$ and $(1: 0) \times(0: 1: 0)$. Then $\gamma_{c}=\left\{\alpha x_{1} y_{1}^{2}+\beta x_{2} y_{2}^{2}=y_{3}=0\right\}$ with $\alpha \beta \neq 0$. By a further coordinate change, we may assume that

$$
\begin{equation*}
\gamma_{c}=\left\{x_{1} y_{1}^{2}+x_{2} y_{2}^{2}=y_{3}=0\right\} \tag{1.6}
\end{equation*}
$$

Let us denote by G the automorphism group of B_{a}. We can obtain the following description of G from Proposition 1.4.1. For this, we denote by $G_{m} \simeq \mathbb{C}^{*}$ the multiplicative group and by $G_{a} \simeq \mathbb{C}$ the additive group.

Corollary 1.4.2. The automorphism group G of B_{a} is isomorphic to the subgroup of the automorphism group of B_{c} which preserves γ_{c}. Explicitly, let an element $(A, B) \in \mathrm{PGL}_{2} \times \mathrm{PGL}_{3}$ acts on $B_{c} \simeq \mathbb{P}^{1} \times \mathbb{P}^{2}$ as $(\mathbf{x}, \mathbf{y}) \mapsto$ $(A \mathbf{x}, B \mathbf{y})$ by matrix multiplication. If (A, B) preserve γ_{c} with the equation (1.6) as above, then (A, B) is of the form
(i) $A=\left(\begin{array}{cc}a_{1}^{2} & 0 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{ccc}1 & 0 & b_{1} \\ 0 & a_{1} & b_{2} \\ 0 & 0 & a_{2}\end{array}\right)$, or
(ii) $A=\left(\begin{array}{cc}0 & a_{1}^{2} \\ 1 & 0\end{array}\right), B=\left(\begin{array}{ccc}0 & 1 & b_{1} \\ a_{1} & 0 & b_{2} \\ 0 & 0 & a_{2}\end{array}\right)$,
where $a_{1}, a_{2} \in G_{m}$ and $b_{1}, b_{2} \in G_{a}$ in both cases.
In particular, the G-orbit of $(1: 1) \times(0: 0: 1)$ in $\mathbb{P}^{1} \times \mathbb{P}^{2}$ is open. Therefore, the action of G on B_{c} is, and hence the one on B_{a} is quasihomogeneous.

Proof. Note that $G=\operatorname{Aut} B_{a}=\operatorname{Aut}\left(B_{a}, \gamma_{a}, L_{\mathrm{j}}\right)$ since γ_{a} and L_{j} are preserved by G. By universality of blow-ups, a G-action on \widetilde{B}_{a} is naturally induced and then the map μ is G-equivariant. Thus we have
$\operatorname{Aut}\left(B_{a}, \gamma_{a}, L_{\mathrm{j}}\right)=\operatorname{Aut}\left(\widetilde{B}_{a}, E_{a}, \widetilde{L}_{\mathrm{j}}\right)$, where E_{a} is the μ-exceptional divisor and $\widetilde{L}_{\mathrm{j}}$ is the strict transform of L_{j}. By a similar reason to the above, a G-action on B_{c} is naturally induced and then the map ν is G-equivariant. Thus we have $\operatorname{Aut}\left(\widetilde{B}_{a}, E_{a}, \widetilde{L}_{\mathrm{j}}\right)=\operatorname{Aut}\left(B_{c}, \mathbb{P}^{1} \times \mathrm{j}, \gamma_{c}\right)$ since the images of E_{a} and $\widetilde{L}_{\mathrm{j}}$ on B_{c} are $\mathbb{P}^{1} \times \mathrm{j}$ and γ_{c} respectively by Proposition 1.4.1. Moreover, since $\mathbb{P}^{1} \times \mathrm{j}$ is uniquely determined from γ_{c}, we have $\operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}, \mathbb{P}^{1} \times \mathrm{j}, \gamma_{c}\right)=$ $\operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}, \gamma_{c}\right)$. Therefore, we have $G=\operatorname{Aut}\left(\mathbb{P}^{1} \times \mathbb{P}^{2}, \gamma_{c}\right)$ and the first assertion follows. Explicit descriptions of G as a subgroup of Aut B_{b} can be obtained by elementary calculations.

It is also easy and is convenient to write down the G-action on the base \mathbb{P}^{2}.
Corollary 1.4.3.
(1) The projective plane \mathbb{P}^{2} consists of the following three orbits of G :

$$
\mathbb{P}^{2}=G \cdot(0: 0: 1) \sqcup G \cdot(1: 1: 0) \sqcup\{(1: 0: 0) \sqcup(0: 1: 0)\}
$$

where $G \cdot(0: 0: 1)$ is the open orbit, $G \cdot(1: 1: 0)$ is an open subset of the jumping line $\mathrm{j}:=\left\{y_{3}=0\right\}$, and the two points $(1: 0: 0),(0: 1: 0) \in$ j form one orbit and correspond to the lines ℓ_{1} and ℓ_{2} by projective duality.
(2) The dual projective plane $\left(\mathbb{P}^{2}\right)^{*}$ has the following three orbits of G by the contragradient action of G :

$$
\left(\mathbb{P}^{2}\right)^{*}=G \cdot(1: 1: 0) \sqcup\{G \cdot(1: 0: 0) \sqcup G \cdot(0: 1: 0)\} \sqcup(0: 0: 1),
$$

where $G \cdot(1: 1: 0)$ is the open orbit, the closures of $G \cdot(1: 0: 0)$ and $G \cdot(0: 1: 0)$ are the two lines ℓ_{1} and ℓ_{2}.

Proof. We only show that the two points $(1: 0: 0),(0: 1: 0) \in \mathrm{j}$ correspond to the lines ℓ_{1} and ℓ_{2} by projective duality. This follows from the orbit decomposition of \mathbb{P}^{2} by the identity component G_{0} of G since the two points $\in \mathbb{P}^{2}$ corresponding to the lines ℓ_{1} and ℓ_{2} are fixed by G_{0}, and G_{0} has only two fixed points.

In Section 5, a central role is played by the following explicit description of the action of G on B_{a} preserving L_{m} for a line m such that $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$. By quasi-homogeneity of the action on B_{a} as in Corollary 1.4.2, we may assume that $\mathrm{m}=\left\{y_{1}=y_{2}\right\}$.

Lemma 1.4.4. An element $(A, B) \in \mathrm{PGL}_{2} \times \mathrm{PGL}_{3}$ of G preserves L_{m}, equivalently, preserves m if and only if (A, B) is of the form

$$
\text { (a) } A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & b_{1} \\
0 & 0 & a_{2}
\end{array}\right)
$$

or

$$
\text { (b) } A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 1 & b_{1} \\
1 & 0 & b_{1} \\
0 & 0 & a_{2}
\end{array}\right)
$$

where $a_{2} \in G_{m}$ and $b_{1} \in G_{a}$ in both cases.
In particular, such elements form a subgroup $\Gamma \simeq\left(\mathbb{Z}_{2} \times G_{a}\right) \rtimes G_{m}$ of G and Γ is generated by the following three type elements:

- $G_{m}:\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \times\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a\end{array}\right)$ with $a \in G_{m}$;
- $G_{a}:\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \times\left(\begin{array}{lll}1 & 0 & b \\ 0 & 1 & b \\ 0 & 0 & 1\end{array}\right)$ with $b \in G_{a}$; and
- $\mathbb{Z}_{2}:\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \times\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.

$\S 2$. Families of rational curves on B_{a}

In this section, we construct families of rational curves on B_{a}, which will ties the geometries of B_{a} and one-pointed ineffective spin hyperelliptic curves.

2.1 Preliminaries

Lemma 2.1.1. If a line m is not equal to the jumping line j , then $(H-L)_{\mid L_{\mathrm{m}}}$ is linearly equivalent to the negative section $C_{0}(\mathrm{~m})$ of $L_{\mathrm{m}} \simeq \mathbb{F}_{1}$. If $\mathrm{m}=\mathrm{j}$, then $(H-L)_{\mid L_{\mathrm{m}}}$ is linearly equivalent to the negative section γ_{a} plus a ruling of $L_{\mathrm{j}} \simeq \mathbb{F}_{3}$.

Proof. As we mention in Section (1.2.b), $M_{B_{a}}$ is the tautological line bundle on B_{a} associated to the bundle $\mathcal{E}(2)$. Therefore, comparing (1.2) and (1.4), we see that $H-L=M_{B_{a}}-2 L$ is the tautological line bundle associated to the bundle \mathcal{E}. If m is not equal to the jumping line j , then $\mathcal{E}_{\mid \mathrm{m}} \simeq \mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)$ and hence $(H-L)_{\mid L_{\mathrm{m}}}$ is linearly equivalent to the negative section $C_{0}(\mathrm{~m})$ of $L_{\mathrm{m}} \simeq \mathbb{F}_{1}$. If $\mathrm{m}=\mathrm{j}$, then $\mathcal{E}_{\mid \mathrm{m}} \simeq \mathcal{O}_{\mathbb{P}^{1}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1)$ by Proposition 1.2.2(4) and hence $(H-L)_{\mid L_{\mathrm{m}}}$ is linearly equivalent to the negative section γ_{a} plus a ruling of $L_{\mathrm{j}} \simeq \mathbb{F}_{3}$.

By this lemma, it is easy to show the following proposition:
Proposition 2.1.2. Let $\mathrm{m} \subset \mathbb{P}^{2}$ be a line and $g \geqslant-1$ an integer. If $\mathrm{m} \neq \mathrm{j}$ (resp. $\mathrm{m}=\mathrm{j}$ and $g \geqslant 1$), then a general element R of the linear system $\left|(H+g L)_{\left|L_{\mathrm{m}}\right|}\right|$ is a smooth rational curve with $H \cdot R=g+1$ and $L \cdot R=1$. Moreover, if $\mathrm{m} \neq \mathrm{j}$ and $g \geqslant 0$ (resp. $\mathrm{m}=\mathrm{j}$ and $g \geqslant 1$), then $\left|(H+g L)_{\left|L_{\mathrm{m}}\right|}\right|$ has no base point.

Definition 2.1.1. We define \mathcal{L} to be the following subscheme of $B_{a} \times\left(\mathbb{P}^{2}\right)^{*}$:

$$
\mathcal{L}:=\left\{(x,[\mathrm{~m}]) \mid x \in L_{\mathrm{m}}=\pi_{a}^{-1}(\mathrm{~m})\right\} .
$$

Let $p_{1}: \mathcal{L} \rightarrow B_{a}$ and $p_{2}: \mathcal{L} \rightarrow\left(\mathbb{P}^{2}\right)^{*}$ be the first and the second projections, respectively. Note that the p_{2}-fiber over a point $[\mathrm{m}]$ is nothing but L_{m}. In particular, \mathcal{L} is smooth.

Remark 2.1.2. To follow the sequel easily, it is useful to notice that \mathcal{L} is the pullback by the composite $B_{a} \times\left(\mathbb{P}^{2}\right)^{*} \xrightarrow{\pi_{a} \times \text { id }} \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*}$ of the pointline incidence variety $\{(x,[\mathrm{~m}]) \mid x \in \mathrm{~m}\} \subset \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{*}$. Therefore, we also see that \mathcal{L} is G-invariant, where the G-action is induced on $B_{a} \times\left(\mathbb{P}^{2}\right)^{*}$ by the G-action on B_{a} defined as above and the contragradient G-action on $\left(\mathbb{P}^{2}\right)^{*}$.

2.2 Families of rational curves of higher degrees

Definition 2.2.1.

(1) For an integer $g \geqslant 0$, we set

$$
\mathcal{R}_{g}:=p_{2 *} p_{1}^{*} \mathcal{O}_{B_{a}}(H+g L)
$$

We see that $\operatorname{dim} H^{0}\left(\mathcal{O}_{L_{\mathrm{m}}}(H+g L)\right)$ is constant since $H^{1}\left(\mathcal{O}_{L_{\mathrm{m}}}(H+g L)\right)$ $=\{0\}$ for any m and $g \geqslant 0$. Therefore, by Grauert's theorem, the coherent sheaf \mathcal{R}_{g} is a locally free sheaf on $\left(\mathbb{P}^{2}\right)^{*}$. Set

$$
\Sigma_{g}:=\mathbb{P}\left(\mathcal{R}_{g}^{*}\right)
$$

which is nothing but the projective bundle over $\left(\mathbb{P}^{2}\right)^{*}$ whose fiber over a point $[\mathrm{m}]$ is the projective space $\mathbb{P}\left(H^{0}\left(\mathcal{O}_{L_{\mathrm{m}}}(H+g L)\right)\right)$.
(2) We denote by $\mathcal{H}_{g} \subset \Sigma_{g}$ the sublocus parameterizing smooth rational curves. Note that \mathcal{H}_{g} is a nonempty open subset of Σ_{g} by Proposition 2.1.2.

2.3 Family of B_{a}-Lines

Now we construct a family of curves parameterizing the negative section of L_{m} for a line $\mathrm{m} \neq \mathrm{j}$, and the negative section γ_{a} plus a ruling of L_{j}. Intuitively, it is easy to imagine such a family exists by Lemma 2.1.1 but a rigorous construction needs some works.

Lemma 2.3.1. The following hold:
(1) $H^{0}\left(\mathcal{O}_{B_{a}}(H-L)\right)=\{0\}$ and $H^{1}\left(\mathcal{O}_{B_{a}}(H-L)\right)=\mathbb{C}$.
(2) $H^{0}\left(\mathcal{O}_{B_{a}}(H-2 L)\right)=\{0\}, H^{1}\left(\mathcal{O}_{B_{a}}(H-2 L)\right)=\mathbb{C}^{2}$, and $H^{2}\left(\mathcal{O}_{B_{a}}(H-2 L)\right)=\{0\}$.

Proof. The claims follow easily from the exact sequence (1.1) noting that $H-L$ is the tautological line bundle associated to \mathcal{E}. Here we only show that $H^{2}\left(\mathcal{O}_{B_{a}}(H-2 L)\right) \simeq H^{2}\left(\mathbb{P}^{2}, \mathcal{E}(-1)\right)=\{0\}$. By the Serre duality, we have $H^{2}\left(\mathbb{P}^{2}, \mathcal{E}(-1)\right) \simeq H^{0}\left(\mathbb{P}^{2}, \mathcal{E}^{*}(-2)\right)^{*} \simeq H^{0}\left(\mathbb{P}^{2}, \mathcal{E}(-1)\right)^{*}$, which is zero by (1.1).

Notation 2.3.1. Let $b: \widetilde{\left(\mathbb{P}^{2}\right)^{*}} \rightarrow\left(\mathbb{P}^{2}\right)^{*}$ be the blow-up at the point [j]. Let E_{0} be the b-exceptional curve, and r be a ruling of $\widetilde{\left(\mathbb{P}^{2}\right)^{*}} \simeq \mathbb{F}_{1}$. The surface $\widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ will be the parameter space of the family of B_{a}-lines which we are going to construct.

For a point $[m] \in\left(\mathbb{P}^{2}\right)^{*} \backslash[j]$, we use the same character $[m]$ for the corresponding point on $\left(\mathbb{P}^{2}\right)^{*}$.

Let $b_{\mathcal{L}}: \widetilde{\mathcal{L}} \rightarrow \mathcal{L}$ be the blow-up along the fiber of $p_{2}: \mathcal{L} \rightarrow\left(\mathbb{P}^{2}\right)^{*}$ over [j]. By universality of blow-up, the variety $\widetilde{\mathcal{L}}$ is contained in $B_{a} \times \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ and a unique map $\tilde{p}_{2}: \widetilde{\mathcal{L}} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ is induced. We denote by $\tilde{p}_{1}: \widetilde{\mathcal{L}} \rightarrow B_{a}$ the map obtained by composing $b_{\mathcal{L}}: \widetilde{\mathcal{L}} \rightarrow \mathcal{L}$ with $p_{1}: \mathcal{L} \rightarrow B_{a}$.

LEmma 2.3.2. It holds that $H^{0}\left(\tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \otimes \tilde{p}_{2}^{*} \mathcal{O}\left(E_{0}+2 r\right)\right) \simeq \mathbb{C}$.

Proof. By noting the natural isomorphism

$$
\begin{aligned}
& H^{0}\left(\widetilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \otimes \widetilde{p}_{2}^{*} \mathcal{O}\left(E_{0}+2 r\right)\right) \\
& \quad \simeq H^{0}\left(\widetilde{p}_{2 *} \widetilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \otimes \mathcal{O}\left(E_{0}+2 r\right)\right)
\end{aligned}
$$

the assertion follows once we show that

$$
\begin{equation*}
\tilde{p}_{2 *} \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \simeq \mathcal{O}\left(-E_{0}-2 r\right) \tag{2.2}
\end{equation*}
$$

Let $\tilde{\rho}_{1}: B_{a} \times \widetilde{\left(\mathbb{P}^{2}\right)^{*}} \rightarrow B_{a}$ and $\rho_{1}: B_{a} \times\left(\mathbb{P}^{2}\right)^{*} \rightarrow B_{a}$ be the first projections, and $\tilde{\rho}_{2}: B_{a} \times \widetilde{\left(\mathbb{P}^{2}\right)^{*}} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ and $\rho_{2}: B_{a} \times\left(\mathbb{P}^{2}\right)^{*} \rightarrow\left(\mathbb{P}^{2}\right)^{*}$ the second projections. By Remark 2.1.2, when we consider the variety \mathcal{L} as a divisor on $B_{a} \times\left(\mathbb{P}^{2}\right)^{*}$, it is a member of $\left|\rho_{1}^{*} L+\rho_{2}^{*} \mathcal{O}_{\left(\mathbb{P}^{2}\right)^{*}}(1)\right|$. Since \mathcal{L} does not contain the fiber of $B_{a} \times\left(\mathbb{P}^{2}\right)^{*} \rightarrow\left(\mathbb{P}^{2}\right)^{*}$ over [j], the variety $\widetilde{\mathcal{L}}$ is the total pullback of \mathcal{L} by $B_{a} \times \widetilde{\left(\mathbb{P}^{2}\right)^{*}} \rightarrow B_{a} \times\left(\mathbb{P}^{2}\right)^{*}$. Hence $\widetilde{\mathcal{L}}$ belongs to the linear system $\left|\tilde{\rho}_{1}^{*} L+\tilde{\rho}_{2}^{*}\left(E_{0}+r\right)\right|$ since $\mathcal{O}\left(E_{0}+r\right)=b^{*} \mathcal{O}_{\left(\mathbb{P}^{2}\right)^{*}}(1)$.

To compute $\tilde{p}_{2 *} \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L)$, let us consider the following exact sequence:

$$
\begin{aligned}
0 & \rightarrow \widetilde{\rho}_{1}^{*} \mathcal{O}_{B_{a}}(H-2 L) \otimes \widetilde{\rho}_{2}^{*} \mathcal{O}\left(-E_{0}-r\right) \\
& \rightarrow \widetilde{\rho}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \rightarrow \widetilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \rightarrow 0
\end{aligned}
$$

which is obtained from the natural exact sequence

$$
0 \rightarrow \mathcal{O}_{B_{a} \times \widetilde{\left(\mathbb{P}^{2}\right)^{*}}}(-\widetilde{\mathcal{L}}) \rightarrow \mathcal{O}_{B_{a} \times\left(\widetilde{\left.\mathbb{P}^{2}\right)^{*}}\right.} \rightarrow \mathcal{O}_{\widetilde{\mathcal{L}}} \rightarrow 0
$$

by tensoring $\widetilde{\rho}_{1}^{*} \mathcal{O}_{B_{a}}(H-L)$. By Lemma 2.3.1, the pushforward of the exact sequence by $\widetilde{\rho}_{2}$ is
$0 \rightarrow \tilde{p}_{2 *} \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \rightarrow \mathcal{O}\left(-E_{0}-r\right)^{\oplus 2} \rightarrow \mathcal{O} \rightarrow R^{1} \tilde{p}_{2 *} \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \rightarrow 0$.
Note that, for a point $[\mathrm{m}] \neq[\mathrm{j}]$, it holds that $H^{0}\left(\mathcal{O}_{L_{\mathrm{m}}}(H-L)\right) \simeq \mathbb{C}$ and $H^{1}\left(\mathcal{O}_{L_{\mathrm{m}}}(H-L)\right)=\{0\}$ by Lemma 2.1.1. Therefore, by Grauert's theorem, $\tilde{p}_{2 *} \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L)$ is an invertible sheaf possibly outside E_{0}, and the support of $R^{1}:=R^{1} \tilde{p}_{2 *} \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L)$ is contained in E_{0}.

Let \mathcal{I} be the image of the map $\mathcal{O}\left(-E_{0}-r\right)^{\oplus 2} \rightarrow \mathcal{O}$ in the above exact sequence, which is an ideal sheaf. Note that $R^{1}=\mathcal{O}_{\Delta}$, where Δ is the closed subscheme defined by \mathcal{I}. We show that $\Delta=E_{0}$ as a closed subscheme. Indeed, Δ is a member of $\left|E_{0}+r\right|$, or the intersection of two members
of $\left|E_{0}+r\right|$. In particular, Δ is nonempty. Noting the support of $\mathcal{O}_{\Delta}=R^{1}$ is contained in E_{0}, the subscheme Δ must be equal to E_{0}.

Therefore, the map $\mathcal{O}\left(-E_{0}-r\right)^{\oplus 2} \rightarrow \mathcal{O}$ is decomposed as $\mathcal{O}\left(-E_{0}-r\right)^{\oplus 2}$ $\rightarrow \mathcal{O}\left(-E_{0}\right) \hookrightarrow \mathcal{O}$ and $\mathcal{O}\left(-E_{0}-r\right)^{\oplus 2} \rightarrow \mathcal{O}\left(-E_{0}\right)$ is surjective. Hence the kernel $\tilde{p}_{2 *} \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L)$ of the map $\mathcal{O}\left(-E_{0}-r\right)^{\oplus 2} \rightarrow \mathcal{O}\left(-E_{0}\right)$ is isomorphic to $\mathcal{O}\left(-E_{0}-2 r\right)$. Now we have shown (2.2) and finished the proof of this lemma.

In the next proposition, we obtain the desired family of curves.
Proposition 2.3.3. Let \mathcal{U}_{1} be the unique member of $\mid \tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \otimes$ $\tilde{p}_{2}^{*} \mathcal{O}\left(E_{0}+2 r\right) \mid$. Then \mathcal{U}_{1} is irreducible and the natural map $\mathcal{U}_{1} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ is flat. Moreover, the fibers are described as follows:
(1) the fiber over a point $[\mathrm{m}] \neq[\mathrm{j}]$ is the negative section of L_{m}; and
(2) the fiber over a point x of E_{0} is the negative section γ_{a} plus a ruling of L_{j}.

Proof. Note that \mathcal{U}_{1} is Cohen-Macaulay since it is a divisor on the smooth variety $\widetilde{\mathcal{L}}$. Therefore, the flatness follows from the smoothness of $\widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ and the descriptions of fibers as in (1) and (2). Besides, the irreducibility of \mathcal{U}_{1} also follows from the descriptions of fibers, which now we are going to give below.

Note that, by the uniqueness of \mathcal{U}_{1}, the group G acts on \mathcal{U}_{1}, where G acts on \mathcal{L} and hence on $\widetilde{\mathcal{L}}$ by Remark 2.1.2. Let x be a point of $\widetilde{\left(\mathbb{P}^{2}\right)^{*}}$. Set $[\mathrm{m}]:=b(x) \in\left(\mathbb{P}^{2}\right)^{*}$. Note that the fiber of $\widetilde{\mathcal{L}} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ over x is L_{m}.
Proof of (1). If $x \notin E_{0}$, then $L_{\mathrm{m}} \subset \mathcal{U}_{1}$ or $\mathcal{U}_{1 \mid L_{\mathrm{m}}}$ is the negative section of $L_{\mathrm{m}} \simeq \mathbb{F}_{1}$ by Lemma 2.1.1 since $\mathcal{U}_{1} \in\left|\tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \otimes \tilde{p}_{2}^{*} \mathcal{O}\left(E_{0}+2 r\right)\right|$. We show that the latter occurs for any $x \notin E_{0}$, which implies the assertion (1). If $L_{\mathrm{m}} \subset \mathcal{U}_{1}$ for an $x \notin E_{0}$ such that $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$, then, by the description of the group action of G (Corollary 1.4.3), $L_{\mathrm{m}} \subset \mathcal{U}_{1}$ hold for all such x 's, which implies that $\mathcal{U}_{1}=\widetilde{\mathcal{L}}$, a contradiction. If $L_{\mathrm{m}} \subset \mathcal{U}_{1}$ for an $x \notin E_{0}$ such that $[\mathrm{m}] \in \ell_{i}$ for $i=1$ or 2 , then, again by the group action of G, we have $L_{\mathrm{m}} \subset \mathcal{U}_{1}$ for all such x 's, which implies that \mathcal{U}_{1} contains the pullback of the strict transform $\ell_{i}^{\prime} \subset \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ of ℓ_{i}. Since ℓ_{i}^{\prime} is a ruling of $\widetilde{\left(\mathbb{P}^{2}\right)^{*}}$, this implies that $H^{0}\left(\tilde{p}_{1}^{*} \mathcal{O}_{B_{a}}(H-L) \otimes \tilde{p}_{2}^{*} \mathcal{O}\left(E_{0}+r\right)\right) \neq 0$, which is impossible by the proof of Lemma 2.3.2.

Proof of (2). Now assume that $x \in E_{0}$. By a similar argument to the above one using the group action, we see that $\mathcal{U}_{1 \mid L_{j} \times\{x\}}$ is the negative section γ_{a}
plus a ruling if x is not contained in the strict transforms ℓ_{i}^{\prime} of $\ell_{i}(i=1,2)$. Therefore, $\mathcal{U}_{1 \mid L_{j} \times E_{0}}$ is a member of the linear system $\left|\mathcal{O}_{L_{\mathrm{j}}}(H-L) \boxtimes \mathcal{O}_{E_{0}}(1)\right|$ on $L_{\mathrm{j}} \times E_{0}$. Suppose by contradiction that $\mathcal{U}_{1 \mid L_{\mathrm{j}} \times\{x\}}=L_{\mathrm{j}} \times\{x\}$ for $x=\ell_{1}^{\prime} \cap$ E_{0} or $\ell_{2}^{\prime} \cap E_{0}$. Then, since the group action interchanges $\ell_{1}^{\prime} \cap E_{0}$ and $\ell_{2}^{\prime} \cap E_{0}$, $\mathcal{U}_{1 \mid L_{\mathrm{j}} \times\{x\}}=L_{\mathrm{j}} \times\{x\}$ for both $x=\ell_{1}^{\prime} \cap E_{0}$ and $\ell_{2}^{\prime} \cap E_{0}$. This would imply that $\left|\mathcal{O}_{L_{\mathrm{j}}}(H-L) \boxtimes \mathcal{O}_{E_{0}}(-1)\right|$ is nonempty, which is absurd. Therefore, the assertion (2) follows.

Definition 2.3.2. We call a fiber of $\mathcal{U}_{1} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}} a B_{a}$-line. Explicitly, by Proposition 2.3.3, a B_{a}-line is the negative section $C_{0}(\mathrm{~m})$ of L_{m} for $[\mathrm{m}] \neq[\mathrm{j}]$, or the negative section γ_{a} plus a ruling of L_{j}.

The name comes from the fact that the image of a B_{a}-line on the anticanonical model B is a line in the usual sense when B is embedded by $\left|M_{B}\right|$, where M_{B} is the ample generator of Pic B.

$2.4 B_{a}$-Lines interpreted on B_{b}

In section 3, we construct hyperelliptic curves using the map $\tilde{p}_{1 \mid \mathcal{U}_{1}}: \mathcal{U}_{1} \rightarrow$ B_{a}. To understand the map $\tilde{p}_{1 \mid \mathcal{U}_{1}}$, it is convenient to interpret B_{a}-lines by the geometry of B_{b}.

Notation 2.4.1.
(1) We recall that the two singular π_{b}-fibers are denoted by F_{1} and F_{2}, which are singular quadrics. We denote by v_{i} the vertex of $F_{i}(i=1,2)$.
(2) We denote by F_{i}^{\prime} the strict transform on B_{a} of $F_{i}(i=1,2)$.
(3) By Corollary 1.2.3, we have $L \cdot \gamma_{a}=1$, and, by a standard property of flop, we have $L \cdot \gamma_{b}=-1$. This and the equality (1.4) imply that γ_{b} is a π_{b}-section. Therefore, γ_{b} does not pass through v_{1} nor v_{2} and so $B_{b} \rightarrow B_{a}$ is isomorphic near v_{1} and v_{2}. We denote by v_{i}^{\prime} the point on B_{a} corresponding to $v_{i}(i=1,2)$.

Lemma 2.4.1. The following hold:
(1) The π_{a}-images of v_{1}^{\prime} and v_{2}^{\prime} in \mathbb{P}^{2} correspond to the lines ℓ_{1} and ℓ_{2} in $\left(\mathbb{P}^{2}\right)^{*}$ by projective duality. In other words, $\ell_{i}(i=1,2)$ parameterizes lines through the point $\pi_{a}\left(v_{i}^{\prime}\right) \in \mathbb{P}^{2}$.
(2) For a line $\mathrm{m} \neq \mathrm{j}$ on \mathbb{P}^{2}, the negative section $C_{0}(\mathrm{~m})$ of L_{m} is disjoint from γ_{a}.

Proof. (1) We use the group actions of G on B_{a} and B_{b}. The action of G on B_{b} fixes or interchanges F_{1} and F_{2}, and hence v_{1} and v_{2}. Since $B_{b} \rightarrow B_{a}$
is isomorphic near v_{1} and v_{2} as we noted in Notation 2.4.1(3), the group action on B_{a} fixes or interchanges v_{1}^{\prime} and v_{2}^{\prime}. By Corollary 1.4.3, this implies that the images of v_{1}^{\prime} and v_{2}^{\prime} correspond to the lines ℓ_{1} and ℓ_{2} by projective duality.
(2) Let $C_{0}^{\prime}(\mathrm{m})$ be the strict transform of $C_{0}(\mathrm{~m})$ on B_{b}. Note that $H \cdot C_{0}(\mathrm{~m})=0$ by Lemma 2.1.1. If $C_{0}(\mathrm{~m}) \cap \gamma_{a} \neq \emptyset$, then $H \cdot C_{0}^{\prime}(\mathrm{m})<H$. $C_{0}(\mathrm{~m})=0$ by a standard property of flop, which is a contradiction since H is nef on B_{b}.

Proposition 2.4.2. The following hold:
(1) For a line $\mathrm{m} \neq \mathrm{j}$ on \mathbb{P}^{2}, the curve $C_{0}(\mathrm{~m})$ is the strict transform of a ruling of $a \pi_{b}$-fiber disjoint from γ_{b}, and vice versa. Moreover, under this condition, $C_{0}(\mathrm{~m})$ is the strict transform of a ruling of F_{1} or F_{2} if and only if $[\mathrm{m}] \in \ell_{1} \cup \ell_{2}$.
(2) A ruling f of L_{j} is the strict transform of a ruling of a π_{b}-fiber intersecting γ_{b}, and vice versa (note that $f \cap \gamma_{a} \neq \emptyset$, and $\gamma_{a} \cup f$ is a B_{a}-line as in Proposition 2.3.3(2)). Moreover, under this condition, f is the strict transform of a ruling of F_{1} or F_{2} if and only if the point $\pi_{a}(f) \in \mathbb{P}^{2}$ corresponds to the line ℓ_{1} or ℓ_{2} in $\left(\mathbb{P}^{2}\right)^{*}$ by projective duality.

Proof. We show the first assertions of (1) and (2). Since the proofs are similar, we only show (2), which is more difficult. We also only prove the only if part since the if part follows by reversing the argument. Recall that $\gamma_{a}+f \sim(H-L)_{\mid L_{\mathrm{j}}}$ by Lemma 2.1.1. Thus $H \cdot f=1$. Since f intersects γ_{a} transversely at one point, and $H \cdot \gamma_{a}=-1$, we have $H \cdot f^{\prime}=0$, where f^{\prime} is the strict transform of f on B_{b}. Hence f^{\prime} is contained in a π_{b}-fiber F. By the equality (1.4), we have $-K_{F}=-\left.K_{B_{b}}\right|_{F}=\left.2 L\right|_{F}$. Therefore, f^{\prime} is a ruling of F since $L \cdot f^{\prime}=L \cdot f+1=1$.

The latter assertions of (1) and (2) follows from Lemma 2.4.1(1).
Corollary 2.4.3. Let x be a point of $B_{a} \backslash\left(\gamma_{a} \cup v_{1}^{\prime} \cup v_{2}^{\prime}\right)$. If x is not in F_{1}^{\prime} nor F_{2}^{\prime}, then x is contained in exactly two B_{a}-lines. If x is in F_{1}^{\prime} or F_{2}^{\prime}, then x is contained in exactly one B_{a}-line.

In particular, outside $\gamma_{a} \cup v_{1}^{\prime} \cup v_{2}^{\prime}$, the map $\tilde{p}_{1 \mid \mathcal{U}_{1}}: \mathcal{U}_{1} \rightarrow B_{a}$ is flat, finite of degree two and is branched along F_{1}^{\prime} and F_{2}^{\prime}.

Proof. The assertions follow from Proposition 2.4.2(1) and (2), and the description of rulings on quadric surfaces.

§3. Hyperelliptic curves parameterizing B_{a}-lines

3.1 Basic constructions

Definition 3.1.1. Let γ be a curve contained in $B_{a} \backslash\left(\gamma_{a} \cup v_{1}^{\prime} \cup v_{2}^{\prime}\right)$. Then note that $\tilde{p}_{1 \mid \mathcal{U}_{1}}: \mathcal{U}_{1} \rightarrow B_{a}$ is flat and finite of degree two near γ by Corollary 2.4.3.
(1) We define $C_{\gamma} \rightarrow \gamma$ to be the flat base change of $\tilde{p}_{1 \mid \mathcal{U}_{1}}$. Note that C_{γ} is contained in \mathcal{U}_{1}, and parameterizes pairs (l, x) with B_{a}-lines l intersecting γ and points $x \in \gamma \cap l$. In other words, C_{γ} parameterizes one-pointed B_{a}-lines intersecting γ.
(2) We define $\widetilde{M}_{\gamma} \subset \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ and $M_{\gamma} \subset\left(\mathbb{P}^{2}\right)^{*}$ to be the cycle-theoretic pushforwards of C_{γ} to $\widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ and $\left(\mathbb{P}^{2}\right)^{*}$ respectively (cf. the diagram (2.1)). Note that the support of \widetilde{M}_{γ} parameterizes B_{a}-lines intersecting γ.

3.2 Generality conditions

Let $\mathrm{m} \subset \mathbb{P}^{2}$ be a line and $R \subset L_{\mathrm{m}}$ a member of the linear system $\left|(H+g L)_{\left|L_{\mathrm{m}}\right|}\right|\left(R\right.$ belongs to the family Σ_{g} constructed as in Section 2.2). In Proposition 3.3.1 below, we are going to show that C_{R} is a hyperelliptic curve of genus g under the following generality conditions for m and R :

Condition 3.2.1. Let $\mathrm{m} \subset \mathbb{P}^{2}$ be a line and $R \subset L_{\mathrm{m}}$ a member of the linear system $\left|(H+g L)_{\mid L_{\mathrm{m}}}\right|$. We consider the following conditions for m and R :
(a) $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$. In particular, $v_{1}^{\prime}, v_{2}^{\prime} \notin R$ by Lemma 2.4.1(1).
(b) R is smooth.
(c) $R \cap \gamma_{a}=\emptyset$.
(d) R intersects F_{1}^{\prime} and F_{2}^{\prime} transversely at $g+1$ points, respectively (note that, by $R \sim(H+g L)_{\mid L_{\mathrm{m}}}$, we have $\left.F_{i}^{\prime} \cdot R=H \cdot R=g+1\right)$.
Note that the condition (c) implies that $R \cap F_{1}^{\prime} \cap F_{2}^{\prime}=R \cap \gamma_{a}=\emptyset$.
It is easy to see that, if $g \geqslant 0$, then general m and R satisfy these conditions by Proposition 2.1.2.

Lemma 3.2.1. If $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$, then $F_{i \mid L_{\mathrm{m}}}^{\prime}$ is linearly equivalent to $C_{0}(\mathrm{~m})+L_{\mid L_{\mathrm{m}}}$, and is irreducible $(i=1,2)$. In particular, $C_{0}(\mathrm{~m})$ is disjoint from F_{i}^{\prime}.

Proof. Under the assumption that $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$, the strict transform $C_{0}^{\prime}(\mathrm{m})$ of $C_{0}(\mathrm{~m})$ on B_{b} is a ruling of a π_{b}-fiber which is different from F_{1} and
F_{2} by Proposition 2.4.2(1). In particular, $C_{0}(\mathrm{~m})$ is not contained in F_{i}^{\prime}. We see that $F_{i \mid L_{\mathrm{m}}}^{\prime}$ is linearly equivalent to $C_{0}(\mathrm{~m})+L_{\mid L_{\mathrm{m}}}$ by (1.4) since $F_{i}^{\prime} \sim H$. Therefore, if $F_{i \mid L_{\mathrm{m}}}^{\prime}$ were reducible, then $C_{0}(\mathrm{~m}) \subset F_{i \mid L_{\mathrm{m}}}^{\prime}$, a contradiction.

Lemma 3.2.2. Assume that a π_{a}-fiber f is disjoint from γ_{a}. Then the following hold:
(1) $v_{1}^{\prime}, v_{2}^{\prime} \notin f$. In particular, such an f satisfies the conditions of Definition 3.1.1.
(2) f intersects F_{1}^{\prime} and F_{2}^{\prime} at one point, respectively, and $f \cap F_{1}^{\prime} \cap F_{2}^{\prime}=\emptyset$.

Proof. (1) The assumption $f \cap \gamma_{a}=\emptyset$ is equivalent to that $\pi_{a}(f) \in \mathbb{P}^{2}$ belongs to the open orbit of G. Therefore, the assertion (1) follows from Corollary 1.4.3 and Lemma 2.4.1(1).
(2) We show that f intersects $F_{i}^{\prime}(i=1,2)$ at one point. By (1.4), we have $F_{i}^{\prime} \cdot f=H \cdot f=1$ since $-K_{B_{a}} \cdot f=2$ and $L \cdot f=0$. Therefore, we have only to show that f is not contained in F_{i}^{\prime}. If $f \subset F_{i}^{\prime}$, then the strict transform f^{\prime} of f is contained in F_{i}. Then, however, $-K_{F_{i}} \cdot f^{\prime}=2 L_{\mid F_{i}} \cdot f^{\prime}=0$, a contradiction.

The assumption implies that $f \cap F_{1}^{\prime} \cap F_{2}^{\prime}=f \cap \gamma_{a}=\emptyset$. Therefore, we have the assertion (2).

3.3 C_{R} is hyperelliptic

Proposition 3.3.1. Assume that $g \geqslant 2$, and m and R satisfy Condition 3.2.1(a)-(d). Then the following hold:
(1) The scheme C_{R} is a smooth hyperelliptic curve of genus g. The hyperelliptic structure is given by the map $\tilde{p}_{1 \mid C_{R}}: C_{R} \rightarrow R \simeq \mathbb{P}^{1}$ and the map is branched at $R \cap\left(F_{1}^{\prime} \cup F_{2}^{\prime}\right)$.
(2) Assume that a π_{a}-fiber f is disjoint from γ_{a}. Then C_{f} is a smooth rational curve and $C_{f} \rightarrow f$ is a double cover branched at the two points $f \cap\left(F_{1}^{\prime} \cup F_{2}^{\prime}\right)$ (cf. Lemma 3.2.2(2)). Moreover, M_{f} is the line of $\left(\mathbb{P}^{2}\right)^{*}$ corresponding to the point $\pi_{a}(f) \in \mathbb{P}^{2}$ by projective duality.
(3) The curve M_{R} is a degree $g+2$ plane curve, smooth outside [m], and has a g-ple point at [m].
(4) The natural map $C_{R} \rightarrow M_{R}$ is the normalization, and the unique g_{2}^{1} on C_{R} is given by the pullback of the pencil of lines through [m].

Proof. We use the notation in Section 2 freely.
(1) By definition, $C_{R} \rightarrow R$ is flat and finite of degree two (note that R satisfies the conditions of Definition 3.1.1 by Condition 3.2.1(a) and (c)).

Moreover, by Condition 3.2.1(d), the branch locus of $C_{R} \rightarrow R$ is smooth and of degree $2 g+2$. Therefore, by Condition 3.2.1(b), the scheme C_{R} is a smooth hyperelliptic curve of genus g.
(2) The assertions for C_{f} can be proved similarly to (1) by Lemma 3.2.2. We show the assertion for M_{f}. Since $f \cap \gamma_{a}=\emptyset$, a B_{a}-line intersecting f satisfies Proposition 2.3.3(1), namely, such a B_{a}-line is the negative section of L_{m} with a line $\mathrm{m} \neq \mathrm{j}$ containing $\pi_{a}(f)$. Therefore, the support of M_{f} is the line of $\left(\mathbb{P}^{2}\right)^{*}$ corresponding to the point $\pi_{a}(f)$ by projective duality. Moreover, $C_{f} \rightarrow \operatorname{Supp} M_{f}$ is one to one since f intersects a B_{a}-line at most at one point. Thus M_{f} is actually the line.

To show the remaining assertions (3) and (4), we investigate fibers of $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ induced by \tilde{p}_{2}. For this, we note that the fiber over a point $s \in \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ is the intersection between L_{m} and the B_{a}-line corresponding to s. Therefore, the fiber over $[\mathrm{m}] \in \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ can be identified with the negative section $C_{0}(\mathrm{~m})$ of L_{m}. Recall that E_{0} is as in Notation 2.3.1. Let t be the point of E_{0} over which the fiber of $\mathcal{U}_{1} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ is the union $\gamma_{a} \cup \pi_{a}^{-1}(\mathrm{j} \cap \mathrm{m})$. Then the fiber of $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1} \rightarrow \overline{\left(\mathbb{P}^{2}\right)^{*}}$ over t is $\pi_{a}^{-1}(\mathrm{j} \cap \mathrm{m})$. Besides, over $\widetilde{\left(\mathbb{P}^{2}\right)^{*}} \backslash([\mathrm{~m}] \cup t)$, the map $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ is one to one, hence is an isomorphism by the Zariski main theorem.

We denote by E_{m} and E_{t} the exceptional curves of $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ over $[\mathrm{m}]$ and t, respectively. By Lemmas 2.4.1(2), 3.2.1 and Corollary 2.4.3, the map $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1} \rightarrow \widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ is an étale double cover near $C_{0}(\mathrm{~m})$. Hence $\tilde{p}_{1}^{-1}\left(C_{0}(\mathrm{~m})\right) \cap \mathcal{U}_{1}$ consists of two disjoint smooth rational curves, and $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1}$ is smooth near $\tilde{p}_{1}^{-1}\left(C_{0}(\mathrm{~m})\right) \cap \mathcal{U}_{1}$. Since $E_{\mathrm{m}} \subset \tilde{p}_{1}^{-1}\left(C_{0}(\mathrm{~m})\right) \cap$ \mathcal{U}_{1}, we see that E_{m} is one of its components. Therefore, $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1} \rightarrow$ $\widetilde{\left(\mathbb{P}^{2}\right)^{*}}$ is the blow-up at [m] around [m].
(3) We show that M_{R} is reduced. Indeed, since $R \cap \gamma_{a}=\emptyset$, a B_{a}-line intersecting R satisfies Proposition 2.3.3(1) or is the B_{a}-line γ_{a} plus the π_{a}-fiber $\pi_{a}^{-1}(\mathrm{j} \cap \mathrm{m})$. Therefore, such a B_{a}-line intersects R at one point except the negative section $C_{0}(\mathrm{~m})$ which intersects R at g points counted with multiplicity. Thus $C_{R} \rightarrow \operatorname{Supp} M_{R}$ is one to one outside the point [m], which in particular shows that M_{R} is reduced.

We show that M_{R} has a g-ple point at $[\mathrm{m}]$. Note that $\widetilde{M}_{R} \rightarrow M_{R}$ is isomorphic outside $[\mathrm{j}] \in M_{R}$ since $b: \widetilde{\left(\mathbb{P}^{2}\right)^{*}} \rightarrow\left(\mathbb{P}^{2}\right)^{*}$ is the blow-up at [j]. Therefore, to show M_{R} has a g-ple point at [m], it suffices to show that \widetilde{M}_{R} has a g-ple point at $[\mathrm{m}]$, where we denote by the same letter the point
of \widetilde{M}_{R} corresponding to $[\mathrm{m}]$. Note that $R \cdot C_{0}(\mathrm{~m})=g$ in L_{m}. Therefore, by the results of the paragraph before the proof of (3), we have $C_{R} \cdot E_{\mathrm{m}}=g$ in $\tilde{p}_{1}^{-1}\left(L_{\mathrm{m}}\right) \cap \mathcal{U}_{1}$. Hence we see that \widetilde{M}_{R} has a g-ple point at [m] by blowing down E_{m}.

Now we compute deg M_{R}. Let us take a general fiber f of $L_{\mathrm{m}} \rightarrow \mathrm{m}$ such that $f \cap \gamma_{a}=\emptyset$ and $R \cap f \notin F_{1}^{\prime} \cup F_{2}^{\prime} \cup C_{0}(\mathrm{~m})$. Then, since $R \cap f \notin F_{1}^{\prime} \cup F_{2}^{\prime}$, we see that C_{R} and C_{f} intersect transversely at two points, which is the inverse image of one point $R \cap f$. Since $R \cap f \notin C_{0}(\mathrm{~m})$, we see that C_{R} and C_{f} does not intersect on E_{m}. Therefore, the intersection multiplicity of M_{R} and M_{f} at [m$]$ is g. Thus we conclude that $\operatorname{deg} M_{R}=M_{R} \cdot M_{f}=g+2$ since M_{f} is a line by generality of f and the assertion (2).

It remains to show that M_{R} is smooth outside [m]. Let M_{R}^{\prime} be the strict transform of M_{R} by the blow-up of \mathbb{P}^{2} at [m]. Since $\operatorname{deg} M_{R}=g+2$ and M_{R} has a g-ple point at [m$]$, the arithmetic genus of M_{R}^{\prime} is g. Since we have shown that $C_{R} \rightarrow M_{R}$ is birational above, C_{R} is the normalization of M_{R}^{\prime}. Since $p_{a}\left(M_{R}^{\prime}\right)=g\left(C_{R}\right)=g$, we see that M_{R}^{\prime} is smooth, hence M_{R} is smooth outside [m].
(4) We have already shown that $C_{R} \rightarrow M_{R}$ is the normalization. A general line in $\left(\mathbb{P}^{2}\right)^{*}$ through $[\mathrm{m}]$ intersects M_{R} at two points outside [m] since M_{R} has a g-ple point at $[\mathrm{m}]$. Therefore, we obtain the description of the unique g_{2}^{1} of the hyperelliptic curve C_{R}.

Notation 3.3.1. (The marked point $[\mathrm{j}]_{R}$ on C_{R}) Assume that R satisfies Condition 3.2.1(a)-(d). Then, since $R \cap \gamma_{a}=\emptyset$, the π_{a}-fiber $\pi_{a}^{-1}(\mathrm{~m} \cap \mathrm{j})$ is the only one which intersects both R and γ_{a}. Therefore, $\gamma_{a} \cup \pi_{a}^{-1}(\mathrm{~m} \cap \mathrm{j})$ is the unique B_{a}-line intersecting R of the form γ_{a} plus a π_{a}-fiber. Since $C_{R} \rightarrow M_{R}$ is an isomorphism outside [m] by Proposition 3.3.1(1) and (4), we denote by $[\mathrm{j}]_{R}$ the point of the hyperelliptic curve C_{R} corresponding to this B_{a}-line (note that this point $[\mathrm{j}]_{R}$ is mapped to $\left.[\mathrm{j}] \in M_{R} \subset\left(\mathbb{P}^{2}\right)^{*}\right)$.

§4. Theta characteristics on the hyperelliptic curves

4.1 Constructing theta characteristics

By the above understanding of the hyperelliptic double cover $C_{R} \rightarrow R$, we may construct an ineffective theta characteristic on C_{R} as follows:

Proposition 4.1.1. For a curve R satisfying Condition 3.2.1(a)-(d) and $g \geqslant 2$, we denote by h_{R} the unique g_{2}^{1} on the hyperelliptic curve C_{R}. Let $\nu: C_{R} \rightarrow M_{R}$ be the morphism constructed in Proposition 3.3.1(4), which is
the normalization. Then

$$
\mathcal{O}_{C_{R}}\left(\theta_{R}\right):=\nu^{*} \mathcal{O}_{M_{R}}(1) \otimes_{\mathcal{O}_{C_{R}}} \mathcal{O}_{C_{R}}\left(-h_{R}-[j]_{R}\right)
$$

is an ineffective theta characteristic on C_{R}.
Proof. Let F be one of the two singular π_{b}-fibers and F^{\prime} its strict transform on B_{a}. By Condition 3.2.1(d), R intersects F^{\prime} transversely at $g+1$ points, which we denote by s_{1}, \ldots, s_{g+1}. By Proposition 3.3.1(1), these points are contained in the branched locus of the hyperelliptic double cover $C_{R} \rightarrow R$. We denote by t_{1}, \ldots, t_{g+1} the inverse images on C_{R} of s_{1}, \ldots, s_{g+1}, and by u_{1}, \ldots, u_{g+1} the images on M_{R} of t_{1}, \ldots, t_{g+1}. By Proposition 3.3.1(1), $C_{0}(\mathrm{~m})$ is not the strict transform of a ruling of F since $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$. Therefore, $u_{1}, \ldots, u_{g+1} \neq[\mathrm{m}]$. By Proposition 3.3.1(2), $\pi_{a}^{-1}(\mathrm{~m} \cap \mathrm{j})$ is not the strict transform of a ruling of F since $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$. Therefore, $u_{1}, \ldots, u_{g+1} \neq[\mathrm{j}]$. By Proposition 2.4.2(1), u_{1}, \ldots, u_{g+1} are contained in $\ell:=\ell_{1}$ or ℓ_{2}. Therefore, since ℓ and M_{R} contain [j], and $\operatorname{deg} M_{R}=$ $g+2$, we have $\ell_{\mid M_{R}}=u_{1}+\cdots+u_{g+1}+[\mathrm{j}]$. Then, by the definition of θ_{R}, we have $\theta_{R}=t_{1}+\cdots+t_{g+1}-h_{R}$. Now the assertion follows from [1, p. 288, Exercise 32].

Remark 4.1.1.
(1) In the proof of Proposition 4.1.1, we obtain the presentation $\theta_{R}=$ $t_{1}+\cdots+t_{g+1}-h_{R}$. So there are two such presentations according to choosing ℓ_{1} or ℓ_{2}. This is compatible with [1, p. 288, Exercise 32(ii)].
(2) In Section 0.3, we say that we construct the theta characteristic from the incidence correspondence of intersecting B_{a}-lines. We add explanations about this since this is not obvious from the above construction.
The flow of the consideration below is quite similar to the proof of Proposition 4.1.1. Instead of a singular π_{b}-fiber, we consider a smooth general π_{b}-fiber $H \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$. By generality of H, we may assume that any ruling of H intersecting the strict transform $R^{\prime} \subset B_{b}$ of R is disjoint from γ_{b}, and is not equal to the strict transform of $C_{0}(\mathrm{~m})$. Moreover, we may also assume that R^{\prime} intersects H transversely at $g+1$ points. Let δ_{1} be one connected family of rulings of H. Then the strict transforms of rulings in δ_{1} intersecting R satisfies Proposition 2.3.3(1), and each of them intersects R at one point. Therefore, there exist $g+1$ B_{a}-lines l_{1}, \ldots, l_{g+1} intersecting R which are the strict transforms of
rulings in δ_{1}. By the above choice of H, the point $[\mathrm{j}]$ is different from $\left[l_{1}\right], \ldots,\left[l_{g+1}\right]$.
Let δ_{2} be the other family of rulings in H and s_{2} a ruling in δ_{2} not intersecting γ_{b}. We denote by s_{2}^{\prime} the strict transform on B_{a} of s_{2}. Then, by Definition 3.1.1, we may define $M_{s_{2}^{\prime}}$. In a similar way to the proof of Proposition 3.3.1(3), we can show that $M_{s_{2}^{\prime}}$ is a line. By construction, $\left[l_{1}\right], \ldots,\left[l_{g+1}\right] \in \widetilde{M}_{s_{2}^{\prime}}$. For simplicity of notation, we denote by the same letters the images on $M_{s_{2}^{\prime}}$ of the points $\left[l_{i}\right]$. Let r_{1} be the ruling in δ_{1} intersecting γ_{b}, and r_{1}^{\prime} the strict transform on B_{a} of r_{1}. Note that the B_{a}-line $r_{1}^{\prime} \cup \gamma_{a}$ belongs to $\widetilde{M}_{s_{2}^{\prime}}$ and corresponds to the point $[j] \in\left(\mathbb{P}^{2}\right)^{*}$. Therefore, $[\mathrm{j}],\left[l_{1}\right], \ldots,\left[l_{g+1}\right] \in M_{R} \cap M_{s_{2}^{\prime}}$. Hence we have $M_{s_{2}^{\prime}} \cap M_{R}=$ $\left[l_{1}\right]+\ldots+\left[l_{g+1}\right]+[j]$.
Considering δ_{2}, we may take $g+1 B_{a}$-lines m_{1}, \ldots, m_{g+1} intersecting R which are the strict transforms of rulings in δ_{2}. By relabeling if necessary, we may assume that $h_{R} \sim\left[l_{i}\right]+\left[m_{i}\right]$ by Corollary 2.4.3. Choose one of m_{i} 's, say, m_{1}. Then, by the definition of θ_{R}, we have $\theta_{R}+\left[m_{1}\right]=\left[l_{2}\right]+\cdots+\left[l_{g+1}\right]$. The B_{a}-lines l_{2}, \ldots, l_{g+1} are nothing but those intersecting both m_{1} and $R\left(l_{1}\right.$ is excluded since it will be disjoint from m_{1} after the blow-up along R. See $[11, \S 4]$ and $[12, \S 3.1]$ for this consideration).

4.2 Reconstructing rational curves from spin curves

Let $g \geqslant 2$. By Propositions 3.3.1, and 4.1.1 (see also Notation 3.3.1), we obtain a rational map

$$
\begin{equation*}
\pi_{g, 1}: \mathcal{H}_{g+2} \longrightarrow \mathcal{S}_{g, 1}^{0, \mathrm{hyp}}, \quad[R] \mapsto\left[C_{R},[\mathrm{j}]_{R}, \theta_{R}\right] \tag{4.1}
\end{equation*}
$$

which is fundamental for our purpose.
The next theorem shows how to construct the rational curve R such that $\pi_{g, 1}([R])=[(C, p, \theta)]$ for a general element $[(C, p, \theta)]$ in $\mathcal{S}_{g, 1}^{0, \text { hyp }}$.

This is one of our key result to show the rationality of $\mathcal{S}_{g, 1}^{0, \text { hyp }}$.
Theorem 4.2.1. (Reconstruction theorem) The map $\pi_{g, 1}$ is dominant. More precisely, let $[(C, p, \theta)] \in \mathcal{S}_{g, 1}^{0, \text { hyp }}$ be any element such that p is not a Weierstrass point, then there exists a point $[R] \in \mathcal{H}_{g+2}$ such that R and m satisfy Condition 3.2.1 (a)-(d) and $\pi_{g, 1}([R])=[(C, p, \theta)]$.

For our proof of the theorem, we need the following general results for an element of $\mathcal{S}_{g, 1}^{0, \text { hyp }}$. The proof given below is slightly long but it is elementary and only uses standard techniques from algebraic curve theory.

Lemma 4.2.2. Let $[(C, p, \theta)]$ be any element of $\mathcal{S}_{g, 1}^{0, \text { hyp }}$. Let $\left\{p_{1}, \ldots, p_{g+1}\right\} \cup\left\{p_{1}^{\prime}, \ldots, p_{g+1}^{\prime}\right\}$ be the partition of the set of the Weierstrass points of C such that θ has the following two presentations:

$$
\begin{equation*}
\theta \sim p_{1}+\cdots+p_{g+1}-g_{2}^{1} \sim p_{1}^{\prime}+\cdots+p_{g+1}^{\prime}-g_{2}^{1} \tag{4.2}
\end{equation*}
$$

(cf. [1, p. 288, Exercise 32]). The following assertions hold:
(1) The linear system $\left|\theta+g_{2}^{1}+p\right|$ defines a birational morphism from C to a plane curve of degree $g+2$.
(2) $|\theta+p|$ has a unique member D and it is mapped to a single point t by the map $\varphi_{\left|\theta+g_{2}^{1}+p\right|}$.
(3) The unique g_{2}^{1} of C is defined by the pullback of the pencil of lines through t.
For the assertions (4) and (5), we set

$$
S:=\left\{p, p_{1}, \ldots, p_{g+1}, p_{1}^{\prime}, \ldots, p_{g+1}^{\prime}\right\}
$$

(4) The support of D contains no point of S.
(5) The point t as in (2) is different from the $\varphi_{\left|\theta+g_{2}^{1}+p\right|}$-images of points of S. Besides, by the map $\varphi_{\left|\theta+g_{2}^{1}+p\right|}$, no two points of S are mapped to the same point.

Proof. (1) We show that the linear system $\left|\theta+g_{2}^{1}+p\right|$ has no base points. By (4.2), we see that $\operatorname{Bs}\left|\theta+g_{2}^{1}+p\right| \subset\{p\}$. By the Serre duality, we have

$$
H^{1}\left(\theta+g_{2}^{1}+p\right) \simeq H^{0}\left(K_{C}-\theta-g_{2}^{1}-p\right)^{*}=H^{0}\left(\theta-g_{2}^{1}-p\right)=0
$$

since θ is ineffective. Similarly, we have $H^{1}\left(\theta+g_{2}^{1}\right)=\{0\}$. Therefore, by the Riemann-Roch theorem,

$$
h^{0}\left(\theta+g_{2}^{1}+p\right)-h^{0}\left(\theta+g_{2}^{1}\right)=\chi\left(\theta+g_{2}^{1}+p\right)-\chi\left(\theta+g_{2}^{1}\right)=1
$$

which implies that $p \notin \mathrm{Bs}\left|\theta+g_{2}^{1}+p\right|$.
By the above argument, we see that $h^{0}\left(\theta+g_{2}^{1}+p\right)=\operatorname{deg}\left(\theta+g_{2}^{1}+p\right)+$ $1-g=3$. Therefore, $\left|\theta+g_{2}^{1}+p\right|$ gives a morphism $\varphi_{\left|\theta+g_{2}^{1}+p\right|}: C \rightarrow \mathbb{P}(V) \simeq$ \mathbb{P}^{2} with $V=H^{0}\left(C, \mathcal{O}_{C}\left(\theta+g_{2}^{1}+p\right)\right)^{*}$. Let $M:=\varphi_{\left|\theta+g_{2}^{1}+p\right|}(C)$ be the image of C. We show that $C \rightarrow M$ is birational. Note that by the RiemannRoch theorem and $h^{1}(\theta+p)=h^{0}(K-\theta-p)=0$, we have $h^{0}(\theta+p)=1$. Therefore, the hyperelliptic double cover $\varphi_{\left|g_{2}^{1}\right|}: C \rightarrow \mathbb{P}^{1}$ factors through the $\operatorname{map} \varphi_{\left|g_{2}^{1}+\theta+p\right|}$. So we have only to show that $\left|\theta+g_{2}^{1}+p\right|$ separates the
two points in a member of $\left|g_{2}^{1}\right|$. This is equivalent to $h^{0}\left(\theta+g_{2}^{1}+p-g_{2}^{1}\right)=$ $h^{0}\left(\theta+g_{2}^{1}+p\right)-2$, which follows from the above computations. Therefore, we have shown that $C \rightarrow M$ is birational. This implies that the degree of M is $g+2$.
(2) Since $h^{0}(\theta+p)=1$ as in the proof of (1), the linear system $|\theta+p|$ has a unique member D. We see that D is mapped to a point since $\theta+g_{2}^{1}+p$ is the pullback of $\left.\mathcal{O}_{\mathbb{P}^{2}}(1)\right|_{M}$ and $h^{0}\left(\theta+g_{2}^{1}+p-(\theta+p)\right)=h^{0}\left(g_{2}^{1}\right)=2$.
(3) The assertion clearly follows from (2).
(4) The point p is not contained in the support of D since $h^{0}(\theta+p-p)=$ $h^{0}(\theta)=0$. Let us consider points of $S \backslash\{p\}$. Without loss of generality, we have only to show that $h^{0}\left(\theta+p-p_{1}\right)=0$. By the Riemann-Roch theorem, the assertion is equivalent to $h^{1}\left(\theta+p-p_{1}\right)=0$. $\operatorname{By}(4.2), \theta+p-p_{1}=p_{2}+$ $\cdots+p_{g+1}+p-g_{2}^{1}$. Therefore, by the Serre duality, we have

$$
h^{1}\left(\theta+p-p_{1}\right)=h^{0}\left(g \times g_{2}^{1}-\left(p_{2}+\cdots+p_{g+1}+p\right)\right)
$$

since $K_{C}=(g-1) g_{2}^{1}$. Now it is easy to verify this is zero by using the hyperelliptic morphism $C \rightarrow \mathbb{P}^{1}$.
(5) First we show that t is different from the image of any point x of $C \backslash D$. Indeed, we have

$$
h^{0}\left(\theta+g_{2}^{1}+p-(\theta+p)-x\right)=h^{0}\left(g_{2}^{1}-x\right)=1
$$

which means that $\left|\theta+g_{2}^{1}+p\right|$ separates D and x. In particular, we have the former assertion of (5) by (4).

We show that $\left|\theta+g_{2}^{1}+p\right|$ separates any two of p_{1}, \ldots, p_{g+1}. Without loss of generality, we have only to consider the case of p_{1} and p_{2}. It suffices to show that $h^{0}\left(\theta+g_{2}^{1}+p-p_{1}-p_{2}\right)=h^{0}\left(\theta+g_{2}^{1}+p\right)-2=1$, which is equivalent to $h^{1}\left(\theta+g_{2}^{1}+p-p_{1}-p_{2}\right)=0$ by the Riemann-Roch theorem. By the presentation (4.2), we have $h^{1}\left(\theta+g_{2}^{1}+p-p_{1}-p_{2}\right)=h^{1}\left(p_{3}+\cdots+\right.$ $\left.p_{g+1}+p\right)$. By the Serre duality, we have

$$
h^{1}\left(p_{3}+\cdots+p_{g+1}+p\right)=h^{0}\left((g-1) g_{2}^{1}-p_{3}-\cdots-p_{g+1}-p\right)
$$

since $K_{C}=(g-1) g_{2}^{1}$. Now it is easy to verify the r.h.s. is zero by using the hyperelliptic morphism $C \rightarrow \mathbb{P}^{1}$.

The same argument shows that $\left|\theta+g_{2}^{1}+p\right|$ separates any two of $p_{1}^{\prime}, \ldots, p_{g+1}^{\prime}$. Moreover, if p is distinct from a p_{i} or p_{j}^{\prime}, the same proof works for the separation of p and p_{i} or p_{j}^{\prime}.

It remains to show that $\left|\theta+g_{2}^{1}+p\right|$ separates one of p_{1}, \ldots, p_{g+1} and one of $p_{1}^{\prime}, \ldots, p_{g+1}^{\prime}$. Without loss of generality, we have only to consider the case of p_{1} and p_{1}^{\prime}. If $p=p_{1}$, then $p \neq p_{1}^{\prime}$, and hence we have already shown that the images of $p=p_{1}$ and p_{1}^{\prime} are different. Thus we may assume that $p \neq p_{1}, p_{1}^{\prime}$. By (4.2), $D_{1}:=p+p_{1}+\cdots+p_{g+1}$ and $D_{2}:=p+p_{1}^{\prime}+\cdots+p_{g+1}^{\prime}$ are two distinct members of $\left|\theta+g_{2}^{1}+p\right|$. If the images of p_{1} and p_{1}^{\prime} by the map $\varphi_{\left|\theta+g_{2}^{1}+p\right|}$ coincides, then the images of D_{1} and D_{2} coincides since they are the line through the images of p and p_{1}, and the line through the images of p and p_{1}^{\prime}. This is a contradiction to a property of the map defined by $\left|\theta+g_{2}^{1}+p\right|$.

Proof of Theorem 4.2.1. We set $V=H^{0}\left(C, \mathcal{O}_{C}\left(\theta+g_{2}^{1}+p\right)\right)^{*}$. Let $M \subset \mathbb{P}(V)$ be the $\varphi_{\left|\theta+g_{2}^{1}+p\right|}$-image of C. Let r_{1}, \ldots, r_{g+1} and $r_{1}^{\prime}, \ldots, r_{g+1}^{\prime} \in$ M be the $\varphi_{\left|\theta+g_{2}^{1}+p\right|}$-images of the Weierstrass points p_{1}, \ldots, p_{g+1} and $p_{1}^{\prime}, \ldots, p_{g+1}^{\prime}$ of C as in (4.2), respectively. Let $r \in M$ be the image of p and $t \in M$ the image of the unique member of $|\theta+p|$. By Lemma 4.2.2(4) and (5), $r, t, r_{1}, \ldots, r_{g+1}, r_{1}^{\prime}, \ldots, r_{g+1}^{\prime}$ are distinct points (recall that now we are assuming p is not a Weierstrass point). By (4.2), there are two lines $\ell, \ell^{\prime} \subset \mathbb{P}(V)$ such that $\ell_{\mid M}=r_{1}+\cdots+r_{g+1}+r$ and $\ell_{\mid M}^{\prime}=r_{1}^{\prime}+\cdots+r_{g+1}^{\prime}+$ r (note also that $\operatorname{deg} M=g+2$ by Lemma 4.2.2(1)).

We then identify the polarized space $\left(\mathbb{P}(V), \ell \cup \ell^{\prime}\right)$ with $\left(\left(\mathbb{P}^{2}\right)^{*}, \ell_{1} \cup \ell_{2}\right)$ (recall the notation as in Proposition 1.2.2). By this identification, the point r corresponds to $[\mathrm{j}]$. Let m be the line of \mathbb{P}^{2} such that $[\mathrm{m}]$ corresponds to the point t.

Condition 3.2.1(a). Since $r \neq t$, the line m is not the jumping line j of the bundle \mathcal{E} such that $B_{a} \simeq \mathbb{P}(\mathcal{E})$. Moreover, m is not a jumping line of the second kind of \mathcal{E}, equivalently, $[\mathrm{m}] \notin \ell_{1} \cup \ell_{2}$ since t is distinct from r, $r_{1}, \ldots, r_{g+1}, r_{1}^{\prime}, \ldots, r_{g+1}^{\prime}$. This shows that [m] satisfies Condition 3.2.1(a).

We look for a member R of the linear system $\left|C_{0}(\mathrm{~m})+(g+1) L_{\mid L_{\mathrm{m}}}\right|$ on $L_{\mathrm{m}} \subset B_{a}$ with Condition 3.2.1(b)-(d) such that $C=C_{R}$. Let m_{i} and m_{j}^{\prime} be the lines of \mathbb{P}^{2} such that $\left[\mathrm{m}_{i}\right]=r_{i}$ and $\left[\mathrm{m}_{j}^{\prime}\right]=r_{j}^{\prime}(1 \leqslant i, j \leqslant g+1)$. As we have seen above, m_{i} and m_{j}^{\prime} are different from j . Therefore, the negative sections $C_{0}\left(\mathrm{~m}_{i}\right)$ and $C_{0}\left(\mathrm{~m}_{j}^{\prime}\right)$ are B_{a}-lines disjoint from γ_{a} by Lemma 2.4.1(2). Note that the condition for an $R \in\left|C_{0}(\mathrm{~m})+(g+1) L_{\mid L_{\mathrm{m}}}\right|$ to intersect one fixed B_{a}-line is at most of codimension 1 . Hence there exists at least one $R \in\left|C_{0}(\mathrm{~m})+(g+1) L_{\mid L_{\mathrm{m}}}\right|$ intersecting the $2 g+2 \quad B_{a}$-lines $C_{0}\left(\mathrm{~m}_{i}\right)$ and $C_{0}\left(\mathrm{~m}_{j}^{\prime}\right)(1 \leqslant i, j \leqslant g+1)$ since $\operatorname{dim} H^{0}\left(C_{0}(\mathrm{~m})+(g+1) L_{\mid L_{\mathrm{m}}}\right)=2 g+3$.

Condition 3.2.1(d). Since m_{i} and m_{j}^{\prime} are different from m , the curve R intersects each one of $C_{0}\left(\mathrm{~m}_{i}\right)$ and $C_{0}\left(\mathrm{~m}_{j}^{\prime}\right)$ at one point. Since [m] satisfies Condition 3.2.1(a), the points $v_{1}^{\prime}, v_{2}^{\prime}$ are not contained in R. Therefore, $R \cap$ $C_{0}\left(\mathrm{~m}_{i}\right)(1 \leqslant i \leqslant g+1)$ are different and so are $R \cap C_{0}\left(\mathrm{~m}_{j}^{\prime}\right)(1 \leqslant j \leqslant g+1)$. Then, by Proposition 2.4.2(1), R intersects F_{1}^{\prime} and F_{2}^{\prime} at least at $g+1$ points $R \cap C_{0}\left(\mathrm{~m}_{i}\right)(1 \leqslant i \leqslant g+1)$ and $R \cap C_{0}\left(\mathrm{~m}_{j}^{\prime}\right)(1 \leqslant j \leqslant g+1)$, respectively. Therefore, R intersects F_{1}^{\prime} and F_{2}^{\prime} at $g+1$ points respectively transversely since $F_{1}^{\prime} \cdot R=F_{2}^{\prime} \cdot R=g+1$. This shows that R satisfies Condition 3.2.1(d).
Condition 3.2.1(c). Assume by contradiction that R intersects γ_{a}. Then R would intersect F_{1}^{\prime} and F_{2}^{\prime} at some points outside $C_{0}\left(\mathrm{~m}_{i}\right)$ and $C_{0}\left(\mathrm{~m}_{j}^{\prime}\right)(1 \leqslant$ $i, j \leqslant g+1)$ since $\gamma_{a} \subset F_{1}^{\prime} \cap F_{2}^{\prime}$ and γ_{a} is disjoint from $C_{0}\left(\mathrm{~m}_{i}\right)$ and $C_{0}\left(\mathrm{~m}_{j}^{\prime}\right)$. This contradicts the argument to show Condition 3.2.1(d). Therefore, R satisfies Condition 3.2.1(c).
Condition 3.2.1(b). It suffices to show that R is irreducible. Assume by contradiction that R is reducible. Then R contains a ruling of L_{m}, say, f. We have $f \cap \gamma_{a}=\emptyset$ since $R \cap \gamma_{a}=\emptyset$. Thus we can define the curve M_{f}, which is a line in $\left(\mathbb{P}^{2}\right)^{*}$ by Proposition 3.3.1(2). Besides the line M_{f} contains $t=[\mathrm{m}]$, and one of r_{1}, \ldots, r_{g+1} and one of $r_{1}^{\prime}, \ldots, r_{g+1}^{\prime}$ corresponding to $F_{1}^{\prime} \cap f$ and $F_{2}^{\prime} \cap f$, respectively. By reordering the points, we may assume that $r_{1}, r_{1}^{\prime} \in$ M_{f}. Therefore, t, r_{1}, r_{1}^{\prime} are collinear. This is, however, a contradiction since the line through t and r_{1} touches M only at t and r_{1} by Lemma 4.2.2(3) (recall that r_{1} is the image of a Weierstrass point of C).

Finally we show $M=M_{R}$ (note that we can define M_{R} since we have checked that m and R satisfy Condition 3.2.1(a)-(d)). Note that, by the constructions of M and M_{R} as the images of the map $\varphi_{\left|\theta+g_{2}^{1}+p\right|}$ and $\varphi_{\left|\theta_{R}+h_{R}+[j]_{R}\right|}$ respectively, there exists a line through t and touches both M and M_{R} at r_{i} with multiplicity two $(i=1, \ldots, g+1)$, and the same is true for $r_{j}^{\prime}(j=1, \ldots, g+1)$. Hence the intersection multiplicities of M_{R} and M at r_{i} and r_{j}^{\prime} are at least two. Therefore, the scheme theoretic intersection $M \cap M_{R}$ contains r, the $2(g+1)$ points $r_{i}, r_{j}^{\prime}, i, j=1, \ldots, g+1$ with multiplicity $\geqslant 2$ and we also have a fat point of multiplicity g^{2} at t. This implies that, if $M \neq M_{R}$, then $M \cdot M_{R} \geqslant 1+4(g+1)+g^{2}=(g+2)^{2}+1$, which is a contradiction since $\operatorname{deg} M=\operatorname{deg} M_{R}=g+2$. Now we conclude that $M_{R}=M$.

Theorem 4.2.1 has a nice corollary, which seems to be unknown.
Corollary 4.2.3. The moduli space $\mathcal{S}_{g, 1}^{0, \text { hyp }}$ and the moduli space $\mathcal{S}_{g}^{0, \text { hyp }}$ of ineffective spin hyperelliptic curves are irreducible.

Proof. By Definition 2.2.1, \mathcal{H}_{g+2} is an open subset of the projective bundle Σ_{g+2} over the projective plane. Therefore, \mathcal{H}_{g+2} is irreducible. By Theorem 4.2 .1 we know that the map $\pi_{g, 1}: \mathcal{H}_{g+2} \rightarrow \mathcal{S}_{g, 1}^{0, \text { hyp }}$ is dominant to each irreducible component of $\mathcal{S}_{g, 1}^{0, \text { hyp }}$. The forgetful morphism $\mathcal{S}_{g, 1}^{0, \text { hyp }} \rightarrow$ $\mathcal{S}_{g}^{0, \text { hyp }}$ is dominant too. Hence the claim follows.

4.3 Birational model of $\mathcal{S}_{g, 1}^{0, \text { hyp }}$

Let m be a general line in \mathbb{P}^{2}. By Theorem 4.2 .1 and the group action of G on \mathcal{H}_{g+2}, the map $\pi_{g, 1}: \mathcal{H}_{g+2} \longrightarrow \mathcal{S}_{g, 1}^{0, \text {,hyp }}$ induces a dominant rational map $\rho_{g, 1}:\left|(H+g L)_{\mid L_{\mathrm{m}}}\right| \rightarrow \mathcal{S}_{g, 1}^{0, \text { hyp }}$. Recall the definition of the subgroup Γ of G as in Lemma 1.4.4. By the classical Rosenlicht theorem, we can find an Γ-invariant open set U of $\left|(H+g L)_{\mid L_{\mathrm{m}}}\right|$ such that the quotient U / Γ exists. Since a general Γ-orbit in $\left|(H+g L)_{\mid L_{\mathrm{m}}}\right|$ is mapped to a point by $\rho_{g, 1}$, we obtain a dominant map $\bar{\rho}_{g, 1}: U / \Gamma \rightarrow \mathcal{S}_{g, 1}^{0, \text { hyp }}$.

Proposition 4.3.1. The dominant map $\bar{\rho}_{g, 1}: U / \Gamma \rightarrow \mathcal{S}_{g, 1}^{0, \text { hyp }}$ is birational.

Proof. We show that $\bar{\rho}_{g, 1}$ is generically injective. We consider two general elements $R, R^{\prime} \in U$ and the two corresponding Γ-orbits $\Gamma \cdot R, \Gamma \cdot R^{\prime}$. Note that M_{R} and $M_{R^{\prime}}$ both pass through the points [j] and [m], and they both have Weierstrass points distributed on the two lines ℓ_{1} and ℓ_{2}. Now assume that $\left[C_{R}, p, \theta_{R}\right]=\left[C_{R^{\prime}}, p^{\prime}, \theta_{R^{\prime}}\right] \in \mathcal{S}_{g, 1}^{0, \text { hyp }}$, equivalently, there exists an isomorphism $\xi: C_{R} \rightarrow C_{R^{\prime}}$ such that $\xi^{*} \theta_{R^{\prime}}=\theta_{R}$ and $\xi(p)=p^{\prime}$. We consider the following diagram:

$$
\begin{align*}
& C_{R} \xrightarrow{\left.\left(b \circ \tilde{p}_{2}\right)\right|_{C_{R}}} M_{R} \tag{4.3}\\
& \xi \downarrow \\
& \downarrow \\
& C_{R^{\prime}} \xrightarrow[\left.\left(b o \tilde{p}_{2}\right)\right|_{C_{R^{\prime}}}]{ } M_{R^{\prime}}
\end{align*}
$$

Note that $\left.\left(b \circ \tilde{p}_{2}\right)\right|_{C_{R}}(p)=\left.\left(b \circ \tilde{p}_{2}\right)\right|_{C_{R}}\left(p^{\prime}\right)=[\mathrm{j}]$ by Notation 3.3.1. Since the g_{2}^{1} is unique on an hyperelliptic curve, we have $\xi^{*} h_{R^{\prime}}=h_{R}$ where h_{R} and $h_{R^{\prime}}$ are respectively the g_{2}^{1} 's of C_{R} and $C_{R^{\prime}}$. Therefore, there exists a projective isomorphism ξ_{M} from M_{R} to $M_{R^{\prime}}$ such that $\left.\left(b \circ \tilde{p}_{2}\right)\right|_{C_{R^{\prime}}} \circ \xi=\left.\xi_{M} \circ\left(b \circ \tilde{p}_{2}\right)\right|_{C_{R}}$ and hence $\xi_{M}([\mathrm{j}])=[\mathrm{j}]$ since the morphisms $\left.\left(b \circ \tilde{p}_{2}\right)\right|_{C_{R}}: C_{R} \rightarrow M_{R} \subset\left(\mathbb{P}^{2}\right)^{*}$ and $\left.\left(b \circ \tilde{p}_{2}\right)\right|_{C_{R^{\prime}}}: C_{R^{\prime}} \rightarrow M_{R^{\prime}} \subset\left(\mathbb{P}^{2}\right)^{*}$ are given respectively by $\left|\theta_{R}+p+h_{R}\right|$
and $\left|\theta_{R^{\prime}}+p^{\prime}+h_{R^{\prime}}\right|$. We also have $\xi_{M}([\mathrm{~m}])=[\mathrm{m}]$ since $[\mathrm{m}]$ is a unique g ple point of M_{R} and $M_{R^{\prime}}$ respectively by Proposition 3.3.1(3). Let g be an element of $\operatorname{Aut}\left(\mathbb{P}^{2}\right)^{*}$ inducing the projective isomorphism ξ_{M}. Since ξ sends the Weierstrass points of C_{R} to those of $C_{R^{\prime}}$, the line pair $\ell_{1} \cup \ell_{2}$ must be sent into itself by g. Hence $g \in G$. Moreover, since g fixes [m] as we noted above, we have $g \in \Gamma$. In summary, we have shown $g M_{R}=M_{R^{\prime}}$ with $g \in \Gamma$. It remains to show that $g R=R^{\prime}$. For this, we have only to show that R is recovered from M_{R}. Take a general line ℓ through [m] and set $\ell_{\mid M_{R}}=[\mathrm{m}]+\left[\mathrm{m}_{1}\right]+\left[\mathrm{m}_{2}\right]$ set-theoretically. By generality, it holds that $\mathrm{m}_{1} \neq \mathrm{m}_{2}$, and the negative sections $C_{0}\left(\mathrm{~m}_{1}\right)$ and $C_{0}\left(\mathrm{~m}_{2}\right)$ of $L_{\mathrm{m}_{1}}$ and $L_{\mathrm{m}_{2}}$ respectively are B_{a}-lines. By Proposition 3.3.1(4), $\left[C_{0}\left(\mathrm{~m}_{1}\right)\right]+\left[C_{0}\left(\mathrm{~m}_{2}\right)\right] \sim$ h_{R}, and hence $C_{0}\left(\mathrm{~m}_{1}\right) \cap C_{0}\left(\mathrm{~m}_{2}\right)$ is one point of R by the definition of C_{R}. Then R is recovered as the closure of the locus of $C_{0}\left(\mathrm{~m}_{1}\right) \cap C_{0}\left(\mathrm{~m}_{2}\right)$ when ℓ varies.

§5. Proof of rationality

In this section, we show the main result of this paper.
Proof of Theorem 0.1.1. As in Section 4.3, we fix a general line m in \mathbb{P}^{2}. By Proposition 4.3.1, we have only to show that U / Γ is a rational variety.

Using the elementary transformation of $B_{a}=\mathbb{P}(\mathcal{E})$ as in Proposition 1.4.1, we are going to reduce the problem to that on $\mathbb{P}^{1} \times \mathrm{m}$. We use the notation as in Section 1.4. In particular, $\left(x_{1}: x_{2}\right)$ and $\left(y_{1}: y_{2}: y_{3}\right)$ are homogeneous coordinates of \mathbb{P}^{1} and \mathbb{P}^{2} respectively such that $\mathrm{m}=\left\{y_{1}=y_{2}\right\}$. Let r_{v} and r_{h} are rulings of the projections $\mathbb{P}^{1} \times \mathrm{m} \rightarrow \mathrm{m}$ and $\mathbb{P}^{1} \times \mathrm{m} \rightarrow \mathbb{P}^{1}$, respectively. From now on, we identify $\mathbb{P}^{1} \times m$ with $\mathbb{P}^{1} \times \mathbb{P}^{1}$ having the bi-homogeneous coordinate $\left(x_{1}^{\prime}: x_{2}^{\prime}\right) \times\left(y_{2}: y_{3}\right)$ with $x_{1}^{\prime}:=\left(x_{1}-x_{2}\right) / 2$ and $x_{2}^{\prime}:=\left(x_{1}+x_{2}\right) / 2$. To clarify the difference of the two factors of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, we keep denoting it by $\mathbb{P}^{1} \times \mathrm{m}$. With this coordinate of $\mathbb{P}^{1} \times \mathrm{m}$, the action of $\Gamma \simeq\left(\mathbb{Z}_{2} \times G_{a}\right) \rtimes$ G_{m} on $\mathbb{P}^{1} \times \mathrm{m}$ is described by multiplications of the following matrices by Lemma 1.4.4:

- $G_{m}:\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \times\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)$ with $a \in G_{m}$;
- $G_{a}:\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \times\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ with $b \in G_{a}$; and
- $\mathbb{Z}_{2}:\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \times\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

By Proposition 1.4.1, we see that members of $\left|(H+g L)_{\mid L_{\mathrm{m}}}\right|$ corresponds to those of the linear system $\left|r_{h}+(g+1) r_{v}\right|$ through the point $c:=\gamma_{c} \cap$ $\left(\mathbb{P}^{1} \times m\right)=(1: 0) \times(1: 0)$. We denote by Λ the sublinear system consisting
of such members. A member of Λ is the zero set of a bi-homogeneous polynomial of bidegree $(1, g+1)$ of the form $x_{1}^{\prime} f_{g+1}\left(y_{2}, y_{3}\right)+x_{2}^{\prime} g_{g+1}\left(y_{2}, y_{3}\right)$, where $f_{g+1}\left(y_{2}, y_{3}\right)$ and $g_{g+1}\left(y_{2}, y_{3}\right)$ are binary $(g+1)$-forms

$$
\begin{aligned}
& f_{g+1}\left(y_{2}, y_{3}\right)=p_{g} y_{2}^{g} y_{3}+\cdots+p_{i} y_{2}^{i} y_{3}^{g+1-i}+\cdots+p_{0} y_{3}^{g+1} \\
& g_{g+1}\left(y_{2}, y_{3}\right)=q_{g+1} y_{2}^{g+1}+\cdots+q_{i} y_{2}^{i} y_{3}^{g+1-i}+\cdots+q_{0} y_{3}^{g+1} .
\end{aligned}
$$

Then the linear system Λ can be identified with the projective space $\mathbb{P}^{2 g+2}$ with the homogeneous coordinate $\left(p_{0}: \cdots: p_{g}: q_{0}: \cdots: q_{g+1}\right)$. A point $\left(p_{0}: \cdots: p_{i}: \cdots: p_{g}: q_{0}: \cdots: q_{j}: \cdots: q_{g+1}\right)$ is mapped by elements of the subgroups G_{m}, G_{a}, and $\mathbb{Z}_{2} \subset \Gamma$ as above to the following points:
(a) $G_{m}:\left(a^{g+1} p_{0}: \cdots: a^{g+1-i} p_{i}: \cdots: a p_{g}: a^{g+1} q_{0}: \cdots: a^{g+1-j} q_{j}: \cdots:\right.$ $\left.q_{g+1}\right)$;
(b) $G_{a}:$ the point $\left(p_{0}^{\prime}: \cdots: p_{i}^{\prime}: \cdots: p_{g}^{\prime}: q_{0}^{\prime}: \cdots: q_{j}^{\prime}: \cdots: q_{g+1}^{\prime}\right)$ with

$$
\begin{aligned}
p_{i}^{\prime} & =\sum_{k=i}^{g}\binom{k}{i} b^{k-i} p_{k} \\
q_{j}^{\prime} & =\sum_{l=j}^{g+1}\binom{l}{j} b^{l-j} q_{l}
\end{aligned}
$$

(c) $\mathbb{Z}_{2}:\left(-p_{0}: \cdots:-p_{i}: \cdots:-p_{g}: q_{0}: \cdots: q_{j}: \cdots: q_{g+1}\right)$.

Step 1. The quotient $\Lambda_{1}:=\Lambda / \mathbb{Z}_{2}$ is rational.
The rationality is well known by the description of \mathbb{Z}_{2}-action as in (c). In the following steps, it is convenient to show this more explicitly. On the open set $\left\{q_{g+1} \neq 0\right\} \subset \Lambda$, which is Γ-invariant, we may consider $q_{g+1}=1$. Then the action is

$$
\left(p_{0}, \ldots, p_{g}, q_{0}, \ldots, q_{g}\right) \mapsto\left(-p_{0}, \ldots,-p_{g}, q_{0}, \ldots, q_{g}\right)
$$

Therefore, the quotient map can be written on the Γ-invariant open subset $\left\{p_{g} \neq 0\right\}$ as follows:

$$
\left(p_{0}, \ldots, p_{i}, \ldots, p_{g}, q_{0}, \ldots, q_{g}\right) \mapsto\left(p_{0} p_{g}, \ldots, p_{i} p_{g}, \ldots, p_{g}^{2}, q_{0}, \ldots, q_{g}\right)
$$

We denote by ${ }^{\tau} \mathbb{C}^{2 g+2}$ the target $\mathbb{C}^{2 g+2}$ of this map and by $\left(\tilde{p}_{0}, \ldots, \tilde{p}_{g}, \tilde{q}_{0}, \ldots, \tilde{q}_{g}\right)$ its coordinate. Using this presentation, we compute the quotient by the additive group G_{a} in the next step.

Step 2. The quotient $\Lambda_{2}:=\Lambda_{1} / G_{a}$ is rational.
Let $\left(\tilde{p}_{0}^{\prime}, \ldots, \tilde{p}_{g}^{\prime}, \tilde{q}_{0}^{\prime}, \ldots, \tilde{q}_{g}^{\prime}\right)$ be the image of the point $\left(\tilde{p}_{0}, \ldots, \tilde{p}_{g}, \tilde{q}_{0}, \ldots, \tilde{q}_{g}\right)$ by the action of an element of G_{a} as in (b). By the choice of coordinate, it is easy to check \tilde{p}_{i}^{\prime} and \tilde{q}_{j}^{\prime} can be written by $\tilde{p}_{0}, \ldots, \tilde{p}_{g}$ and $\tilde{q}_{0}, \ldots, \tilde{q}_{g}$ respectively by the formulas obtained from (5.1) by setting $q_{g+1}=1$ and replacing $p_{i}^{\prime}, p_{k}, q_{j}^{\prime}$ and q_{l} with $\tilde{p}_{i}^{\prime}, \tilde{p}_{k}, \tilde{q}_{j}^{\prime}$ and \tilde{q}_{l}. Then note that we have $\tilde{q}_{g}^{\prime}=\tilde{q}_{g}+(g+1) b$. Therefore, the stabilizer group of every point is trivial and every G_{a}-orbit intersects the closed set $\left\{\tilde{q}_{g}=0\right\}$ at a single point. Hence we may identified birationally the quotient ${ }^{\tau} \mathbb{C}^{2 g+2} / G_{a}$ with the closed set $\left\{\tilde{q}_{g}=0\right\} \subset^{\tau} \mathbb{C}^{2 g+2}$. In particular, the quotient is rational.
Step 3. The quotient $\Lambda_{3}:=\Lambda_{2} / G_{m}$ is rational.
We may consider the closed set $\left\{\tilde{q}_{g}=0\right\}$ as the affine space $\mathbb{C}^{2 g+1}$ with the coordinate $\left(\tilde{p}_{0}, \ldots, \tilde{p}_{g}, \tilde{q}_{0}, \ldots, \tilde{q}_{g-1}\right)$. Note that this closed set has the naturally induced G_{m}-action such that, by the element of G_{m} as in (a), a point $\left(\tilde{p}_{0}, \ldots, \tilde{p}_{g}, \tilde{q}_{0}, \ldots, \tilde{q}_{g-1}\right)$ is mapped to $\left(a^{g+2} \tilde{p}_{0}, \ldots, a^{2} \tilde{p}_{g}, a^{g+1} \tilde{q}_{0}, \ldots, a^{2} \tilde{q}_{g-1}\right)$. Therefore, the quotient $\mathbb{C}^{2 g+1} / G_{m}$ is a weighted projective space, hence is rational.

Acknowledgments. The authors thank Professor Yuri Prokhorov for very useful conversations about the topic. They also thank the anonymous referee for valuable comments. This research is supported by MIUR funds, PRIN project Geometria delle varietà algebriche (2010), coordinator A. Verra (F.Z.), and, by Grant-in-Aid for Young Scientists (B 20740005, H.T.) and by Grant-in-Aid for Scientific Research (C 16K05090, H.T.).

References

[1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 267, Springer, New York, 1985.
[2] F. Bogomolov, "Rationality of the moduli of hyperelliptic curves of arbitrary genus", in Conf. Alg. Geom. (Vancouver 1984), CMS Conf. Proceedings 6, American Mathematical Society, Providence, R.I., 1986, 17-37.
[3] G. Casnati, On the rationality of moduli spaces of pointed hyperelliptic curves, Rocky Mountain J. Math. 42(2) (2012), 491-498.
[4] T. Fujita, "Projective varieties of Δ-genus one", in Algebraic and Topological Theories, to the memory of Dr. Takehiko MIYATA, 1985, 149-175.
[5] K. Hulek, Stable rank 2 vector bundles on \mathbb{P}^{2} with c_{1} odd, Math. Ann. 242 (1979), 241-266.
[6] P. Jahnke and T. Peternell, Almost del Pezzo manifolds, Adv. Geom. 8(3) (2008), 387-411.
[7] P. I. Katsylo, The rationality of moduli spaces of hyperelliptic curves, Izv. Akad. Nauk SSSR Ser. Mat. 48(4) (1984), 705-710.
[8] A. Langer, Fano 4-folds with scroll structure, Nagoya Math. J. 150 (1998), 135-176.
[9] S. Mukai, Fano 3-folds, London Math. Soc. Lecture Notes 179, Cambridge University Press, 1992, 255-263.
[10] S. Mukai, "Plane quartics and Fano threefolds of genus twelve", in The Fano Conference, Univ. Torino, Turin, 2004, 563-572.
[11] H. Takagi and F. Zucconi, Geometry of lines and conics on the quintic del Pezzo 3fold and its application to varieties of power sums, Michigan Math. J. 61(1) (2012), 19-62.
[12] H. Takagi and F. Zucconi, Spin curves and Scorza quartics, Math. Ann. 349(3) (2011), 623-645.
[13] H. Takagi and F. Zucconi, The moduli space of genus 4 spin curves is rational, Adv. Math. 231 (2012), 2413-2449.
[14] K. Takeuchi, Weak Fano threefolds with del Pezzo fibration, preprint, 2009, arXiv:0910.2188.

Hiromichi Takagi
Graduate School of Mathematical Sciences
The University of Tokyo
Tokyo, 153-8914
Japan
takagi@ms.u-tokyo.ac.jp
Francesco Zucconi
D.I.M.I.

The University of Udine
Udine, 33100
Italy
Francesco.Zucconi@dimi.uniud.it

[^0]: Received October 6, 2016. Revised May 7, 2017. Accepted May 8, 2017.
 2010 Mathematics subject classification. Primary 14H10, 14E30; Secondary 14J45, 14N05.

