
From Interacting Binaries to Exoplanets: Essential Modeling Tools
Proceedings IAU Symposium No. 282, 2011
Mercedes T. Richards & Ivan Hubeny, eds.

c© International Astronomical Union 2012
doi:10.1017/S1743921311027189

Light Curves of Planetary Transits:
How About Ellipticity?

Carolina von Essen, Klaus F. Huber and Jürgen H. M. M. Schmitt
Hamburger Sternwarte, University of Hamburg,

(21029) Hamburg, Germany
email: cessen@hs.uni-hamburg.de

Abstract. The observation of transit light curves has become a key technique in the study of
exoplanets, since modeling the resulting transit photometry yields a wealth of information on
the planetary systems. Considering that the limited accuracy of ground-based photometry does
directly translate into uncertainties in the derived model parameters, simplified spherical planet
models were appropriate in the past. With the advent of space-based instrumentation capable
of providing photometry of unprecedented accuracy, however, a need for more realistic models
has arisen.
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1. Motivation
The gas giants in our Solar System are not spherical but oblate. Oblateness, f , is de-

fined as f = (Req −Rpol)/Req , where Req corresponds to the equatorial radius and Rpol to
the polar radius. Oblateness values for our Solar System gas giants are shown in Table 1.

A relation between oblateness and observables quantities can be obtained by taking
into account the Darwin-Radau relation. Defining the parameter ζ = mom . of inertia
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tripetal and gravitational acceleration, defined by Barnes and Fortney (2003), we obtain

the following expression for the oblateness: f = 4π 2 R3
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. Assuming

ζ ∼ 0.25 (in analogy to gas giants in the Solar System) and tidal locking, we calculated
f for different exoplanets (see Table 2).

2. Analytical model: comparing oblate and spherical planets
We assume that the planet shape can be modelled as a rotational ellipsoid and the

star as a sphere, and the projections are an ellipse and a circle, respectively. In the case
i = 90◦, the symmetry of the problem allows an analytical model for the flux drop during
primary transit. The difference between the models (Fig. 1) can be resolved for instance
by the Kepler Telescope, given a good model for limb darkening.

Table 1. Oblateness values for the giant planets in our Solar System.

Planet Name Req Rpol f Planet Name Req Rpol f

Jupiter 71492 km 66854 km 0.0648 Uranus 25559 km 24973 km 0.0229
Saturn 60268 km 54364 km 0.0979 Neptune 24764 km 24341 km 0.0171

133

https://doi.org/10.1017/S1743921311027189 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311027189


134 C. von Essen, K. F. Huber & J. H. M. M. Schmitt

Table 2. Oblateness values for short period exoplanets.

System P [d] < ρ > (cgs) f System P [d] < ρ > (cgs) f

HD 149026 ∼ 2.875 ∼ 1.17 0.00152 WASP - 15 ∼ 3.752 ∼ 0.247 0.00422
HD 189733 ∼ 2.218 ∼ 0.91 0.00328 CoRoT - 1 ∼ 1.508 ∼ 0.38 0.017
HD 209458 ∼ 3.524 ∼ 0.38 0.00365 WASP - 19 ∼ 0.788 ∼ 0.486 0.048
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Figure 1. Left: Difference between the two analytical models, considering oblate and spherical
planets. Right: Oblateness effects are important only during ingress and egress.

3. Numerical model: Comparison to Kepler data
A realistic model must include an arbitrary inclination and limb darkening, and it has

to be compared to real data. We find that models with vanishing and large oblateness fit
the data equally well, albeit with different fit parameters. However, one has to take into
account that oblateness and inclination are degenerate; an ideal method would be the
determination of oblateness and inclination independently. A possible way to minimize
the degeneration effects is to take into account the mass - radius relationship for the
host-star, such as R = 1.24 M 0.67 (for M > 1.3 M�). Fig. 2 shows that the inferred mass
of the host star depends on the adopted planetary oblateness. Since KIC 9941662 is of
spectral type A3, one clearly favors a low oblateness.
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Figure 2. Left: Kepler light curve of KIC 9941662 and fit considering f = 0.5 for χ2 minimization.
Small box: Difference between two models (f = 0 and f = 0.5), multiplied by 106 . Right: Host-star
mass-oblateness relationship for the case of KIC 9941662. ST ∼ A3, Tef f ∼ 8800 K.
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