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Abstract

It is well known that functions in the analytic Besov space B1 on the unit disk D admit an integral
representation

f (z) =

∫
D

z − w
1 − zw

dµ(w),

where µ is a complex Borel measure with |µ|(D) < ∞. We generalize this result to all Besov spaces Bp

with 0 < p ≤ 1 and all Lipschitz spaces Λt with t > 1. We also obtain a version for Bergman and Fock
spaces.
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1. Introduction

LetD denote the unit disk in the complex planeC, H(D) denote the space of all analytic
functions in D, and dA denote the normalized area measure on D. For 0 < p < ∞,
we consider the analytic Besov space Bp consisting of functions f ∈ H(D) with the
property that (1 − |z|2)k f (k)(z) belongs to Lp(D, dλ), where

dλ(z) =
dA(z)

(1 − |z|2)2

is the Möbius invariant area measure on D and k is any positive integer such that
pk > 1. The space Bp is independent of the integer k used.

It is well known that an analytic function f in D belongs to B1 if and only if there
exists a complex Borel measure µ on D such that |µ|(D) <∞ and

f (z) =

∫
D

z − w
1 − zw

dµ(w), z ∈ D. (1.1)
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See [1, 2, 11]. The purpose of this paper is to generalize the above result to several
other spaces, including Besov spaces, Lipschitz spaces, Bergman spaces, and Fock
spaces. We state our main results as Theorems A and B below.

Theorem A. Suppose that 0 < p ≤ 1, 0 < r < 1, and f is analytic in D. Then f ∈ Bp if
and only if it admits a representation

f (z) =

∫
D

z − w
1 − zw

dµ(w), z ∈ D,

where µ is a complex Borel measure on D such that the localized function z 7→
|µ|(D(z, r)) belongs to Lp(D, dλ), where

D(z, r) =

{
w ∈ D :

∣∣∣∣∣ z − w
1 − zw

∣∣∣∣∣ < r
}

is the pseudo-hyperbolic disk at z with radius r.

Recall that for any real number t, the analytic Lipschitz space Λt on the unit disk
consists of functions f ∈ H(D) such that (1 − |z|2)k−t f (k)(z) is bounded, where k is any
nonnegative integer greater than t.

Theorem B. Suppose that t > 1, 0 < r < 1, and f is analytic in D. Then f ∈ Λt if and
only if

f (z) =

∫
D

z − w
1 − zw

dµ(w), z ∈ D,

for some complex Borel measure µ with the property that

sup
z∈D

|µ|(D(z, r))
(1 − |z|2)t <∞.

In addition to Besov and Lipschitz spaces in dimension one, where the integral
representation looks particularly nice, we will also consider Bergman and Fock spaces
in higher dimensions.

2. Preliminaries on measures

Suppose that µ is a complex Borel measure on D and r ∈ (0, 1). We can define two
functions on D as follows.

µr(z) = µ(D(z, r)), µ̂r(z) =
µ(D(z, r))
(1 − |z|2)2 .

It is well known that the area of the pseudo-hyperbolic disk D(z, r) is

πr2
( 1 − |z|2

1 − r2|z|2

)2
,

which is comparable to (1 − |z|2)2 whenever r is fixed. That is why we think of µ̂r as
an averaging function for the measure µ. We will call µr a localized function for µ.
The behavior of µr and µ̂r is often independent of the particular radius r being used.
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Another averaging function for µ is the so-called Berezin transform of µ. We need
the assumption that |µ|(D) <∞ in order to define the Berezin transform:

µ̃(z) =

∫
D

(1 − |z|2)2

|1 − zw|4
dµ(w), z ∈ D.

See [11] for basic information about these averaging operations.
We will need to decompose the unit disk into roughly equal-sized parts in the

pseudo-hyperbolic metric. More specifically, we will need the following result.

Lemma 2.1. For any 0 < r < 1, there exist a sequence {zn} in D and a sequence of Borel
subsets {Dn} of D with the following properties:

(a) D = D1 ∪ D2 ∪ · · · ∪ Dn ∪ · · · ;
(b) the sets Dn are mutually disjoint;
(c) D(zn, r/4) ⊂ Dn ⊂ D(zn, r) for every n.

Proof. This is well known. See [11] for example. �

Any sequence {zn} satisfying the three conditions above will be called an r-lattice
in the pseudo-hyperbolic metric.

Lemma 2.2. Suppose that µ is a positive Borel measure on D and 0 < p ≤ ∞. If r and s
are two radii in (0, 1) and {zn} is an r-lattice in the pseudo-hyperbolic metric, then the
following conditions are equivalent:

(a) the function µ̂s(z) belongs to Lp(D, dλ);
(b) the sequence µ̂r(zn) belongs to lp.

If 1/2 < p ≤ ∞, then the above conditions are also equivalent to:

(c) the function µ̃(z) belongs to Lp(D, dλ).

Proof. This is also well known. See [11] for example. �

As a consequence of the above lemma on the averaging function µ̂r, we obtain
several equivalent conditions for the localized function µr.

Corollary 2.3. Suppose that 0 < p ≤ ∞ and µ is a positive Borel measure on D. If r
and s are two radii in (0, 1) and {zn} is an r-lattice in the pseudo-hyperbolic metric,
then the following conditions are equivalent:

(a) the sequence {µr(zn)} belongs to lp;
(b) the function µs(z) belongs to Lp(D, dλ).

If p ,∞, the above conditions are also equivalent to:

(c) the function µ̂s(z) belongs to Lp(D, dA2(p−1)), where

dA2(p−1)(z) = (1 − |z|2)2(p−1) dA(z).
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Proof. Consider the positive Borel measure

dν(z) = (1 − |z|2)2 dµ(z).

It is well known that (1 − |z|2)2 is comparable to (1 − |zn|
2)2 for z in D(zn, t), where t

is any fixed radius in (0, 1). See [11] for example. Thus, ν̂t(z) is comparable to µt(z),
and ν̂t(z) is also comparable to (1 − |z|2)2µ̂t(z). The desired result then follows from
Lemma 2.2. �

In view of the equivalence of conditions (a) and (c) in Lemma 2.2, it is tempting to
conjecture that condition (c) in Corollary 2.3 above is equivalent to µ̃ ∈ Lp(D, dA2(p−1))
whenever p > 1/4. It turns out that this is not true. This already fails at p = 1. In fact,
if p = 1, the condition µ̃ ∈ Lp(D, dA2(p−1)) means that

+∞ >

∫
D

µ̃(z) dA(z)

=

∫
D

(1 − |z|2)2 dA(z)
∫
D

dµ(w)
|1 − zw|4

=

∫
D

dµ(w)
∫
D

(1 − |z|2)2 dA(z)
|1 − zw|4

.

This together with [11, Lemma 3.10] shows that, for p = 1, the condition µ̃ ∈

Lp(D, dA2(p−1)) is the same as∫
D

log
1

1 − |w|2
dµ(w) <∞.

On the other hand, it is easy to see that condition (a) in Corollary 2.3, for p = 1, simply
means that µ(D) <∞, which is obviously different from the integral condition above.

The Berezin transform will not really be used in the rest of the paper, but it is always
interesting and insightful to compare the behavior of µ̂r and µ̃.

Another notion critical to the integral representation of Lipschitz spaces is that of
Carleson measures.

Let t > 0. We say that a positive Borel measure µ on the unit disk D is t-Carleson if

sup
z∈D

µ(D(z, r))
(1 − |z|2)t <∞

for some r ∈ (0,1). It is well known that if the above condition holds for some r ∈ (0,1),
then it holds for every r ∈ (0, 1). Thus, being t-Carleson is independent of the radius r
used in the definition.

If t > 1, then every t-Carleson measure is finite. In fact, in this case, we use
Lemma 2.1 to obtain
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µ(D) =

∞∑
n=1

µ(Dn) ≤
∞∑

n=1

µ(D(zn, r))

≤ C
∞∑

n=1

(1 − |zn|
2)t ≤ C′

∞∑
n=1

∫
Dn

(1 − |z|2)t−2 dA(z)

= C′
∫
D

(1 − |z|2)t−2 dA(z) <∞.

It is clear from the above argument that not every t-Carleson measure is finite when
t ≤ 1.

If t > 1, then µ is t-Carelson if and only if for some (or every) 0 < p <∞ there exists
a constant C = Cp > 0 such that∫

D

| f (z)|p dµ(z) ≤ C
∫
D

| f (z)|p(1 − |z|2)t−2 dA(z)

for all f ∈ H(D). Because of this, such measures are also called Carleson measures for
Bergman spaces. When t > 1, it is also known that µ is t-Carleson if and only if there
is a constant C > 0 such that µ(S h) ≤ Cht for all ‘Carleson squares’ Sh of side length
h. See [9, 10].

We warn the reader that there is a fine distinction between 1-Carleson measures
defined above and the classical Carleson measures (for Hardy spaces). This can be
seen by considering an arbitrary Bloch function f in the unit disk. In fact, for such a
function, if we define a measure µ by

dµ(z) = (1 − |z|2)| f ′(z)|2 dA(z),

then µ is 1-Carleson, because

µ(D(z, r)) =

∫
D(z,r)

(1 − |w|2)| f ′(w)|2 dA(w)

∼
1

1 − |z|2

∫
D(z,r)

(1 − |w|2)2| f ′(w)|2 dA(w)

≤ C(1 − |z|2).

But µ is not a classical Carleson measure, because being so would mean that f is
in BMOA. See [5]. It is certainly well known that BMOA is strictly contained in
the Bloch space. A classical Carleson measure is 1-Carleson, but not the other way
around.

Similarly, for 0 < t < 1, there is a subtle difference between measures satisfying the
condition µ(S h) ≤ Cht and those satisfying the condition µ(D(z, r)) ≤ C(1 − |z|2)t.

3. Besov spaces in the unit disk

We prove Theorem A in this section. For this purpose we need to make use of
weighted Bergman spaces. Thus, for any α > −1, we let

dAα(z) = (α + 1)(1 − |z|2)α dA(z)
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denote the weighted area measure on D. The spaces

Ap
α = H(D) ∩ Lp(D, dAα), 0 < p <∞,

are called weighted Bergman spaces with standard weights.
We will see that Theorem A can be thought of as an extension of the following

atomic decomposition for weighted Bergman spaces, which can be found in [11] for
example.

Theorem 3.1. Suppose that 0 < p <∞, α > −1, and

b > max(1, 1/p) + (α + 1)/p. (3.1)

There exists some positive number δ such that for any r-lattice {zn} with r < δ the
weighted Bergman space Ap

α consists exactly of functions of the form

f (z) =

∞∑
n=1

cn
(1 − |zn|

2)(pb−2−α)/p

(1 − zzn)b , (3.2)

where {cn} ∈ lp.

Atomic decomposition for Bergman spaces was first obtained in [4]. We will follow
the proof of the above theorem as found in [11]. We begin with an explicit construction
for a measure in (1.1) when f is a polynomial.

Lemma 3.2. If f is a polynomial and 0 < p ≤ ∞, there exists a complex Borel measure
µ such that the localized function |µ|r(z) is in Lp(D, dλ) and

f (z) =

∫
D

z − w
1 − zw

dµ(w)

for all z ∈ D.

Proof. If f is a nonzero constant function, we use the measure

dµ(w) = c
|w|
w

(1 − |w|2)N dA(w),

where c is an appropriate constant and N is sufficiently large (depending on p). If
f (w) = wn with n ≥ 1, we use the measure

dµ(w) = c wn−1(1 − |w|2)N dA(w),

where c is an appropriate constant and N is sufficiently large (depending on p). This
follows from the Taylor expansion of the function 1/(1 − zw) and polar coordinates. �

We now proceed to the proof of Theorem A. First assume that f ∈ Bp for some
0 < p ≤ 1. Let k be any positive integer such that pk > 1. Let b = k + 1 and α = pk − 2.
Then b satisfies the condition in (3.1). In fact, since 0 < p ≤ 1,

max
(
1,

1
p

)
+
α + 1

p
=

1
p

+
pk − 1

p
= k < b.
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Also, f ∈ Bp if and only if its kth-order derivative f (k) is in Ap
α and the exponent in the

numerator of (3.2) is
pb − 2 − α

p
= 1.

It follows from Theorem 3.1 that we can find an r-lattice {zn} in the pseudo-hyperbolic
metric and a sequence {cn} ∈ lp such that

f (k)(z) =

∞∑
n=1

cn
1 − |zn|

2

(1 − zzn)k+1 , z ∈ D.

There is considerable freedom in the choice of the r-lattice in Theorem 3.1. So, we
may assume that zn , 0 for each n and |zn| → 1 as n→ ∞. We then consider the
function

g(z) =

∞∑
n=1

c′n
z − zn

1 − zzn
, z ∈ D,

where
c′n =

cn

k! zk−1
n

, n ≥ 1.

Clearly, the sequence {c′n} is still in lp ⊂ l1. This is where we use the assumption
that 0 < p ≤ 1 in a critical way to ensure that the infinite series defining g actually
converges. Differentiating term by term shows that the function g satisfies g(k) = f (k).
Thus, there is a polynomial P(z) such that

f (z) = P(z) +

∞∑
n=1

c′n
z − zn

1 − zzn
.

By Lemma 3.2, there is a measure ν such that the localized function |ν|r(z) is in
Lp(D, dλ) and

P(z) =

∫
D

z − w
1 − zw

dν(w), z ∈ D.

If we define

µ = ν +

∞∑
n=1

c′nδzn ,

where δzn denotes the unit point mass at zn, we obtain the desired representation for f
with the localized function |µ|r(z) belonging to Lp(D, dλ). This proves one direction of
Theorem A.

To prove the other direction of Theorem A, let us assume that µ is a complex Borel
measure such that the function |µ|r(z) is in Lp(D, dλ). Let r be a sufficiently small
radius and {zn} be an r-lattice in the pseudo-hyperbolic metric. By Corollary 2.3, the
sequence |µ|r(zn) is in lp. Now, if

f (z) =

∫
D

z − w
1 − zw

dµ(w), z ∈ D,
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then

f (k)(z) = k!
∫
D

(1 − |w|2) wk−1

(1 − zw)k+1 dµ(w), z ∈ D.

We use Lemma 2.1 to decompose D into the disjoint union of {Dn} and rewrite

f (k)(z) = k!
∞∑

n=1

∫
Dn

(1 − |w|2) wk−1

(1 − zwn)k+1 dµ(w),

so that

| f (k)(z)| ≤ k!
∞∑

n=1

∫
Dn

1 − |w|2

|1 − zw|k+1 d|µ|(w).

For each n ≥ 1 and z ∈ D, there is some point wn(z) ∈ Dn such that

1 − |wn(z)|2

|1 − zwn(z)|k+1 = sup
w∈Dn

1 − |w|2

|1 − zw|k+1 .

Thus,

| f (k)(z)| ≤
∞∑

n=1

cn
1 − |wn(z)|2

|1 − zwn(z)|k+1

for all z ∈ D, where cn = k! |µ|(Dn) is a sequence in lp as |µ|(Dn) ≤ |µ|(D(zn, r)). By
[11, Lemma 4.30], there exists a constant C > 0 (independent of n and z) such that

1 − |wn(z)|2

|1 − zwn(z)|k+1 ≤ C
1 − |zn|

2

|1 − zzn|
k+1

for all n ≥ 1 and all z ∈ D. Therefore,

| f (k)(z)| ≤ C
∞∑

n=1

cn
1 − |zn|

2

|1 − zzn|
k+1

for all z ∈ D. Since 0 < p ≤ 1, we apply Hölder’s inequality:

| f (k)(z)|p ≤ Cp
∑
n=1

|cn|
p (1 − |zn|

2)p

|1 − zzn|
p(k+1) .

Integrate term by term and apply [7, Proposition 1.4.10]. We obtain another constant
C > 0 (independent of f ) such that∫

D

| f (k)(z)|p(1 − |z|2)pk−2 dA(z) ≤ C
∞∑

n=1

|cn|
p <∞,

which shows that f ∈ Bp and completes the proof of Theorem A.
It is clear that Theorem A cannot possibly be true when p > 1. This is because any

function f represented by the integral in Theorem A must be bounded, while there are
unbounded functions in Bp when p > 1.
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4. Bergman-type spaces on the unit ball

In this section we show how to extend Theorem A to Bergman-type spaces on the
unit ball Bn in Cn. The main reference for this section is [9]. When α > −1, all
background information can also be found in [10].

For any real parameter α, we consider the weighted volume measure

dvα(z) = (1 − |z|2)α dv(z),

where dv is the Lebesgue volume measure on Bn.
For real α and 0 < p <∞, we use Ap

α to denote the space of holomorphic functions
f in Bn such that (1 − |z|2)kRk f (z) is in Lp(Bn, dvα), where k is a nonnegative integer
satisfying pk + α > −1 and R f is the standard radial derivative defined by

R f (z) = z1
∂ f
∂z1

+ · · · + zn
∂ f
∂zn

.

It is well known that the space Ap
α is independent of the integer k used in the definition.

Various names exist in the literature for the spaces Ap
α: Bergman spaces, Besov

spaces, and Sobolev spaces, among others. We follow [9] and call them Bergman
spaces here. When α > −1, Ap

α are indeed the weighted Bergman spaces with standard
weights. For α = −(n + 1), Ap

α become the so-called diagonal Besov spaces.
If p is fixed, all the spaces Ap

α are isomorphic as Banach spaces for 1 ≤ p < ∞
and as complete metric spaces for 0 < p < 1. The isometry can be realized by certain
fractional radial differential operators. Because of this, it is often enough for us just
to consider the case α = 0 and obtain the other cases by fractional differentiation or
fractional integration.

On the unit ball there exists a unique family of involutive automorphisms ϕa(z) that
are high-dimensional analogs of the Möbius maps

ϕa(z) =
a − z
1 − az

on the unit disk. See [7] and [10]. The pseudo-hyperbolic metric on Bn is still the
metric defined by d(z,w) = |ϕz(w)|. For any complex Borel measure µ on Bn, the
localized function µr and the averaging function µ̂r are defined in exactly the same
way as before.

We can now extend Theorem A to all the spaces Ap
α, as follows.

Theorem 4.1. Suppose that α is real, 0 < p <∞, 0 < r < 1, and

b > max
(
1,

1
p

)
+
α + 1

p
.

Then a function f ∈ H(Bn) belongs to Ap
α if and only if

f (z) =

∫
Bn

(1 − |w|2)(pb−n−1−α)/p

(1 − 〈z,w〉)b dµ(w) (4.1)
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for some complex Borel measure µ on Bn with the localized function |µ|r(z) belonging
to Lp(D, dλ), where

dλ(z) =
dv(z)

(1 − |z|2)n+1

is the Möbius invariant volume measure on Bn.

Proof. That every function f ∈ Ap
α has the desired integral representation in (4.1), with

µ being atomic, follows from [9, Theorem 32], which is the atomic decomposition for
these spaces.

On the other hand, if f is a function represented by (4.1), we follow the second half
of the proof of Theorem A to obtain the following estimate:

|RN f (z)| ≤ C
∞∑

k=1

ck
(1 − |zk|

2)(pb−n−1−α)/p

|1 − 〈z, zk〉|
b+N , z ∈ Bn,

where C is some positive constant, {ck} ∈ lp, and N is a sufficiently large positive
integer. Using the arguments on [11, pages 92–93] (the proof for atomic decomposition
of Bergman spaces), we can then show that RN f belongs to the Bergman space Ap

N p+α,
which means that f ∈ Ap

α. �

One particular case is worth mentioning. If p = 1 and µ is a positive Borel measure
on Bn, then we use Fubini’s theorem, the fact that χD(z,r)(w) = χD(w,r)(z), and the
Möbius invariance of dλ to obtain∫

Bn

µr(z) dλ(z) =

∫
Bn

µ(D(z, r)) dv(z)
(1 − |z|2)n+1

=

∫
Bn

dv(z)
(1 − |z|2)n+1

∫
Bn

χD(z,r)(w) dµ(w)

=

∫
Bn

dµ(w)
∫
Bn

χD(w,r)(z) dv(z)
(1 − |z|2)n+1

=

∫
Bn

dµ(w)
∫

D(w,r)

dv(z)
(1 − |z|2)n+1

=

∫
Bn

dµ(w)
∫

D(0,r)

dv(z)
(1 − |z|2)n+1

= Cr µ(Bn).

Therefore, for general complex Borel measures µ on Bn, the condition that |µ|r ∈
L1(Bn,dλ) is equivalent to the condition that |µ|(Bn) <∞. This is the original condition
for µ in the integral representation of the minimal Besov space B1.

It is also interesting to note that there exist many integral representations of
Bergman-type spaces in terms of Lp functions when p ≥ 1. See [9] for example. But
there is no integral representation in terms of general Lp functions when p < 1, because
the integrals cannot even be properly set up in this case. But Theorem 4.1 above tells us
that we can still obtain integral representations in terms of measures when 0 < p < 1.
This allows us to recover some special integral representation formulas in [3] in terms
of certain special functions in the case 0 < p < 1.
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5. Lipschitz spaces on the unit ball

For any real number t, the holomorphic Lipschitz space Λt on Bn consists
of functions f ∈ H(Bn) such that (1 − |z|2)k−tRk f (z) is bounded, where k is any
nonnegative integer greater than α. It is known that the space Λt is independent of
the integer k used in the definition. See [9] for this and other background information
about these spaces.

When 0 < t < 1, Λt consists of functions f ∈ H(Bn) such that

| f (z) − f (w)| ≤ C|z − w|t.

When t = 0, we can take k = 1 in the definition of Λ0 and obtain the Bloch space B of
functions f ∈ H(Bn) such that

sup
z∈Bn

(1 − |z|2)|R f (z)| <∞.

When t = 1, the resulting Lipschitz space Λ1 is usually called the Zygmund class.
We can define a family of Carleson measures on the unit ball in exactly the same

way as on the unit disk. Thus, for any t > 0, we say that a positive Borel measure µ on
Bn is a t-Carleson measure if for some (or every) r ∈ (0, 1)

sup
z∈Bn

µ(D(z, r))
(1 − |z|2)t <∞.

If {zk} is an r-lattice in the pseudo-hyperbolic metric of Bn, then µ is t-Carleson if and
only if

sup
n≥1

µ(D(zn, r))
(1 − |zn|

2)t <∞.

If t > n, then µ is a t-Carleson measure if and only if∫
Bn

| f (z)|p dµ(z) ≤ C
∫
Bn

| f (z)|p dvt−n−1(z) (5.1)

for some constant C = Cp > 0 and all f ∈ H(Bn).
The following theorem is modeled on the atomic decomposition for holomorphic

Lipschitz spaces. See [9, Theorem 33].

Theorem 5.1. Suppose that t and b are two real parameters satisfying:

(a) b + t > n;
(b) b is neither 0 nor a negative integer.

Then a function f ∈ H(Bn) is in the Lipschitz space Λt if and only if there exists a
complex Borel measure µ such that the localized function |µ|r(z) is bounded and

f (z) =

∫
Bn

(1 − |w|2)b+t

(1 − 〈z,w〉)b dµ(w) (5.2)

for all z ∈ Bn.
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Proof. If f admits the representation in (5.2), where the localized function |µ|r is
bounded, then differentiating under the integral sign gives

|Rk f (z)| ≤ C
∫
Bn

(1 − |w|2)b+t

|1 − 〈z,w〉|b+k d|µ|(w), z ∈ Bn,

where k is a nonnegative integer greater than t and C is a positive constant independent
of z. Let

dν(z) = (1 − |z|2)b+t d|µ|(z).

Then the boundedness of the localized function |µ|r(z) is equivalent to the measure
ν being (b + t)-Carleson. Since b + t > n, it follows from (5.1) that there is another
constant C > 0, independent of z, such that

|Rk f (z)| ≤ C
∫
Bn

(1 − |w|2)b+t−n−1

|1 − 〈z,w〉|b+k dv(w)

for all z ∈ Bn. Since b + t − n − 1 > −1, k > t, and

b + k = n + 1 + (b + t − n − 1) + (k − t),

it follows from [7, Proposition 1.4.10] that there is another constant C > 0, independent
of z, such that

|Rk f (z)| ≤
C

(1 − |z|2)k−t , z ∈ Bn.

This shows that f ∈ Λt.
On the other hand, if f ∈ Λt, then by the atomic decomposition theorem for

Lipschitz spaces (see [9, Theorem 33]) there exist an r-lattice {zk} in the pseudo-
hyperbolic metric and a sequence {ck} ∈ l∞ such that

f (z) =

∞∑
k=1

ck
(1 − |zk|

2)b+t

(1 − 〈z, zk〉)b

for all z ∈ Bn. Let

µ =

∞∑
k=1

ckδzk .

Then

f (z) =

∫
Bn

(1 − |w|2)b+t

(1 − 〈z,w〉)b dµ(w), z ∈ Bn,

and the measure µ has the property that |µ|r(z) is a bounded function. This completes
the proof of the theorem. �

We want to write down an equivalent form of the above theorem which may be
more useful in certain situations. More specifically, if we write b = n + 1 + α − t, then
the condition b + t > n becomes α > −1. If we combine the factor (1 − |w|2)b+t with
the measure µ in Theorem 5.1, we obtain the following equivalent form.
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Theorem 5.2. Suppose that t is real, α > −1, and the number n + 1 + α − t is neither 0
nor a negative integer. Then a function f ∈ H(Bn) belongs to the Lipschitz space Λt if
and only if we can represent f by

f (z) =

∫
Bn

dµ(w)
(1 − 〈z,w〉)n+1+α−t , (5.3)

where |µ| is (n + 1 + α)-Carleson, namely,∫
Bn

|g(z)|p d|µ|(z) ≤ C
∫
Bn

|g(z)|p dvα(z)

for some constant C = C(p, α) and all g ∈ H(Bn).

In this equivalent form, the second half of the proof of Theorem 5.1 can be replaced
by an argument based on absolutely continuous measures instead of atomic measures
(and so avoiding the use of atomic decomposition). In fact, if f ∈ Λt, then, by
[9, Theorem 17], there exists a function g ∈ L∞(Bn) such that

f (z) =

∫
Bn

g(w) dvα(w)
(1 − 〈z,w〉)n+1+α−t , z ∈ Bn.

Setting dµ(w) = g(w) dvα(w) leads to the representation in (5.3) with |µ| being an
(n + 1 + α)-Carleson measure.

We now use Theorem 5.1 to prove Theorem B.
First assume that t > 1, |µ| is t-Carleson, and

f (z) =

∫
D

z − w
1 − zw

dµ(w), z ∈ D.

Then

| f (k)(z)| ≤
∫
D

1 − |w|2

|1 − zw|k+1 d|µ|(w), z ∈ D,

where k is any positive integer greater than t. Let

dν(w) = (1 − |w|2) d|µ|(w).

Then ν is (t + 1)-Carleson, so there exists a positive constant C such that

| f (k)(z)| ≤ C
∫
D

(1 − |w|2)t−1

|1 − zw|k+1 dA(w)

for all z ∈ D. An application of [7, Proposition 1.4.10] then produces another positive
constant C such that

| f (k)(z)| ≤
C

(1 − |z|2)k−t , z ∈ D,

which means that f ∈ Λt.
Next assume that t > 1 and f ∈ Λt. Since

(1 − |z|2)k−t f (k)(z) = (1 − |z|2)(k−1)−(t−1)( f ′)(k−1)(z),
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where k is sufficiently large, we see that f ′ ∈ Λt−1. We apply Theorem 5.1 to the
function f ′ to obtain a complex Borel measure ν such that

f ′(z) =

∫
D

(1 − |w|2)t+1

(1 − zw)2 dν(w), z ∈ D,

where the localized function |ν|r(z) is bounded. Let

dµ(z) = (1 − |z|2)t dν(z).

Then |µ| is t-Carleson and

f ′(z) =

∫
D

1 − |w|2

(1 − zw)2 dµ(w), z ∈ D.

Integrate both sides, note that µ is a finite measure on D (any t-Carleson measure is
finite when t > 1), and take care of the integration constant using Lemma 3.2. We
obtain the integral representation for f in Theorem B.

It is clear that the conclusion in Theorem B is false if t ≤ 1. In fact, if

f (z) =

∫
D

z − w
1 − zw

dµ(w), z ∈ D,

for some measure µ, then µ must be finite and f must be bounded. Although every
function in Λt is bounded when t > 0, not every t-Carleson measure is finite when
t ≤ 1. So, the assumption that t > 1 in Theorem B is best possible.

6. Fock spaces in Cn

We now consider Fock spaces in Cn. Throughout this section, we let α denote a
positive weight parameter and define

dλα(z) = cαe−α|z|
2

dv(z),

where dv is volume measure in Cn and cα is a positive normalizing constant so that
λα(Cn) = 1. These are called (weighted) Gaussian measures.

For 0 < p ≤ ∞, let F p
α denote the space of entire functions f in Cn such that the

function f (z)e−α|z|
2/2 belongs to Lp(Cn, dv). These are called Fock spaces. Sometimes

they are also called Bargmann or Segal–Bargmann spaces.
In place of the pseudo-hyperbolic metric for Bn, we use the Euclidean metric in this

context. It is even easier to define the notion of lattices in the Euclidean metric. So,
we will not elaborate on such details.

The following result is well known and is usually referred to as the atomic
decomposition for Fock spaces. See [6] for the case 1 ≤ p ≤ ∞ and [8] for the case
0 < p < 1. See [12] for more background information about Fock spaces.
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Theorem 6.1. For any 0 < p ≤ ∞, there exists a constant δ = δ(p, α) > 0 with the
following property: if r ∈ (0, δ) and {zk} is any r-lattice in Cn in the Euclidean metric,
then an entire function f belongs to F p

α if and only if

f (z) =

∞∑
k=1

ckeα〈z,zk〉−(α/2)|zk |
2

for some sequence {ck} ∈ lp.

The integral representation of Fock spaces in terms of complex Borel measures then
takes the following form.

Theorem 6.2. Let 0 < p ≤ ∞, r > 0, and f be an entire function. Then f ∈ F p
α if and

only if there exists a complex Borel measure µ on Cn such that the localized function
|µ|r(z) = |µ|(D(z, r)) belongs to Lp(Cn, dv) and

f (z) =

∫
Cn

eα〈z,w〉−(α/2)|w|2 dµ(w)

for all z ∈ Cn.

Proof. One direction actually follows from the atomic decomposition when we
use atomic measures. The other direction follows from the proof of the atomic
decomposition theorem, as adapted in the previous sections. We omit the details. �

It is well known that for 1 ≤ p ≤ ∞, an entire function f in Cn belongs to the Fock
space F p

α if and only if there exists a function g such that the function g(z)e−α|z|
2/2 is in

Lp(Cn, dv) and

f (z) =

∫
Cn

eα〈z,w〉g(w) dλα(w)

for all z ∈ Cn. It is clear that Theorem 6.2 above is an extension of this integral
representation to the case of measures.

More interesting to us here is when 0 < p < 1. In this case, there is no integral
representation of F p

α in terms of general Lp functions. But Theorem 6.2 tells us that
we can still obtain an integral representation using measures.

Finally we mention that, just as in the case of Bergman and Besov spaces, the
condition that |µ|r ∈ L1(Cn, dv) is the same as |µ|(Cn) < ∞. Also, the condition that
|µ|r ∈ L∞(Cn) is the same as∫

Cn
| f (z)e−(α/2)|z|2 |p d|µ|(z) ≤ Cp

∫
Cn
| f (z)e−(α/2)|z|2 |p dv(z),

so it is reasonable to call |µ| an F p
α-Carleson measure in this case.
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