NILPOTENTS IN SEMIGROUPS OF PARTIAL ORDERPRESERVING TRANSFORMATIONS

by G. U. GARBA
(Received 6th November 1991; revised 17th September 1993)

Abstract

In this paper we extend the results of Garba [1] on $I O_{n}$, the semigroup of all partial one-one order-preserving maps on $X_{n}=\{1, \ldots, n\}$, to $P O_{n}$, the semigroup of all partial order-preserving maps on X_{n}, A description of the subsemigroup of $P O_{n}$ generated by the set N of all its nilpotent elements is given. The set $\left\{\alpha \in P O_{n}: \lim a\right\} \leqq r$ and $\left.\left|X_{n} \backslash \operatorname{dom} \alpha\right| \geqq r\right\}$ is shown to be contained in $\langle N\rangle$ if and only if $r \leqq \frac{1}{2} n$. The depth of $\langle N\rangle$, which is the unique k for which $\langle N\rangle=N \cup N^{2} \cup \cdots \cup N^{k}$ and $\langle N\rangle \neq N \cup N^{2} \cup \cdots \cup N^{k-1}$, is shown to be equal to 3 for all $n \geqq 3$. The rank of the subsemigroup $\left\{\alpha \in P O_{r} \cdot|\operatorname{im} \alpha| \leqq n-2\right.$ and $\left.\alpha \in\langle N\rangle\right\}$ is shown to be equal to $6(n-2)$, and its nilpotent rank to be equal to $7 n-15$.

1991 Mathematics subject classification: 20M20.

1. Introduction

In 1987, Gomes and Howie [3], and Sullivan [7] independently initiated the study of nilpotent generated subsemigroups of transformation semigroups on the set $X_{n}=$ $\{1, \ldots, n\}$, by considering I_{n}, the symmetric inverse semigroup and P_{n}, the semigroup of all partial transformations on X_{n} respectively. In [1] Garba considered $I O_{n}$, the semigroup of all partial one-one order-preserving maps on X_{n}. We shall now consider the larger semigroup $P O_{n}$ of all partial order-preserving transformations on X_{n}.

Let N be the set of all nilpotent elements in $P O_{n}$, and $\langle N\rangle$ the sub-semigroup of $P O_{n}$ generated by N. In Section 2 a description of the elements in $\langle N\rangle$ is given. We show also that the set $\left\{\alpha \in P O_{n}:|\operatorname{im} \alpha| \leqq r\right.$ and $\left.\left|X_{n} \backslash \operatorname{dom} \alpha\right| \geqq r\right\}$ is contained in $\langle N\rangle$ if and only if $r \leqq \frac{1}{2} n$.

Define the depth of $\langle N\rangle$, denoted by $\Delta(\langle N\rangle)$, to be the unique k for which

$$
\langle N\rangle=N \cup N^{2} \cup \cdots \cup N^{k} \neq N \cup N^{2} \cup \cdots \cup N^{k-1} .
$$

In Section 3 we show that $\Delta(\langle N\rangle)=3$ for all $n \geqq 3$.
By the rank of a semigroup S we shall mean the cardinality of any subset A of minimal order in S such that $\langle A\rangle=S$. If S has a zero and is generated by nilpotents then the cardinality of the smallest subset A consisting of nilpotents for which $\langle A\rangle=S$ is called the nilpotent rank of S. In Section 4 we show that the rank of the subsemigroup $\left\{\alpha \in P O_{n}:|\operatorname{im} \alpha| \leqq n-2\right.$ and $\left.\alpha \in\langle N\rangle\right\}$ is equal to $6(n-2)$, and its nilpotent rank is equal to $7 n-15$.

2. The nilpotent generated subsemigroup

We will denote an element α in $P O_{n}$ by

$$
\alpha=\left(\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right)
$$

where for each $a_{i} \in A_{i}, a_{i}<a_{i+1}(i=1, \ldots, r)$ and $b_{1}<b_{2}<\cdots<b_{r}$. Let $x_{i}=\min \left\{x: x \in A_{i}\right\}$ and $y_{i}=\max \left\{x: x \in A_{i}\right\}$. For $i=1, \ldots, r$, let $S_{i}=\left\{x \in X_{n}: x_{i} \leqq x \leqq y_{i}\right\}$, and for $i=1, \ldots, r-1$, $T_{i}=\left\{x \in X_{n}: y_{i}<x<x_{i+1}\right\}$. Let $T_{0}=\left\{x \in X_{n}: x<x_{1}\right\}$ and $T_{r}=\left\{x \in X_{n}: x>y_{r}\right\}$.

Following [1], we define $j_{i}(\alpha)$, the length of the ith lower jump of α, by

$$
j_{i}(\alpha)=b_{i+1}-b_{i}-1,(i=1, \ldots, r-1), j_{0}(\alpha)=b_{i}-1 .
$$

Then let

$$
j_{*}(\alpha)=\sum_{i=0}^{r-1} j_{i}(\alpha) .
$$

An element α in $P O_{n}$ is called nilpotent if $\alpha^{k}=0$ for some $k \geqq 1$. We begin with a generalisation of Lemma 2.1 in [1].

Lemma 2.1. An element α in $P O_{n}$ is nilpotent if and only if for all $x \in \operatorname{dom} \alpha, x \alpha \neq x$.
Proof. If $\alpha=0$ (the empty map) the result is trivial. We may therefore suppose that $\operatorname{dom} \alpha \neq 0$. It is clear that if $x \alpha=x$ for some $x \in \operatorname{dom} \alpha$, then α cannot be nilpotent; for we would have

$$
x=x \alpha=x \alpha^{2}=\cdots .
$$

Conversely, suppose that $x \alpha \neq x$ for all $x \in \operatorname{dom} \alpha$. We first show that if $\operatorname{dom} \alpha^{k} \neq \emptyset$ $k \geqq 2$) then $x \alpha^{k} \neq x$ for all $x \in \operatorname{dom} \alpha^{k}$. (Note that if dom $\alpha^{k}=\emptyset$ for some k then α is nilpotent.) Let $x \in \operatorname{dom} \alpha^{k}$. Then $x \in \operatorname{dom} \alpha^{t}$ for all t such that $1 \leqq t \leqq k$. In particular $x \in \operatorname{dom} \alpha$, and thus $x \alpha \neq x$. We therefore have $x \alpha<x$ or $x \alpha>x$. By the order-preserving property we have $x \alpha^{k}<x$ or $x \alpha^{k}>x$. Thus $x \alpha^{k} \neq x$.

Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right),
$$

where $r=|\operatorname{im} \alpha|$. Now, if $b_{r} \in \operatorname{dom} \alpha$ then (since $b_{r} \alpha \neq b_{r}$) we must have $b_{r}<x_{r}$ $\left(=\min \left\{x: x \in A_{r}\right\}\right)$, and by the order-preserving property we must have $\operatorname{im} \alpha \cap A_{r}=\emptyset$. Thus $b_{r} \in \operatorname{im} \alpha^{2}$, and so im $\alpha^{2} \subset \alpha$ (properly). If $b_{r} \notin \operatorname{dom} \alpha$ then $|\operatorname{dom} \alpha \cap \operatorname{im} \alpha|<r$, and so $\left|\operatorname{im} \alpha^{2}\right|<r=|\operatorname{im} \alpha|$, which shows that im $\alpha^{2} \subset \operatorname{im} \alpha$.

If we now denote by s the cardinality of im α^{2}, then α^{2} can be written as

$$
\left(\begin{array}{llll}
A_{1}^{\prime} & A_{2}^{\prime} & \ldots & A_{s}^{\prime} \\
b_{1}^{\prime} & b_{2}^{\prime} & \ldots & b_{s}^{\prime}
\end{array}\right)
$$

Since $x \alpha^{2} \neq x$ for all $x \in \operatorname{dom} \alpha^{2}$, repeating the same argument as above with α^{2} replacing α we obtain im $\alpha^{4} \subset \operatorname{im} \alpha^{2}$. If this process is to continue we will obtain a strict descent

$$
\operatorname{im} \alpha \supset \operatorname{im} \alpha^{2} \supset \operatorname{im} \alpha^{4} \supset \cdots
$$

and since $|\operatorname{im} \alpha|$ is finite there exists m such that $\operatorname{im} \alpha^{2 m}=\emptyset$, that is such that $\alpha^{2 m}=0$.
This result will be used below without comment.
By analogy with Theorem 2.7 in [1], we have:
Theorem 2.2. An element

$$
\alpha=\left(\begin{array}{llll}
A_{1} & A_{2} & \cdots & A_{r} \\
b_{1} & b_{2} & \cdots & b_{r}
\end{array}\right)
$$

in PO_{n} is not a product of nilpotents if and only if α satisfies one or both of the following:
(i) $1 \in A_{1}, n \in A_{r}$ and (for all i) $A_{i}=S_{i}$ and $\left|T_{i}\right| \leqq 1$,
(ii) $b_{1}=1, b_{r}=n$ and all lower jumps of α are of length 1 at most.

Proof. Suppose that α satisfies neither (i) and (ii). We distinguish four cases.
Case 1. $1 \notin A_{1}, b_{1} \neq 1$. Here

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
1 & 2 & \ldots & r
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & \ldots & r \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right)
$$

a product of two nilpotents.
Case 2. $1 \in A_{1}, b_{1} \neq 1$.
(a) if $n \notin A_{r}$, then

$$
\alpha=n_{1} n_{2} n_{3},
$$

a product of three nilpotents, where

$$
\begin{gathered}
n_{1}=\left(\begin{array}{cccc}
A_{1} & \ldots & A_{r-1} & A_{r} \\
n-r+1 & \ldots & n-1 & n
\end{array}\right), \\
n_{2}=\left(\begin{array}{cccc}
n-r+1 & \ldots & n-1 & n \\
1 & \ldots & r-1 & r
\end{array}\right) \text { and } n_{3}=\left(\begin{array}{cccc}
1 & \ldots & r-1 & r \\
b_{1} & \ldots & b_{r-1} & b_{r}
\end{array}\right) .
\end{gathered}
$$

(b) $n \in A_{r}$ and $A_{i} \neq S_{i}$ for some i. Then there exists $c \in S_{i} \backslash A_{i}$ (such that $x_{i}<c<y_{i}$) and

$$
\alpha=n_{1} n_{2} n_{3},
$$

where

$$
\begin{gathered}
n_{1}=\left(\begin{array}{ccccccccc}
A_{1} & \ldots & A_{i-2} & A_{i-1} & A_{i} & A_{i+1} & A_{i+2} & \ldots & A_{r} \\
x_{2} & \ldots & x_{i-1} & x_{i} & c & y_{i} & y_{i+1} & \ldots & y_{r-1}
\end{array}\right), \\
n_{2}=\left(\begin{array}{ccccccc}
x_{2} & \ldots & x_{i} & c & y_{i} & \ldots & y_{r-1} \\
1 & \ldots & i-1 & i & i+1 & \ldots & r
\end{array}\right)
\end{gathered}
$$

and

$$
n_{3}=\left(\begin{array}{ccccccc}
1 & \ldots & i-1 & i & i+1 & \ldots & r \\
b_{1} & \ldots & b_{i-1} & b_{i} & b_{i+1} & \ldots & b_{r}
\end{array}\right)
$$

(c) $n \in A_{r}$ and $\left|T_{i}\right| \geqq 2$ for some i. Then there exists $c, d \in T_{i}$ with $c<d$, and

$$
\alpha=n_{1} n_{2} n_{3},
$$

a product of three nilpotents, where

$$
\begin{aligned}
& n_{1}=\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} & A_{i+1} & A_{i+2} & \ldots & A_{r} \\
y_{2} & \ldots & y_{i} & c & d & y_{i+1} & \ldots & y_{r-1}
\end{array}\right), \\
& n_{2}=\left(\begin{array}{cccccccc}
y_{2} & \ldots & y_{i} & c & d & y_{i+1} & \ldots & y_{r-1} \\
1 & \ldots & i-1 & i & i+1 & i+2 & \ldots & r
\end{array}\right)
\end{aligned}
$$

and

$$
n_{3}=\left(\begin{array}{ccccccc}
1 & \ldots & i-1 & i & i+1 & \ldots & r \\
b_{1} & \ldots & b_{i-1} & b_{i} & b_{i+1} & \ldots & b_{r}
\end{array}\right)
$$

Case 3. $1 \notin A_{1}, b_{1}=1$.
(a) $b_{r} \neq n$. Define $c_{i}=b_{i}+1$. Then

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
1 & 2 & \ldots & r
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & \ldots & r \\
c_{1} & c_{2} & \ldots & c_{r}
\end{array}\right)\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right)
$$

a product of three nilpotents.
(b) $b_{r}=n$. Then α must have at least one lower jump of length greater than 1 . Since $b_{1}=1$ we may suppose that the first lower jump of length greater than 1 occurs between b_{k} and b_{k+1}. Define

$$
c_{i}= \begin{cases}b_{i}+1 & \text { if } i \leqq k \\ b_{i}-1 & \text { if } i>k\end{cases}
$$

Note that $c_{k+1}=b_{k+1}-1 \geqq\left(b_{k}+3\right)-1=b_{k}+2>c_{k}$. Hence $c_{i}<c_{i+1}$ for all i, and

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{t} \\
1 & 2 & \ldots & r
\end{array}\right)\left(\begin{array}{cccc}
1 & 2 & \ldots & r \\
c_{1} & c_{2} & \ldots & c_{r}
\end{array}\right)\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right),
$$

a product of three nilpotents.
Case 4. $1 \in A_{1}, b_{1}=1$.
(a) $n \notin A_{r}, b_{r} \neq n$. Define $c_{i}=\max \left\{y_{i}, b_{i}\right\}+1$ for all i. Then

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
c_{1} & c_{2} & \ldots & c_{r}
\end{array}\right)\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right),
$$

a product of two nilpotents.
(b) $n \notin A_{r}, b_{r}=n$. Then α must have at least one lower jump of length greater than 1 . We may suppose that the first lower jump of length greater than 1 occurs between b_{k} and b_{k+1}. Define

$$
c_{i}= \begin{cases}b_{i}+1 & \text { if } 1 \leqq i \leqq k, \\ b_{i}-1 & \text { if } i>k .\end{cases}
$$

Then

$$
\alpha=\left(\begin{array}{ccc}
A_{1} & \ldots & A_{r} \\
n-r+1 & \ldots & n
\end{array}\right)\left(\begin{array}{ccc}
n-r+1 & \ldots & n \\
c_{1} & \ldots & c_{r}
\end{array}\right)\left(\begin{array}{lll}
c_{1} & \ldots & c_{r} \\
b_{1} & \ldots & b_{r}
\end{array}\right)
$$

a product of three nilpotents.
(c) $n \in A_{r}, b_{r} \neq n$.
(i) $A_{i} \neq S_{i}$ for some i. Then there exists c in $S_{i} \backslash A_{i}$ (such that $x_{i}<c<y_{i}$), and

$$
\alpha=n_{1} n_{2} n_{3},
$$

a product of three nilpotents, where

$$
\begin{gathered}
n_{1}=\left(\begin{array}{ccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} & A_{i+1} & \ldots & A_{r} \\
x_{2} & \ldots & x_{i} & c & y_{i} & \ldots & y_{r-1}
\end{array}\right), \\
n_{2}=\left(\begin{array}{ccccccc}
x_{2} & \ldots & x_{1} & c & y_{i} & \ldots & y_{r-1} \\
c_{1} & \ldots & c_{i-1} & c_{i} & c_{i+1} & \ldots & c_{r}
\end{array}\right), n_{3}=\left(\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right)
\end{gathered}
$$

and

$$
c_{j}= \begin{cases}\max \left\{x_{j+1}, b_{j}\right\}+1 & \text { if } 1 \leqq j \leqq i-1 \\ \max \left\{c, b_{j}\right\}+1 & \text { if } j=i, \\ \max \left\{y_{j-1}, b_{j}\right\}+1 & \text { if } j>i .\end{cases}
$$

(ii) $\left|T_{i}\right| \geqq 2$ for some i. Then there exists $c, d \in T_{i}$ with $c<d$ and

$$
\alpha=n_{1} n_{2} n_{3},
$$

a product of three nilpotents, where

$$
\begin{gathered}
n_{1}=\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} & A_{i+1} & A_{i+2} & \ldots & A_{r} \\
x_{2} & \ldots & x_{i} & c & d & y_{i+1} & \ldots & y_{r-1}
\end{array}\right), \\
n_{2}=\left(\begin{array}{cccccccc}
x_{2} & \ldots & x_{i} & c & d & y_{i+1} & \ldots & y_{r-1} \\
c_{1} & \ldots & c_{i-1} & c_{i} & c_{i+1} & c_{i+2} & \ldots & c_{r}
\end{array}\right), \\
n_{3}=\left(\begin{array}{cccccccc}
c_{1} & \ldots & c_{i-1} & c_{i} & c_{i+1} & \ldots & c_{r} \\
b_{1} & \ldots & b_{i-1} & b_{i} & b_{i+1} & \ldots & b_{r}
\end{array}\right)
\end{gathered}
$$

and

$$
c^{j}= \begin{cases}\max \left\{x_{j+1}, b_{j}\right\}+1 & \text { if } 1 \leqq j \leqq i-1 \\ \max \left\{c, b_{j}\right\}+1 & \text { if } j=i, \\ \max \left\{d, b_{j}\right\}+1 & \text { if } j=i+1 \\ \max \left\{y_{j-1}, b_{j}\right\}+1 & \text { if } j>i+1\end{cases}
$$

(d) $n \in A_{r}, b_{r}=n$. Then α has at least one lower jump of length greater than 1 , and either $A_{i} \neq S_{i}$ for some i or $\left|T_{i}\right| \geqq 2$ for some i. We may assume that the first lower jump of length greater than 1 occurs between b_{k} and b_{k+1}. Define

$$
c_{j}= \begin{cases}b_{j}+1 & \text { if } 1 \leqq j \leqq k \\ b_{j}-1 & \text { if } j>k\end{cases}
$$

Then

$$
\alpha=n_{1} n_{2} n_{3} n_{4}
$$

where

$$
\begin{aligned}
n_{1} & =\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} & A_{i+1} & A_{i+2} & \ldots & A_{r} \\
x_{2} & \ldots & x_{i} & c & d & y_{i+1} & \ldots & y_{r-1}
\end{array}\right), \\
n_{2} & =\left(\begin{array}{cccccccc}
x_{2} & \ldots & x_{i} & c & d & y_{i+1} & \ldots & y_{r-1} \\
1 & \ldots & i-1 & i & i+1 & i+2 & \ldots & r
\end{array}\right), \\
n_{3} & =\left(\begin{array}{cccc}
1 & 2 & \ldots & r \\
c_{1} & c_{2} & \ldots & c_{r}
\end{array}\right), \quad n_{4}=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right),
\end{aligned}
$$

$c \in S_{i} \backslash A_{i}$ and $d=y_{i}$ if $A_{i} \neq S_{i}$ for some i, or $c, d \in T_{i}$ if $\left|T_{i}\right| \geqq 2$ for some i (with $c<d$).
Conversely, suppose that α satisfies condition (i). Without loss of generality we may assume that α is expressible as a product

$$
\alpha=n_{1} n_{2} \ldots n_{k}
$$

of k nilpotents with

$$
n_{1}=\left(\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{r} \\
c_{1} & c_{2} & \ldots & c_{r}
\end{array}\right) .
$$

We must first show by induction that $c_{i}>y_{i}$ for all i. The result is clearly true for $i=1$. So suppose that it is true for all $i \leqq k$ and that $c_{k+1}<y_{k+1}$. Then since $A_{k+1}=S_{k+1}$ we must have $c_{k+1}<x_{k+1}$. Thus $y_{k}<c_{k}<c_{k+1}<x_{k+1}$. But this will mean $\left|T_{k}\right| \geqq 2$, which is a contradiction. So $c_{i}>y_{i}$ for all i. In particular we have $c_{r}>y_{r}=n$, and so c_{r} does not exist. Hence α is not a product of nilpotents.

Suppose that α satisfies (ii) and α is expressible as a product $\alpha=n_{1} n_{2} \ldots n_{k}$ of k nilpotents. We may then assume that

$$
n_{k}=\left(\begin{array}{llll}
c_{1} & c_{2} & \ldots & c_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right),
$$

where $\left\{c_{1}, \ldots, c_{r}\right\}=\operatorname{im} n_{k-1}$. We will begin by showing inductively that $c_{i} \geqq b_{i}+1$ for all i. The result is clearly true for $i=1$. So suppose that it is true for all $i \leqq k$ and that $c_{k+1} \leqq b_{k+1}-1$. Then since all the lower jumps of α are of length 1 at most, we have $b_{k+1} \leqq b_{k}+2$. Thus $c_{k+1} \leqq b_{k+1}-1 \leqq b_{k}+1 \leqq c_{k}$. This is impossible. So $c_{i} \geqq b_{i}+1$ for all i. In particular we have $c_{r} \geqq b_{r}+1=n+1$, and so c_{r} does not exist. Hence α is not a product of nilpotents.

The next result is analogous to Theorem 2.8 in [1].
Theorem 2.3 The set

$$
A=\left\{\alpha \in P O_{n}:|\operatorname{im} \alpha| \leqq p \text { and }\left|X_{n} \backslash \operatorname{dom} \alpha\right| \geqq p\right\}
$$

is contained in $\langle N\rangle$ if and only if $p \leqq \frac{1}{2} n$.
Proof. Let

$$
\alpha=\left(\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right) \in A,
$$

and suppose that $p \leqq \frac{1}{2} n$. Then by Theorem 2.2, to show that $\alpha \in\langle N\rangle$ we are required to prove the following:
(i) If $1 \in A_{1}, n \in A_{r}$, then for some i it is the case that $A_{i} \neq S_{i}$ or $\left|T_{i}\right| \geqq 2$.
(ii) If $b_{1}=1, b_{r}=n$, then α has a lower jump of length greater than 1 .

So suppose by way of contradiction that $1 \in A_{1}, n \in A_{r}$ and that there exists no i for which $A_{i} \neq S_{i}$ or $\left|T_{i}\right| \geqq 2$. Then $X_{n} \backslash \operatorname{dom} \alpha=\bigcup_{i=1}^{r-1} T_{i}$, and

$$
r \leqq\left|X_{n} \backslash \operatorname{dom} \alpha\right|=\sum_{i=1}^{r-1}\left|T_{i}\right| \leqq r-1 \leqq p-1 .
$$

This is a contradiction; thus α satisfies (i).
Now, suppose that $b_{1}=1, b_{r}=n$ and that all lower jumps of α are of length at most 1 . Then $j_{*}(\alpha) \leqq r-1 \leqq p-1$. Also $n=b_{r}=r+j_{*}(\alpha)$ and so

$$
\left.j_{*}(\alpha)=n-r \geqq n-p \geqq p \text { (since } p \leqq \frac{1}{2} n\right) \text {. }
$$

This is also a contradiction; thus α satisfies (ii).
To complete the proof of the theorem, we now show that if $r>n / 2$, then there exists $\alpha \in A$ such that $\alpha \notin\langle N\rangle$.

Consider an element α for which $|\operatorname{im} \alpha|=r \geqq n / 2+1$ and $X_{n} \backslash \operatorname{im} \alpha=\{2,4, \ldots, 2 s\}$, where $s=n-r$. Then we have

$$
2 s=2(n-r) \leqq 2 n-(n+2)=n-2,
$$

from which we can conclude that $n \in \operatorname{im} \alpha$, and thus $b_{r}=n$. It is clear that $b_{1}=1$ and that all lower jumps of α are of length 1 . Hence α satisfies condition (ii) in Theorem 3.2. So α is not a product of nilpotents.

3. The depth of the nilpotent-generated subsemigroup

By the proof of Theorem 2.2 we can express α in $\langle N\rangle$ as a product of at most four nilpotents, with elements having $1 \in A_{1}, n \in A_{n}, b_{1}=1, b_{r}=n$ expressible as a product of exactly four nilpotents. As in [1] we now show that even such elements can be expressed as a product of two or three nilpotents.

Proposition 3.1. Let α in $\langle N\rangle$ be such that $1 \in A_{1}, n \in A_{m} b_{1}=1$ and $b_{r}=n$. Then α is expressible as a product of at most three nilpotents.

Proof. By Theorem 2.2 there exists i for which $A_{i} \neq S_{i}$ or $\left|T_{i}\right| \geqq 2$, and α has a lower jump of length greater than 1 . We will assume that the first lower jump of length greater than 1 occurs between b_{k} and b_{k+1}.

Let $c \in S_{i} \backslash A_{i}$ or $c=\min \left\{x: x \in T_{i}\right\}$, and $d \in T_{i}$ with $d \neq c$. We first show inductively that $c-i+j>y_{i}$ if $1 \leqq j \leqq i-1$ and $c-i+j<x_{j}$ if $j>i$. The results are true respectively for $j=i-1$ and $j=i+1$, since $y_{i-1}<x_{i} \leqq c-1$ and $c+1 \leqq\left(y_{i}\right.$ or $\left.d\right)<x_{i+1}$. Suppose that they are true (respectively) for $j=s \leqq i-1$ and $j=t>i$; that is, $y_{s}<c-i+s$ and $x_{t}>c-i+t$.

Then $y_{s-1} \leqq y_{s}-1<c-i+s-1$ and $c-i+t+1<x_{t}+1 \leqq x_{t+1}$, as required. Next we show that $b_{k}-k+j+1>b_{j}$ if $1 \leqq j \leqq k$ and $b_{k}-k+j+1<b_{j}$ if $j>k$. For $j=k$ and $k+1$ we have $b_{k}+1>b_{k}$ and $b_{k}+2<b_{k+1}$. So suppose that the results are true for $j=s \leqq k$ and $j=t \geqq k+1$, that is $b_{k}-k+s+1>b_{s}$ and $b_{k}-k+t+1<b_{t}$. Then $b_{k}-k+s>b_{s}-1 \geqq b_{s-1}$ and $b_{k}-k+t+2<b_{t}+1 \leqq b_{t+1}$.

We now distinguish two cases.
Case 1. $\quad c-i+k=b_{k}+1$. Then $c-i+j=b_{k}-k+j+1$ for all $j=1, \ldots, r$ and

$$
\alpha=n_{1} n_{2},
$$

a product of two nilpotents, where

$$
n_{1}=\left(\begin{array}{cccccc}
A_{1} & \ldots & A_{k} & A_{k+1} & \ldots & A_{r} \\
b_{k}-k+2 & \ldots & b_{k}+1 & b_{k}+2 & \ldots & b_{k}-k+r+1
\end{array}\right)
$$

and

$$
n_{2}=\left(\begin{array}{cccccc}
b_{k}-k+2 & \ldots & b_{k}+1 & b_{k}+2 & \ldots & b_{k}-k+r+1 \\
b_{1} & \ldots & b_{k} & b_{k+1} & \ldots & b_{r}
\end{array}\right) .
$$

Case 2. $\quad c-i+k \neq b_{k}+1$. Then $c-i+j \neq b_{k}-k+j+1$ for all $j=1, \ldots, r$ and

$$
\alpha=n_{1} n_{2} n_{3},
$$

a product of three nilpotents, where

$$
\begin{gathered}
n_{1}=\left(\begin{array}{cccccc}
A_{1} & \ldots & A_{k} & A_{k+1} & \ldots & A_{r} \\
c-i+1 & \ldots & c-i+k & c-i+k+1 & \ldots & c-i+r
\end{array}\right), \\
n_{2}=\left(\begin{array}{cccccc}
c-i+1 & \ldots & c-i+k & c-i+k+1 & \ldots & c-i+r \\
b_{k}-k+2 & \ldots & b_{k}+1 & b_{k}+2 & \ldots & b_{k}-k+r+1
\end{array}\right)
\end{gathered}
$$

and

$$
n_{3}=\left(\begin{array}{cccccc}
b_{k}-k+2 & \ldots & b_{k}+1 & b_{k}+2 & \ldots & b_{k}-k+r+1 \\
b_{1} & \ldots & b_{k} & b_{k+1} & \ldots & b_{r}
\end{array}\right)
$$

The following Theorem now follows from Proposition 3.1 above and Theorem 3.3 in [1].

Theorem 3.2. Let N be the set of all nilpotents in $P O_{n},\langle N\rangle$ the subsemigroup of $P O_{n}$ generated by the nilpotent elements, and $\Delta(\langle N\rangle)$ the unique k for which

$$
\langle N\rangle=N \cup N^{2} \cup \cdots \cup N^{k},\langle N\rangle \neq N \cup N^{2} \cup \cdots \cup N^{k-1} .
$$

Then $\Delta(\langle N\rangle)=3$ for all $n \geqq 3$.

4. The nilpotent rank

An element α in $P O_{n}$, and indeed in the larger semigroup P_{n} of all partial transformations of X_{n}, is said to have projection characteristic (k, r) or to belong to the set $[k, r]$ if $|\operatorname{dom} \alpha|=k$ and $|\operatorname{im} \alpha|=r$. We use the standard notation

$$
J_{r}=\{\alpha:|\operatorname{im} \alpha|=r\}=\bigcup_{r \leqq k \leqq n}[k, r] .
$$

Lemma 4.1. Every element $\alpha \in\langle N\rangle \cap J_{r}$, where $r \leqq n-3$, is expressible as a product of elements in $\langle N\rangle \cap J_{r+1}$.

Proof. Let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right)
$$

be an element in $\langle N\rangle$ such that $|\operatorname{im} \alpha|=r \leqq n-3$. From Proposition 4.1 in [1], if $\alpha \in\langle N\rangle \cap[r, r]$ then α can be expressed as a product of two elements in $\langle N\rangle \cap[r+1, r+1]$. We will therefore assume that $\alpha \in\langle N\rangle \cap[k, r], r+1 \leqq k \leqq n-1$.

By Theorem 2.2, since $\alpha \in\langle N\rangle$ then at least one of the following holds:
(i) $1 \notin A_{1}$ (that is, $\left|T_{0}\right| \geqq 1$);
(ii) $n \notin A_{r}$ (that is, $\left|T_{r}\right| \geqq 1$);
(iii) $A_{i} \neq S_{i}$ for some i such that $1 \leqq i \leqq r-1$;
(iv) $\left|T_{2}\right| \geqq 2$ for some i such that $1 \leqq i \leqq r-1$.

Suppose that (i) or (ii) or (iv) holds. Then

$$
\alpha=\gamma_{1} \gamma_{2} \gamma_{3}
$$

where

$$
\begin{aligned}
& \gamma_{1}=\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{j-1} & x_{j} & A_{j} \backslash\left\{x_{j}\right\} & A_{j+1} & \ldots & A_{r} \\
1 & \ldots & j-1 & j & j+1 & j+2 & \ldots & r+1
\end{array}\right), \\
& \gamma_{2}=\left(\begin{array}{cccccccc}
1 & \ldots & j-1 & \{j, j+1\} & j+2 & \ldots & r+1 & r+2 \\
2 & \ldots & j & j+2 & j+3 & \ldots & r+2 & r+3
\end{array}\right),
\end{aligned}
$$

$$
\gamma_{3}=\left(\begin{array}{ccccccc}
2 & \ldots & j & j+2 & j+3 & \ldots & r+2 \\
b_{1} & \ldots & b_{j-1} & b_{j} & b_{j+1} & \ldots & b_{r}
\end{array}\right)
$$

and it is assumed that $\left|A_{j}\right| \geqq 2, x_{j}=\min \left\{x: x \in A_{j}\right\}$. Observe that $\gamma_{3} \in\langle N\rangle$ by Theorem 2.7 in [1], and that γ_{2} is nilpotent by Lemma 2.1. Further,since (i) or (ii) or (iv) holds and $r+1 \neq n$, it follows from Theorem 2.2 that $\gamma_{1} \in\langle N\rangle$. Finally, since $\gamma_{3} \in\langle N\rangle \cap[r, r], \gamma_{3}$ can be expressed as a product of two elements in $\langle N\rangle \cap[r+1, r+1]$, by [1, Proposition 4.1]. Thus α is expressible as a product of (four) elements in $\langle N\rangle \cap J_{r+1}$.

Now suppose that (iii) holds: that is, $A_{i} \neq S_{i}$ for some i. Consider first the case where $k<n-1$. Then we may assume that there exists $x \in X_{n} \backslash \operatorname{dom} \alpha$ such that $y_{j}<x<y_{j+1}$ for some j, where $y_{t}=\max \left\{x: x \in A_{t}\right\}$. Here we have

$$
\alpha=\beta_{1} \beta_{2}
$$

where

$$
\begin{gathered}
\beta_{1}=\left(\begin{array}{ccccccc}
A_{1} & \ldots & A_{j} & x & A_{j+1} & \ldots & A_{r} \\
1 & \ldots & j & j+1 & j+3 & \ldots & r+2
\end{array}\right), \\
\beta_{2}=\left(\begin{array}{ccccccc}
1 & \ldots & j & j+3 & \ldots & r+2 \\
b_{1} & \ldots & b_{j} & b_{j+1} & \ldots & b_{r}
\end{array}\right) .
\end{gathered}
$$

Observe here too, that β_{2} belongs to $\langle N\rangle$ and can be expressed as a product of two elements of $\langle N\rangle \cap[r+1, r+1]$ by [1, Proposition 4.1]. Also, since $A_{i} \neq S_{i}$ for some i and $r+2 \neq n$, we have $\beta_{1} \in\langle N\rangle$ by Theorem 2.2.

Now consider the case where $k=n-1$. Then it is clear that $\left|A_{i}\right| \geqq 2$. If $\left|A_{i}\right|=2$ then there exists another block, say A_{k}, such that $\left|A_{k}\right| \geqq 2$ (since $r \leqq n-3$ by hypothesis), and

$$
\alpha=\delta_{1} \delta_{2} \delta_{3},
$$

where

$$
\begin{aligned}
\delta_{1} & =\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{k-1} & x_{k} & A_{k} \backslash\left\{x_{k}\right\} & A_{k+1} & \ldots & A_{r} \\
1 & \ldots & k-1 & k & k+1 & k+2 & \ldots & r+1
\end{array}\right), \\
\delta_{2} & =\left(\begin{array}{ccccccc}
1 & \ldots & k-1 & \{k, k+1\} & k+2 & \ldots & r+2 \\
2 & \ldots & k & k+2 & k+3 & \ldots & r+3
\end{array}\right)
\end{aligned}
$$

and

$$
\delta_{3}=\left(\begin{array}{ccccccc}
2 & \ldots & k & k+2 & k+3 & \ldots & r+2 \\
b_{1} & \ldots & b_{k-1} & b_{k} & b_{k+1} & \ldots & b_{r}
\end{array}\right)
$$

Note that $\delta_{1} \in\langle N\rangle$ by Theorem 2.2. Also $\delta_{2} \in\langle N\rangle$ by Lemma 2.1, and δ_{3} is expressible as the product of two elements in $\langle N\rangle \cap[r+1, r+1]$, by [1, Proposition 4.1]. If $\left|A_{i}\right|>2$
then there exists $a_{i} \in A_{i}$ and $s_{i} \in S_{i} \backslash A_{i}$ such that either $x_{i}<a_{i}<s_{i}<y_{i}$ or $x_{i}<s_{i}<a_{i}<y_{i}$. If $x_{i}<a_{i}<s_{i}<y_{i}$ then

$$
\alpha=\lambda_{1} \lambda_{2} \lambda_{3},
$$

where

$$
\begin{gathered}
\lambda_{1}=\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{i-1} & x_{i} & A_{i} \backslash\left\{x_{i}\right\} & A_{i+1} & \ldots & A_{r} \\
1 & \ldots & i-1 & i & i+1 & i+2 & \ldots & r+1
\end{array}\right), \\
\lambda_{2}=\left(\begin{array}{ccccccc}
1 & \ldots & i-1 & \{i, i+1\} & i+2 & \ldots & r+2 \\
2 & \ldots & i & i+2 & i+3 & \ldots & r+3
\end{array}\right)
\end{gathered}
$$

and

$$
\lambda_{3}=\left(\begin{array}{ccccccc}
2 & \ldots & i & i+2 & i+3 & \ldots & r+2 \\
b_{1} & \ldots & b_{i-1} & b_{i} & b_{i+1} & \ldots & b_{r}
\end{array}\right)
$$

If $x_{i}<s_{i}<a_{i}<y_{i}$ then

$$
\alpha=\lambda_{1} \lambda_{2} \lambda_{3},
$$

where

$$
\lambda_{1}=\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} \backslash\left\{y_{i}\right\} & y_{i} & A_{i+1} & \ldots & A_{r} \\
1 & \ldots & i-1 & i & i+1 & i+2 & \ldots & r+1
\end{array}\right),
$$

and where λ_{2} and λ_{3} are defined as before. Note that by the same argument as in previous cases, $\lambda_{1}, \lambda_{2}, \lambda_{3} \in\langle N\rangle$ and λ_{3} can be expressed as a product of two elements of $\langle N\rangle \cap[r+1, r+1]$.

Let N_{1} and N_{2} be the set of all nilpotent elements in $P O_{n}$ in J_{n-1} and in J_{n-2} respectively. Then, since all the elements in N_{1} are one-one maps, we have by Proposition 4.2 in [1] that N_{1} does not generate $\langle N\rangle$. However, by Lemma 4.1 above we do have

$$
\left\langle N_{2}\right\rangle=\langle N\rangle \backslash J_{n-1} .
$$

Our aim here is to determine the rank and the nilpotent rank of $\left\langle N_{2}\right\rangle$.
First, notice that from Theorem 2.2 it is easy to verify that $\langle N\rangle$ is regular. Hence by [6, Proposition II.4.5] two elements of $\langle N\rangle$ are \mathscr{L}-equivalent in $\langle N\rangle$ if and only if they have the same image, and are \mathscr{R}-equivalent in $\langle N\rangle$ if and only if they have the same kernel. This applies also to $\left\langle N_{2}\right\rangle=\langle N\rangle\left\langle J_{n-1}\right.$, since every element of $\langle N\rangle \backslash J_{n-1}$ has an inverse in $\langle N\rangle \backslash J_{n-1}$, and so $\left\langle N_{2}\right\rangle$ is again regular.

Now recall from [1, Section 4] that the number of \mathscr{R}-classes and that of \mathscr{L}-classes containing nilpotents, or elements that are expressible as products of nilpotents, in a \mathscr{J} class, J_{r} of $I O_{n}$, where $n / 2<r \leqq n-2$ (notice in passing that $n / 2<n-2$ if and only if
$n \geqq 5$) are both equal to $\binom{n}{r}-\left(\begin{array}{c}\binom{-1}{n-r} \text {. It therefore follows that the number of } \mathscr{R} \text {-classes in }\end{array}\right.$ $\left\langle N_{2}\right\rangle \cap[n-2, n-2]$ is equal to the number of \mathscr{L}-classes in $\left\langle N_{2}\right\rangle \cap J_{n-2}$ and is $\left(n_{n-2}^{n}\right)-\left({ }^{n-3}{ }^{-3}\right)=3(n-2)$.

Following [5], we shall refer to an equivalence ρ on the set X_{n} as convex if its classes are convex subsets A of X_{n}, where a convex subset of X_{n} means a subset A for which

$$
x, y \in A \text { and } x \leqq z \leqq y \Rightarrow z \in A
$$

By Theorem 2.2 any convex equivalence having $n-2$ classes on the subset $\{1, \ldots, n-1\}$ or $\{2, \ldots, n\}$ determines an \mathscr{R}-classes in $\left\langle N_{2}\right\rangle \cap[n-1, n-2]$. Thus the number of \mathscr{R}-classes in $\left\langle N_{2}\right\rangle \cap[n-1, n-2]$ determined by these convex equivalences is $2(n-2)$. On the other hand any convex equivalence having $n-2$ classes on a subset containing 1 and n represents an \mathscr{R}-class in $\left\langle N_{2}\right\rangle \cap[n-1, n-2]$ if and only if i and $i+2$ belong to the same equivalence class for some i in $\{1, \ldots, n-2\}$. This follows from Theorem 2.2, because $\left|T_{i}\right| \geqq 2$ is not possible for an element of $[n-1, n-2]$ and so the only possibility for such an α to be in $\langle N\rangle$ is for some A_{i} to be distinct from S_{i}. Thus the number of such convex equivalences is $n-2$. Hence the number of \mathscr{R}-classes in $\left\langle N_{2}\right\rangle \cap$ [$n-1, n-2$] is $3(n-2)$. We therefore have $6(n-2)$ as the number of \mathscr{R}-classes in $\left\langle N_{2}\right\rangle \cap J_{n-2}$.

We now show that every element $\alpha \in\left\langle N_{2}\right\rangle \cap[n-1, n-2]$ is expressible in terms of a fixed element in its own \mathscr{R}-class and an element in $\left\langle N_{2}\right\rangle \cap[n-2, n-2]$. More generally we shall show:

Lemma 4.2. Every element $\alpha \in\left\langle N_{2}\right\rangle \cap[k, r], r<k \leqq n-1$ is expressible as a product of a nilpotent in $\left\langle N_{2}\right\rangle \cap[k, r]$ and an element in $\left\langle N_{2}\right\rangle \cap[r, r]$.

Proof. Let $\alpha \in\left\langle N_{2}\right\rangle \cap[k, r]$ and suppose that

$$
\alpha=\left(\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{r} \\
b_{1} & b_{2} & \ldots & b_{r}
\end{array}\right) .
$$

We shall distinguish four cases.
Case 1. $1 \notin A_{1}$. Then

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & A_{2} & \ldots & A_{r} \\
1 & 2 & \ldots & r
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 \ldots & r \\
b_{1} & b_{2} \ldots & b_{r}
\end{array}\right) .
$$

Case 2. $n \notin A_{r}$. Then
where

$$
\beta=\left(\begin{array}{ccccc}
A_{1} & A_{2} & \ldots & A_{r-1} & A_{r} \\
n-r+1 & n-r+2 & \ldots & n-1 & n
\end{array}\right),
$$

$$
\gamma=\left(\begin{array}{ccccc}
n-r+1 & n-r+2 & \ldots & n-1 & n \\
b_{1} & b_{2} & \ldots & b_{r-1} & b_{r}
\end{array}\right) .
$$

That $\gamma \in\langle N\rangle$ follows from [1, Theorem 2.6].
Case 3. $1 \in A_{1}, n \in A_{r}$ and $A_{i} \neq S_{i}$ for some i. Let c be a fixed element in $S_{i} \backslash A_{i}$. Then

$$
\alpha=\lambda \mu
$$

where

$$
\begin{aligned}
& \lambda=\left(\begin{array}{ccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} & A_{i+1} & \ldots & A_{r} \\
x_{2} & \ldots & x_{i} & c & y_{i} & \ldots & y_{r-1}
\end{array}\right), \\
& \mu=\left(\begin{array}{ccccccc}
x_{2} & \ldots & x_{i} & c & y_{i} & \ldots & y_{r-1} \\
b_{1} & \ldots & b_{i-1} & b_{i} & b_{i+1} & \ldots & b_{r}
\end{array}\right) .
\end{aligned}
$$

The latter element is in $\langle N\rangle$ by [1, Theorem 2.6].
Case 4. $1 \in A_{1}, n \in A_{r}, A_{i}=S_{i}$ for all i and $\left|T_{i}\right| \geqq 2$ for some i. Let c, d be two fixed elements in T_{i} with $c<d$. Then

$$
\alpha=\zeta \xi
$$

where

$$
\begin{aligned}
\zeta & =\left(\begin{array}{cccccccc}
A_{1} & \ldots & A_{i-1} & A_{i} & A_{i+1} & A_{i+2} & \ldots & A_{t} \\
y_{2} & \ldots & y_{i} & c & d & y_{i+1} & \ldots & y_{r-1}
\end{array}\right), \\
\xi & =\left(\begin{array}{cccccccc}
y_{2} & \ldots & y_{i} & c & d & y_{i+1} & \ldots & y_{r-1} \\
b_{1} & \ldots & b_{i-1} & b_{i} & b_{i+1} & b_{i+2} & \ldots & b_{r}
\end{array}\right) .
\end{aligned}
$$

Theorem 4.3. Let $n \geqq 5$. Then $\operatorname{rank}\left(\left\langle N_{2}\right\rangle\right)=6(n-2)$.

Proof. Since $\left\langle N_{2}\right\rangle \cap J_{n-2}$ has $6(n-2) \mathscr{R}$-classes we have

$$
\text { rank }\left(\left\langle N_{2}\right\rangle\right) \geqq 6(n-2)
$$

By Proposition 2.4 in [2], $[n-2, n-2] \cap\left\langle N_{2}\right\rangle$ is generated by a set of $3(n-2)$ elements. If we now choose a set of $3(n-2)$ elements to cover the \mathscr{R}-classes in [n-1,n-2] as in Lemma 4.2, we obtain a generating set of $\left\langle N_{2}\right\rangle$ consisting of $6(n-2)$ elements. The result follows.

Lemma 4.4. Every \mathscr{L}-class in J_{n-2} whose elements have image

$$
\{1,2, \ldots, i-1, i+2, \ldots, n\}
$$

for $i=2, \ldots, n-2$ contains a single nilpotent. Thus there are at least $n-3 \mathscr{L}$-classes in J_{n-2} containing only one nilpotent.

Proof. Let α be an element whose \mathscr{L}-class is represented by $\{1, \ldots, i-1, i+2, \ldots, n\}$. Then the only domain for which α is nilpotent is that represented by the set $\{2, \ldots, n-1\}$.

Theorem 4.5. nilrank $\left(\left\langle N_{2}\right\rangle\right)=7 n-15$.
Proof. Since any generating set of $\left\langle N_{2}\right\rangle$ must cover the \mathscr{L}-classes in $\left\langle N_{2}\right\rangle \cap J_{n-2}$, the $n-3$ nilpotents whose image set is $\{1, \ldots, i-1, i+2, \ldots, n\}$ for $i=2, \ldots, n-2$ must be contained in a generating set consisting of only nilpotent elements (see Lemma 4.4). By the same Lemma 4.4. (proof) all the $n-3$ nilpotents belong to the same \mathscr{R}-class, determined by the set $\{2, \ldots, n-1\}$. For the generating set to cover all the \mathscr{R}-classes we must now choose $6(n-2)-1$ nilpotents from the remaining \mathscr{R}-classes, making a total of $7 n-16$ nilpotents. However the $7 n-16$ nilpotents cannot generate $\left\langle N_{2}\right\rangle$. For if α is an element in the same \mathscr{R}-class as the $n-3$ nilpotents (that is the \mathscr{R}-class represented by the set $\{2, \ldots, n-1\}$) and if we suppose that

$$
\alpha=n_{1} n_{2} \cdots n_{k}
$$

is the decomposition of α in terms of nilpotents from the chosen $7 n-16$ nilpotents, then we must have

$$
\begin{aligned}
& n_{1}=\left(\begin{array}{ccccccc}
2 & 3 & \ldots & i & i+1 & \ldots & n-1 \\
1 & 2 & \ldots & i-1 & i+2 & \ldots & n
\end{array}\right), \\
& n_{2}=\left(\begin{array}{ccccccc}
1 & 2 & \ldots & i-1 & i+2 & \ldots & n \\
2 & 3 & \ldots & i & i+1 & \ldots & n-1
\end{array}\right)
\end{aligned}
$$

and

$$
n_{3}=\left(\begin{array}{ccccccc}
2 & 3 & \ldots & j & j+1 & \ldots & n-1 \\
1 & 2 & \ldots & j-1 & j+2 & \ldots & n
\end{array}\right)
$$

for some $i, j=2, \ldots, n-2$. But then $n_{1} n_{2}$ is a left identity for n_{3}, and so

$$
\alpha=n_{3} n_{4} \cdots n_{k} .
$$

By the same reasoning we must also have

$$
n_{4}=\left(\begin{array}{ccccccc}
1 & 2 & \ldots & j-1 & j+2 & \ldots & n \\
2 & 3 & \ldots & j & j+1 & \ldots & n-1
\end{array}\right)
$$

and

$$
n_{5}=\left(\begin{array}{ccccccc}
2 & 3 & \ldots & l & l+1 & \ldots & n-1 \\
1 & 2 & \ldots & l-1 & l+2 & \ldots & n
\end{array}\right)
$$

But again $n_{3} n_{4}$ is then a left identity for n_{5}, and

$$
\alpha=n_{5} \cdots n_{k}
$$

Continuing this way we obtain

$$
\alpha=\left\{\begin{array}{ccc}
& n_{k} & \text { if } k \text { is odd } \\
& & \\
\left(\begin{array}{llll}
2 & 3 & \ldots & n-1 \\
3 & 3 & \ldots & n-1
\end{array}\right) & \text { if } k \text { is even. }
\end{array}\right.
$$

Thus if α is not any of the $n-3$ nilpotents in its \mathscr{R}-class, and is not the left identity in the \mathscr{R}-class, then α cannot be expressed as a product of nilpotents from the chosen $7 n-16$ nilpotents. We therefore have

$$
\operatorname{nilrank}\left(\left\langle N_{2}\right\rangle\right) \geqq 7 n-15
$$

We now show that we can choose $7 n-15$ nilpotents in N_{2} that can generate $\left\langle N_{2}\right\rangle$. Denote by $A_{i, j}$ the subset $X_{n} \backslash\{i, j\}$ of cardinality $n-2$, and by $\alpha_{s, i}^{i, j}$ the element whose domain is $A_{i, j}$ and image $A_{s, r}$. Then arrange the $3(n-2)$ subsets of X_{n} of cardinality $n-2$, representing the \mathscr{L} - and the \mathscr{R}-classes in $\left\langle N_{2}\right\rangle \cap[n-2, n-2]$ as follows:

$$
A_{2, n}, A_{1,3}, A_{3, n}, \ldots, A_{1, i}, A_{i, n}, \ldots, A_{1, n-1}, A_{n-1, n}, A_{1, n}, A_{2,3}, A_{3,4}, \ldots, A_{n-2, n-1}, A_{1,2}
$$

By [2, Proposition 2.4], $\left\langle N_{2}\right\rangle \cap[n-2, n-2]$ is generated by the set

$$
\begin{gathered}
B=\left\{\alpha_{1,3}^{2, n}, \alpha_{3 ; n}^{1,3}, \alpha_{1,4}^{3, n}, \ldots, \alpha_{i, n}^{1, i}, \alpha_{1, i+1}^{i, n}, \ldots, \alpha_{\eta-1, \eta}^{1, n-1}, \alpha_{1, n}^{n-1, n},\right. \\
\left.\alpha_{2,3}^{1, n}, \alpha_{3,4}^{2,3}, \ldots, \alpha_{n-2, n-1}^{n-3, n-2}, \alpha_{1,2}^{n-2, n-1}, \alpha_{2, n}^{1,2}\right\} .
\end{gathered}
$$

It is easy to see that $\alpha_{i, n}^{1, i}, \alpha_{i, i+1}^{i, n}$ (for $i=3, \ldots, n-1$), $\alpha_{1,3}^{2, n_{3}}, \alpha_{2,3}^{1, n}$ and $\alpha_{2 ; n}^{1,2}$ are all nilpotents. It is also not difficult to see that

$$
\begin{equation*}
\alpha_{3,4}^{2,3}, \ldots, \alpha_{n-2 ; n-1}^{n-3, n-2}, \alpha_{1,2}^{n-2, n-1} \tag{4.6}
\end{equation*}
$$

are all non-nilpotent. In fact n is fixed by all of these elements. Let us denote by B^{\prime} the set of all nilpotent elements in B. Let T be the set of $4(n-2)-1$ elements given by

$$
T=B^{\prime} \cup\left\{\alpha_{3,4}^{1, n}, \ldots, \alpha_{n-2, n-1}^{1, n}, \alpha_{1,2}^{1, n}, \alpha_{1 ; n}^{2}, \ldots, \alpha_{1, n}^{n-2, n-1}\right\} .
$$

It is easy here too, to see that all the elements in T are nilpotents. Next we observe that
the non-nilpotent elements in B, given by (4.6) are expressible as products of elements in T. In fact we have

$$
\alpha_{i+1, i+2}^{i, i+1}=\alpha_{i, n}^{i, i+1} \alpha_{i+1, i+2}^{1+n} \text { for } i=2, \ldots, n-3
$$

and

$$
\alpha_{1,2}^{n-2, n-1}=\alpha_{1, n}^{n-2, n-1} \alpha_{1,2}^{1, n} .
$$

Thus

$$
\langle B\rangle=\langle T\rangle .
$$

If we now choose a set H of $3(n-2)$ nilpotents to cover the \mathscr{R}-classes in $\left\langle N_{2}\right\rangle \cap[n-1, n-2]$ as in Lemma 4.2 we obtain a generating set $H \cup T$ of $\left\langle N_{2}\right\rangle$ consisting of nilpotent elements. Since $|H \cup T|=7 n-15$ the proof is complete.

Acknowledgement. My sincere thanks are due to my research supervisor, Professor J. M. Howie, for his helpful suggestions and encouragement.

REFERENCES

1. G. U. Garba, Nilpotents in semigroups of partial one-one order-preserving mappings, Semigroup Forum 48 (1994), 37-49.
2. G. U. Garba, On the nilpotent rank of partial transformation semigroups, Portugaliae Math. 51 (1994), 163-172.
3. Gracinda M. S. Gomes and John M. Howie, Nilpotents in finite symmetric inverse semigroups, Proc. Edinburgh Math. Soc. 30 (1987), 383-395.
4. Gracinda M. S. Gomes, and John M. Howie, On the ranks of certain finite semigroups of transformations, Math. Proc. Cambridge Philos. Soc. 101 (1987), 395-403.
5. Gracinda M. S. Gomes and John M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), 272-282.
6. John M. Howie, An introduction to semigroup theory (Academic Press, London, 1976).
7. R. P. Sullivan, Semigroups generated by nilpotent transformations, J. Algebra 110 (1987), 324-345.

Department of Mathematical and Computational Sciences
University of St Andrews
Scotland
and
Department of Mathematics
Ahmadu Bello University
Zaria
Nigeria

