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Abstract

A graph is s-transitive if its automorphism group acts transitively on s-arcs but not on (s + 1)-arcs in
the graph. Let X be a connected tetravalent s-transitive graph of order twice a prime power. In this
paper it is shown that s = 1, 2, 3 or 4. Furthermore, if s = 2, then X is a normal cover of one of the
following graphs: the 4-cube, the complete graph of order 5, the complete bipartite graph K5,5 minus a
1-factor, or K7,7 minus a point-hyperplane incidence graph of the three-dimensional projective geometry
PG(2, 2); if s = 3, then X is a normal cover of the complete bipartite graph of order 4; if s = 4, then X
is a normal cover of the point-hyperplane incidence graph of the three-dimensional projective geometry
PG(2, 3). As an application, we classify the tetravalent s-transitive graphs of order 2p2 for prime p.
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1. Introduction

For a finite, simple and undirected graph X , we use V (X), E(X) and Aut(X) to denote
its vertex set, edge set and full automorphism group. For u, v ∈ V (X), {u, v} is the
edge incident to u and v in X , and X (u) is the neighborhood of u in X , that is, the
set of vertices adjacent to u in X . An s-arc in a graph is an ordered (s + 1)-tuple
(v0, v1, . . . , vs−1, vs) of vertices of the graph such that vi−1 is adjacent to vi for
1≤ i ≤ s, and vi−1 6= vi+1 for 1≤ i ≤ s − 1. For a subgroup G of the automorphism
group Aut(X) of a graph X , X is said to be (G, s)-arc-transitive or (G, s)-regular if
G acts transitively or regularly on the set of s-arcs of X , and (G, s)-transitive if G acts
transitively on the set of s-arcs but not on the set of (s + 1)-arcs of X ; in particular,
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if G = Aut(X), then X is simply said to be s-arc-transitive, s-regular or s-transitive,
respectively. In particular, 1-arc-transitive means arc-transitive or symmetric. A graph
X is edge-transitive if Aut(X) is transitive on E(X).

Let X be a connected symmetric graph, and let G ≤ Aut(X) be arc-transitive on X .
For a normal subgroup N of G, the quotient graph XN of X relative to the orbit set
of N is defined as the graph with vertices the orbits of N on V (X) and with two orbits
adjacent if there is an edge in X between vertices lying in these two orbits. Assume
further that X is (G, 2)-arc-transitive. If N is intransitive then either XN ∼= K2, or XN
and X have the same valency. For the former case, XN is sometimes called a trivial
normal quotient; for the latter, X is called a G-normal cover of XN . In particular,
if G = Aut(X) then X is said to be a normal cover of XN . If X has no nontrivial
normal quotient with respect to G, X is said to be G-basic. An Aut(X)-basic graph
is simply called a basic graph. Clearly, X is G-basic if and only if each nontrivial
normal subgroup of G has at most two orbits on V (X). A general approach to the
characterization of 2-arc-transitive graphs is to investigate G-basic 2-arc-transitive
graphs and their normal covers (see [24]).

Arc-transitive or s-transitive graphs with small valencies have received considerable
attention in the literature. For instance, Tutte [26] initiated the investigation of cubic s-
transitive graphs by proving that there exist no finite s-transitive cubic graphs for s ≥ 6,
and there has been much subsequent work in this area (see [5, 7, 9–13, 23]). Gardiner
and Praeger [14, 15] generally explored tetravalent symmetric graphs by considering
their automorphism groups. A lot of work has been done on tetravalent s-transitive
Cayley graphs as a part of a more general problem dealing with the investigation of
the tetravalent edge-transitive Cayley graphs (see [8, 21], for example). Recently, Li
et al. [20] classified all vertex-primitive symmetric graphs of valency 3 or 4.

There also has been a lot of interest in classifications of s-transitive graphs of small
valencies with given orders. Let p be a prime. The classification of s-transitive graphs
of order np and of valency 3 or 4 can be obtained from [3, 4, 27], where 1≤ n ≤ 3.
Feng et al. [10, 12, 13] classified cubic s-transitive graphs of order np or np2 with
n = 4, 6, 8 or 10. In [10], Feng et al. investigated the automorphism groups of cubic
s-transitive graphs of order 2pn and, as an application, classified the cubic s-transitive
graphs of order 2p2.

In this paper, we aim to study the tetravalent s-transitive graphs of order 2pn .
Let X be a connected tetravalent s-transitive graph of order 2pn . It is shown that
s = 1, 2, 3 or 4. Furthermore, if s = 2, then X is a normal cover of one of the
following graphs: Q4 (the 4-cube), K5 (the complete graph of order 5), K5,5 − 5K2
(the complete bipartite graph K5,5 minus a 1-factor), or B ′(PG(2, 2)) (K7,7 minus
the point-hyperplane incidence graph of a three-dimensional projective geometry
PG(2, 2)); if s = 3, then X is a normal cover of the complete bipartite graph K4,4;
if s = 4, then X is a normal cover of B(PG(2, 3)) (the point-hyperplane incidence
graph of the three-dimensional projective geometry PG(2, 3)). As an application,
we classify connected tetravalent s-transitive graphs of order 2p2 for each prime p.
It follows from this classification that, with the exception of K4,4, all such graphs are
1-transitive.

https://doi.org/10.1017/S1446788710000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000066


[3] Tetravalent s-transitive graphs of order twice a prime power 279

To end this section, we define a Cayley graph. Let G be a permutation group on a
set � and α ∈�. Denote by Gα the stabilizer of α in G, that is, the subgroup of G
fixing the point α. We say that G is semiregular on � if Gα = 1 for every α ∈�, and
regular if G is transitive and semiregular on �. For a finite group G and a subset S
of G such that 1 /∈ S and S = S−1, the Cayley graph Cay(G, S) on G with respect
to S is defined to have vertex set G and edge set {{g, sg} | g ∈ G, s ∈ S}. Given
g ∈ G, define the permutation R(g) on G by x 7→ xg, for x ∈ G. The homomorphism
R is the right regular representation of G; the image R(G)= {R(g) | g ∈ G} of G
is a regular permutation group acting on the elements of G. It is easy to see that
R(G) is isomorphic to G, which can therefore be regarded as a subgroup of the
automorphism group Aut(Cay(G, S)). Thus the Cayley graph Cay(G, S) is vertex-
transitive. Furthermore, the group Aut(G, S)= {α ∈ Aut(G) | Sα = S} is a subgroup
of Aut(Cay(G, S))1, the stabilizer of the vertex 1 in Aut(Cay(G, S)). A Cayley graph
Cay(G, S) is said to be normal if R(G) is normal in Aut(Cay(G, S)). Xu [28, Proposi-
tion 1.5] proved that Cay(G, S) is normal if and only if Aut(Cay(G, S))1 = Aut(G, S).
A graph is called a circulant graph, or a circulant for short, if it is a Cayley graph on
a cyclic group.

2. Graph constructions and preliminaries

In this section, we introduce some tetravalent s-transitive graphs of order twice
a prime power, and collect some preliminary results which will be used later in the
paper. Throughout this paper we denote by Zn the cyclic group of order n as well
as the ring of integers modulo n, by Z∗n the multiplicative group of Zn consisting of
numbers coprime to n, by D2n the dihedral group of order 2n, and by Cn , Kn and
nK1 the cycle, the complete graph and the null graph of order n, respectively. For two
groups M and N , N ≤ M means that N is a subgroup of M , N < M means that N is a
proper subgroup of M , N o M denotes a semidirect product of N by M , and Aut(N )
denotes the automorphism group of N .

The first example is the lexicographic product of Cp2 and 2K1.

EXAMPLE 2.1. Let p be a prime. The lexicographic product Cp2[2K1] is defined
as the graph with vertex set V (Cp2[2K1])= V (Cp2)× V (2K1) such that for any two
vertices u = (x1, y1) and v = (x2, y2) in V (Cp2[2K1]), u is adjacent to v in Cp2[2K1]

whenever {x1, x2} ∈ E(Cp2).

Note that C4[2K1] ∼= K4,4 is 3-transitive and Aut(C4[2K1])∼= (S4 × S4)o Z2 if

p = 2, and the tetravalent graph Cp2 [2K1] is 1-transitive and Aut(Cp2 [2K1])∼= Z
p2

2 o D2p2

if p > 2. From [30, Table 1] we observe that Cp2[2K1] is isomorphic to Cay(G, S),
where

G = 〈a〉 × 〈b〉 ∼= Zp2 × Z2 and S = {a, a−1, ab, a−1b}.

Next, we introduce some tetravalent symmetric Cayley graphs on an abelian group
of order 2p2 for prime p.
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EXAMPLE 2.2. Let p be a prime congruent to 1 mod 4, and let H = 〈h〉 be the
unique subgroup of order 4 of Z∗

2p2 . Define X0
2p2 = Cay(G, {a, a−1, ah, ah3

}), where
G = 〈a〉 ∼= Z2p2 .

Xu [29, Theorems 2 and 3] classified tetravalent symmetric circulant graphs, and
one may deduce the following proposition.

PROPOSITION 2.3. Let p be a prime. A connected tetravalent circulant graph X
of order 2p2 is symmetric and normal if and only if p ≡ 1 mod 4 and X ∼= X0

2p2 .

Furthermore, Aut(X0
2p2)
∼= Z2p2 o Z4.

EXAMPLE 2.4. Let p be an odd prime and

G = 〈a〉 × 〈b〉 × 〈c〉 ∼= Zp × Zp × Z2.

Define X1
2p2 = Cay(G, {ca, ca−1, cb, cb−1

}).

From [30, Theorem 3.3 and Proposition 3.3(iv)], one may deduce the following
proposition.

PROPOSITION 2.5. Let p be an odd prime, and

G = 〈a〉 × 〈b〉 × 〈c〉 ∼= Zp × Zp × Z2.

A connected tetravalent Cayley graph X on G is normal and symmetric if and only if
X ∼= X1

2p2 . Furthermore, X1
2p2 is 1-transitive and Aut(X1

2p2)
∼= G o D8.

The following three infinite families of graphs were constructed by Gardiner and
Praeger [14, Definitions 3.2, 4.2 and 4.3].

EXAMPLE 2.6. Let p be an odd prime. The graph X̄1
2p2 is defined to have vertex set

Z2 × (Zp × Zp) with two vertices (0, (x1, y1)) and (1, (x2, y2)) being adjacent if and
only if

(x2, y2)− (x1, y1) ∈ {±(1, 0),±(0, 1)}.

Note that the map defined by

(i, (x, y)) 7→ ci ax by
∀(i, (x, y)) ∈ Z2 × (Zp × Zp),

is an isomorphism from X̄1
2p2 to X1

2p2 . Thus, X̄1
2p2
∼= X1

2p2 .

EXAMPLE 2.7. Let p be a prime congruent to 1 mod 4, and let±ε be the two elements
of order 4 of Z∗p. The graph X2

2p2 is defined to have vertex set Z2 × (Zp × Zp) with
two vertices (0, (x1, y1)) and (1, (x2, y2)) being adjacent if and only if

(x2, y2)− (x1, y1) ∈ {(1, 1), (−1, ε), (1,−1), (−1,−ε)}.
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By [31, Lemma 3.1], X2
2p2
∼= Cay(G(2p2), S), where

G(2p2)= 〈a, b, c | a p
= bp

= c2
= 1, cac = a−1, cbc = b−1, ab = ba〉

is the generalized dihedral group of order 2p2 and

S = {cab, ca−1bε, cab−1, ca−1b−ε}.

Furthermore, Aut(X2
2p2)
∼= G(2p2)o Z4, implying that the tetravalent graph X2

2p2 is
1-regular.

EXAMPLE 2.8. Let p be an odd prime. The graph X3
2p3 has vertex set Z2 × Z3

p, with
two vertices (0, (x0, y0, z0)) and (1, (x1, y1, z1)) being adjacent if and only if

(x1, y1, z1)− (x0, y0, z0) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1)}.

LEMMA 2.9. Let p be an odd prime, and let

G(2p3) = 〈a, b, c, d | a p
= bp

= cp
= d2

= 1, dad = a−1, dbd = b−1,

dcd = c−1, ab = ba, ac = ca, bc = cb〉

be the generalized dihedral group of order 2p3. Set S = {da, db, dc, d(abc)−1
}. Then

X3
2p3
∼= Cay(G(2p3), S). Also, X3

2p3 is 2-transitive and Aut(X3
2p3)
∼= G(2p3)o S4.

PROOF. Let G = G(2p3), X = Cay(G, S) and A = Aut(X). Note that X3
2p3 has

vertex set Z2 × Z3
p with two vertices (0, (x0, y0, z0)) and (1, (x1, y1, z1)) adjacent

whenever

(x1, y1, z1)− (x0, y0, z0) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1)}.

It is easy to see that the map defined by

(i, (x, y, z)) 7→ d i ax bycz, for (i, (x, y, z)) ∈ Z2 × Z3
p,

is an isomorphism from X3
2p3 to X . Thus, X ∼= X3

2p3 .

Let α be the automorphism of G induced by a 7→ b, b 7→ c, c 7→ (abc)−1, d 7→ d.
Similarly, β and γ are the automorphisms of G induced by a 7→ b, b 7→ c, c 7→ a,
d 7→ d , and by a 7→ b, b 7→ a, c 7→ c, d 7→ d . It is easy to see that α, β and γ

fix S setwise and hence they are automorphisms of X . Furthermore, α cyclicly
permutes the elements in S, β fixes d(abc)−1 and cyclicly permutes the remaining
three elements in S, and γ fixes c and d(abc)−1 and interchanges da and db.
Since S generates G(2p3), 〈α, β, γ 〉 acts faithfully on S. Thus, 〈α, β, γ 〉 ∼= S4 and
R(G(2p3))o 〈α, β, γ 〉 is 2-arc-transitive on X . If p = 3, it can be shown with the
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help of the computer software package MAGMA [2] that A = Aut(X) has order 1296,
which implies that A = R(G(2 · 33))o 〈α, β, γ 〉 and X is 2-transitive. Let p > 3.
Then X has girth 6, and there are exactly two girth cycles passing through any
given 2-arc. Thus, X is not 3-arc-transitive because otherwise there are at least
three girth cycles passing through any given 2-arc. Furthermore, A∗1 = 1, where
A∗1 is the subgroup of A1 fixing S pointwise. As a result, X is 2-transitive and
A = R(G(2p3))o 〈α, β, γ 〉. 2

The following proposition is taken from [14, Theorem 1.3].

PROPOSITION 2.10. Let X be a connected tetravalent symmetric graph such that
Aut(X) has an elementary abelian normal subgroup N ∼= Zn

p, where n > 1 and p is

an odd prime. If N has exactly two orbits on vertices, then X is isomorphic to X1
2p2 ,

X2
2p2 or X3

2p3 .

EXAMPLE 2.11. Let n be an integer greater than 2, and q be a prime power. Let
PG(n − 1, q) be the (n − 1)-dimensional projective geometry over the field GF(q).
Denote by P and H the point set and the hyperplane set of PG(n − 1, q). The
point-hyperplane incidence graph of PG(n − 1, q) is defined to have vertex set
P ∪ H and edge set {{x, y} | x ∈ P, y ∈ H, x ∈ y}. The graph B ′(PG(n − 1, q)) is
defined to have vertex set P ∪ H and edge set {{x, y} | x ∈ P, y ∈ H, x /∈ y}.

The following proposition is taken from [4, Theorem 2.4].

PROPOSITION 2.12. Let p be a prime. A connected tetravalent symmetric graph of
order 2p is either 1-transitive or isomorphic to one of the following graphs.

X |X | s-transitive Aut(X)

K5,5 − 5K2 10 2-transitive S5 × Z2
B ′(PG(2, 2)) 14 2-transitive PGL(3, 2) . 2
B(PG(2, 3)) 26 4-transitive PSL(3, 3)o Z2

EXAMPLE 2.13. The 4-cube Q4 may be viewed as the Cayley graph Cay(Z4
2, S),

where Z4
2 = 〈s1〉 × 〈s2〉 × 〈s3〉 × 〈s4〉 and S = {s1, s2, s3, s4}.

The following proposition can be obtained from [18], where the connected 2-arc-
transitive graphs of order a prime power were characterized.

PROPOSITION 2.14. Let X be a connected tetravalent s-transitive graph of order a
prime power. Then s = 1, 2 or 3. Furthermore, if s = 2, then X is a normal cover
of the graphs K4,4, Q4 or K5; if s = 3, then X is a normal cover of the complete
bipartite K4,4.

The following proposition is due to Praeger et al.; see [14, Theorem 1.1] and [24].
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PROPOSITION 2.15. Let X be a connected tetravalent (G, 1)-arc-transitive graph.
For each normal subgroup N of G, one of the following holds:

(1) N is transitive on V (X);
(2) X is bipartite and N acts transitively on each part of the bipartition;
(3) N has r ≥ 3 orbits on V (X), the quotient graph XN is a cycle of length r , and G

induces the full automorphism group D2r on XN ;
(4) N has r ≥ 5 orbits on V (X), N acts semiregularly on V (X), the quotient graph

XN is a connected tetravalent G/N-symmetric graph, and X is a G-normal cover
of XN .

Moreover, if X is also (G, 2)-arc-transitive, then case (3) cannot happen.

The next proposition characterizes the vertex stabilizer of the connected tetravalent
s-transitive graphs, which can be deduced from [21, Lemma 2.5], [20, Proposition 2.8],
or [19, Theorem 2.2].

PROPOSITION 2.16. Let X be a connected tetravalent (G, s)-transitive graph. Let
Gv be the stabilizer of a vertex v ∈ V (X) in G. Then s = 1, 2, 3, 4 or 7. Furthermore,
either Gv is a 2-group for s = 1, or Gv is isomorphic to A4 or S4 for s = 2; A4 × Z3,
Z3 × S4, S3 × S4 for s = 3; Z2

3 o GL(2, 3) for s = 4; or [35
]o GL(2, 3) for s = 7,

where [35
] represents an arbitrary group of order 35.

3. Main results

In this section, we shall characterize connected tetravalent s-transitive graphs of
order twice a prime power. To do this, we need the following lemma.

LEMMA 3.1. Let p be a prime and let n > 1 be an integer. Let X be a connected
tetravalent graph of order 2pn . If G ≤ Aut(X) is transitive on the arc set of X, then
every minimal normal subgroup of G is solvable.

PROOF. Let v ∈ V (X). Since G is arc-transitive on X , by Proposition 2.16, Gv

either is a 2-group or has order dividing 24
· 36. It follows that |G| | 25

· 36
· pn or

|G| = 2m+1
· pn for some integer m. Let N be a minimal normal subgroup of G.

Suppose that N is nonsolvable. Then p > 3 and |G| | 25
· 36
· pn because a {2, p}-

group is solvable by a theorem of Burnside [25, Theorem 8.5.3]. It follows that X
is (G, 2)-arc-transitive. Furthermore, 3 | |Nv| for any v ∈ V (X), because p > 3, and
the 2-arc-transitivity of G implies that Nv acts transitively on X (v) because Nv � Gv .
By Proposition 2.15, N has at most two orbits on V (X). Hence, pn divides |N |.
Since N is minimal, it is a product of isomorphic nonabelian simple groups. Since
|N | | 25

· 36
· pn , by [16, pp. 12–14], each direct factor of N is one of the following:

A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3)

and PSU(4, 2). (3.1)

An inspection of the orders of such groups gives n = 2 and N ∼= A5 × A5. If N is
transitive on V (X), then X must be (N , 2)-transitive. Clearly, a direct factor T of N
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has at least p = 5 orbits on V (X). This forces T to be semiregular on V (X) which
is impossible because |V (X)| = 2p2. Thus, N has exactly two orbits on V (X). Then
Nv ∼= A4 × A4. This is also impossible by Proposition 2.14. Thus, N is solvable. 2

THEOREM 3.2. Let p be a prime and s a positive integer. Let X be a connected tetra-
valent s-transitive graph of order 2pn . Then s = 1, 2, 3 or 4. Assume also that s ≥ 2.
Then X is a normal cover of Y , where s and Y are given in the following table.

s Y

2 K4,4, Q4, K5, K5,5 − 5K2, B ′(PG(2, 2)) or X3
2p3

3 K4,4
4 B(PG(2, 3))

PROOF. By Proposition 2.12, the theorem is true for n = 1. Thus, one may assume
that n > 1 and s > 1. Let A = Aut(X). For p = 2, by Proposition 2.14, either s = 2
and X is a normal cover of the complete bipartite graph K4,4 or the 4-cube Q4, or
s = 3 and X is a normal cover of K4,4. Thus, assume p > 2.

Let M � A be maximal subject to M having at least three orbits on V (X). Since X
is 2-arc-transitive, by Proposition 2.15, the quotient graph XM of X relative to the
orbit set of M is a tetravalent (A/M, s)-transitive graph of order 2pr or pt with
1≤ r, t ≤ n. Furthermore, X is a normal cover of XM . To complete the proof, it
suffices to show that either s = 2 and XM ∼= K5, K5,5 − 5K2, B ′(PG(2, 2)) or X3

2p3 ,
or s = 4 and XM ∼= B(PG(2, 3)). Let T/M be a minimal normal subgroup of A/M .
Then T/M has at most two orbits on V (XM ).

Assume that XM has order 2pr . Let r > 1. By Lemma 3.1, T/M ∼= Zr
p. Since s > 1,

by Proposition 2.10, XM ∼= X3
2p3 and by Lemma 2.9, one has s = 2. Now let r = 1.

By Proposition 2.12, XM ∼= K5,5 − 5K2, B ′(PG(2, 2)) or B(PG(2, 3)). Clearly, if
XM ∼= K5,5 − 5K2 or B ′(PG(2, 2)), then XM is 2-transitive and hence X is 2-
transitive. If XM ∼= B(PG(2, 3)), then p = 13 and XM is 4-transitive, implying
that X is at most 4-transitive. Note that A/M ≤ Aut(XM ). For a vertex v ∈ V (XM ),
let (A/M)v and Aut(XM )v be the stabilizers of v in A/M and Aut(XM ), respectively.
Then (A/M)v ≤ Aut(XM )v and Aut(XM )v ∼= Z2

3 o GL(2, 3) by Proposition 2.16.
Suppose that(A/M)v 6= Aut(XM )v . Then XM is (A/M, s)-transitive for s = 2
or 3. Again by Proposition 2.16, (A/M)v has a subgroup isomorphic to A4.
However, Z2

3 o GL(2, 3) has no subgroups isomorphic to A4, a contradiction. Thus,
(A/M)v = Aut(XM )v , and hence X is 4-transitive.

Now assume that XM has order pt . By Proposition 2.14, XM is a normal cover of
the complete graph K5. This means that p = 5, and there exists a normal 5-subgroup,
say H , in Aut(XM ) such that the quotient graph (XM )H of XM relative to the orbit
set of H is K5. Further, Aut(XM )/H ≤ Aut(K5)∼= S5. Noting that Aut(XM )/H is
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TABLE 1. Tetravalent s-transitive graphs of order 2p2.

X s-transitive Aut(X) Comments

K4,4 3-transitive (S4 × S4)o Z2 Example 2.1, p = 2

Cp2[2K1] 1-transitive Zp2

2 o D2p2 Example 2.1, p > 2

X0
2p2 1-regular Z2p2 o Z4 Example 2.2, p ≡ 1 mod 4

X1
2p2 1-transitive (Z2 × Z2

p)o D8 Example 2.4, p > 2

X2
2p2 1-regular G(2p2)o Z4 Example 2.7, p ≡ 1 mod 4

2-arc-transitive on K5, one has Aut(XM )/H ∼= A5 or S5. This tells us that H is the
largest normal 5-subgroup of Aut(XM ). It is easily seen that A/M ≤ Aut(XM ) and that
every Sylow 5-subgroup of A/M is also a Sylow 5-subgroup of Aut(XM ). Therefore,
H is also a normal subgroup of A/M . Set H/M = H . Then H � A, and it is easy to
see that H has five orbits on V (X). The maximality of M forces that H = M . Thus,
t = 1 and XM ∼= K5. In particular, s = 2. 2

Let G be a nonabelian simple group and Z an abelian group. We call an extension
E of Z by G a central extension of G if Z ≤ Z(E). If E is perfect, that is, the derived
group E ′ = E , we call E a covering group of G. Schur proved that for every simple
group G there is a unique maximal covering group M such that every covering group
of G is a factor group of M . This group M is called the full covering group of G, and
the center of M is called the Schur multiplier of G, denoted by Mult(G). For more
information for the Schur multiplier, see, for example, [17, Ch. 5].

THEOREM 3.3. Let p be a prime and X a connected tetravalent graph of order 2p2.
Then X is s-transitive for some positive integer s if and only if it is isomorphic to one of
the graphs in Table 1. Furthermore, all graphs in Table 1 are pairwise nonisomorphic.

PROOF. By Examples 2.1–2.7, all graphs in Table 1 are pairwise nonisomorphic
tetravalent symmetric graphs. Let X be a tetravalent s-transitive graph of order 2p2

for an integer s. To finish the proof, it suffices to show that X is one of the graphs
listed in Table 1. If p ≤ 3 then |X | = 8 or 18, and by [22], up to isomorphism there
are three connected tetravalent symmetric graph of order 8 or 18. It follows that
X ∼= K4,4, C9[2K1] or X1

2·32 . In what follows, we assume that p > 3. Set A = Aut(X)
and let v ∈ V (X). We first prove a claim.

Claim. If A has a nontrivial normal 2-subgroup, say M , then X is isomorphic to
Cp2[2K1], X0

2p2 or X1
2p2 .

Consider the quotient graph XM of X relative to the orbit set of M , and let K be
the kernel of A acting on V (XM ). Since p > 3, every orbit of M has length 2, and

https://doi.org/10.1017/S1446788710000066 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000066


286 J.-X. Zhou and Y.-Q. Feng [10]

hence |XM | = p2. By the symmetry of X , every orbit of M contains no edges, and by
Proposition 2.15, XM is of valency 2 or 4. If XM has valency 2, then X ∼= Cp2[2K1]. If
XM has valency 4, by Proposition 2.15, K is semiregular, implying that K = M ∼= Z2.
Let P be a Sylow p-subgroup of A. Then |P| = p2 and hence P is abelian. Since XM
is a tetravalent graph of order p2 and p > 2, PM/M must be regular on V (XM ). It
follows that XM is a Cayley graph on PM/M . By [1, Corollary 1.3], every connected
tetravalent Cayley graph on an odd order abelian group G is normal except for G = Z5.
It follows that XM , as a Cayley graph on PM/M , is normal, and hence PM/M � A/M ,
namely, PM � A. It is easily seen that PM is transitive on V (X). Since |PM| = 2p2,
PM is also regular on V (X), implying that X is a normal Cayley graph on PM .
Since M is a normal subgroup of order 2, M is in the center of A, implying that
PM is abelian. By Propositions 2.3 and 2.5, X ∼= X0

2p2 or X1
2p2 , as claimed.

Now take a minimal normal subgroup, say N , in A. By Lemma 3.1, N is
solvable. Since p > 3 and |V (X)| = 2p2, N is an elementary abelian 2-group or p-
group. By the claim, we may assume further that N is a p-group. Take a nontrivial
maximal normal p-subgroup, say M , of A. Clearly, since p > 3, one has |M | | p2.
If M ∼= Zp × Zp, then M has exactly two orbits on V (X), and by Proposi-
tion 2.10, X ∼= X1

2p2 or X2
2p2 . Assume now that M is cyclic. Set C = CA(M). Then

M ≤ C and A/C ≤ Aut(M)∼= Zp(p−1).

Suppose that C = M . Then M ∼= Zp2 . Clearly, M acts semiregularly on V (X)
with two orbits. Let R(M) and L(M) be the two orbits of M . Since M acts
regularly on R(M) and L(M), one may assume that R(M)= {R(g) | g ∈ M} and
L(M)= {L(g) | g ∈ M}, and that the actions of M on R(M) and L(M) are just by
right multiplication, that is, R(h)g = R(hg) and L(h)g = L(hg) for any h, g ∈ M . By
the symmetry of X , there is no edge in R(M) or L(M), implying that X is bipartite. Let
the neighbors of R(1) be L(g1), L(g2), L(g3) and L(g4), where g1, g2, g3, g4 ∈ M .
Since M is abelian, for any g ∈ M , the neighbors of R(g) are L(gg1), L(gg2), L(gg3)

and L(gg4), and furthermore, the neighbors of L(g) are R(gg−1
1 ), R(gg−1

2 ), R(gg−1
3 )

and R(gg−1
4 ). The map α defined by R(g) 7→ L(g−1), L(g) 7→ R(g−1) for any g ∈ G,

is an automorphism of X of order 2. Let B = 〈M, α〉. Then B is transitive on V (X),
and since M is normal in A, B = M o 〈α〉 has order 2p2, and hence it acts regularly
on V (X). Thus, A = B Av , where Av is the stabilizer of v ∈ V (X) in A. Since
|M | = p2, AvM/M has even order and since B/M has order 2, A/M is not cyclic.
This leads to a contradiction.

Thus, M < C . Let T/M be a minimal normal subgroup of A/M contained in
C/M . Suppose that T/M is nonsolvable. Then M ∼= Zp and X is 2-arc-transitive.
It follows that the quotient graph XM of X relative to the orbit set of M is a tetravalent
2-arc-transitive graph of order 2p. From Proposition 2.12 it can be easily deduced
that T/M ∼= A5, PSL(2, 7) or PSL(3, 3). Let T ′ be the derived subgroup of T .
Since T/M is simple, one has T ′M/M = T/M , that is, T = T ′M . If M ≤ T ′, then
T ′ = T , and T is a covering group of one of the groups A5, PSL(2, 7) and PSL(3, 3).
However, by [6], Mult(A5)∼= Mult(PSL(2, 7))∼= Z2 and Mult(PSL(3, 3))= 1. This
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forces p ≤ 2, a contradiction. Thus, M � T ′. Since M ∼= Zp, T ′ ∩ M = 1 and
T = T ′ × M . Clearly, T ′ is nonabelian simple. Then T ′ is characteristic in T , and
hence it is normal in A because T � A, contrary to Lemma 3.1. Thus, T/M is solvable.
Then T/M must be a 2-group and hence T = M × Q, where Q is a Sylow 2-subgroup
of T . Then Q is characteristic in T , and since T � A, one has Q � A. By the claim,
X ∼= Cp2[2K1], X0

2p2 or X1
2p2 . 2

COROLLARY 3.4. Let p be an odd prime. Every connected tetravalent symmetric
graph of order 2p2 is a 1-transitive Cayley graph.
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