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Inertial coalescence of drops with some viscosity
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When two fluid drops touch, they coalesce due to surface tension. At early times, there is
only a relatively small fluid bridge joining the drops. An asymptotic solution is presented
for an inertial regime of early-time coalescence, in which inertial forces balance surface
tension at leading order. It is demonstrated that viscosity nevertheless has a leading-order
effect. Radial momentum is created at the tightly curved edge of the fluid bridge by the
net force 2γ (per unit length) due to surface tension. This momentum is left behind the
radially expanding bridge edge in a thin viscous wake. The divergent volume flux in the
wake entrains fluid from above and below the bridge, and drives an inviscid irrotational
flow in the drops on the scale of the bridge radius. This flow widens the gap between the
drops ahead of the bridge, and the larger gap width results in a lower rate of coalescence.
Including viscosity in this way improves the agreement between theory and the available
experimental and numerical data.
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1. Introduction

Drop coalescence is a central dynamical mechanism in many physical settings that involve
dispersions of small drops. For example, coalescence in clouds increases the size of
drops, leading to rain (Pruppacher & Klett 2010), and the coalescence of ink drops on
the page limits the resolution of inkjet printers (Stringer & Derby 2009). Consequently,
the fundamental problem of coalescence between two isolated drops has been the focus of
a large body of work, with many different dynamical regimes being studied theoretically
(e.g. Eggers, Lister & Stone 1999; Duchemin, Eggers & Josserand 2003 – referred to
henceforth as ELS and DEJ, respectively), numerically (e.g. Sprittles & Shikhmurzaev
2012, 2014a; Anthony, Harris & Basaran 2020 – referred to as SS12, SS14 and AHB,

† Email address for correspondence: edward.beaty4@gmail.com

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 984 A77-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:edward.beaty4@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.295&domain=pdf
https://doi.org/10.1017/jfm.2024.295


E. Beaty and J.R. Lister

a

(a)

r ∼ a r ∼ rb |r − rb| ∼ rc

2h(r, t)

rb

z

r

rc

r

z

0 Wake

Entrainment W

2γ

Outer flow

Gap opening

Edge r = rb

(b)

Figure 1. (a) Geometrical definition sketch for early-time coalescence between two initially spherical drops of
radius a showing the hierarchy of length scales. The drops are joined axisymmetrically in the plane z = 0 of
cylindrical polar coordinates (r, θ, z) by a fluid bridge of radius rb(t) � a. The edge of the bridge is tightly
curved on a scale |r − rb| ∼ rc � rb. Ahead of the bridge, the drops are separated by a thin gap of width
2h(r, t) � rb. (b) Sketch of the flow structure in the inertial regime. The net force 2γ (per unit length into the
page) from the edge creates radial momentum, which is left in a viscous wake over the fluid bridge. Entrainment
into the wake with velocity W drives an outer irrotational flow on the fluid-bridge scale, which widens the gap
width 2h ahead of the fluid bridge.

respectively) and experimentally (e.g. Aarts et al. 2005; Paulsen, Burton & Nagel 2011 –
referred to as PBN).

One of the core questions is how the radius rb(t) of the ‘fluid bridge’ connecting the two
drops increases as coalescence proceeds from the initial point of contact. At early times
(see figure 1a), the fluid bridge is much smaller than the drops, the flow is driven by a
region of very large interfacial curvature at its edge, and it is reasonable to expect the sort
of asymptotic scaling behaviour that is often found near interfacial singularities associated
with changes in fluid topology. While rb(t) is the most obvious variable of interest, a fuller
description would include the interfacial shape and the structure of the flow.

For the case of very viscous drops with negligible inertia in a negligible outer fluid,
there is an exact solution for the complete coalescence of two circular drops in two
dimensions (Hopper 1984; Richardson 1992). Though a complete solution is possible only
in this very special case due to the availability of conformal mapping techniques, ELS
argued that the early-time behaviour of rb(t) in Hopper’s solution can be extended to give
the same early-time asymptotic behaviour in three dimensions. Moreover, SS12 showed
numerically that Hopper’s full solution for rb(t) gives a surprisingly good approximation
for the coalescence rate of inertialess spheres over much of their evolution. For drops with
both viscosity and inertia, ELS argued further that the initial dynamics of coalescence is
viscously dominated on the length scale of the fluid bridge, and thus also has the same
leading-order asymptotic behaviour at early times. Inertia can nevertheless play a role of
the length scale of the two drops (Paulsen et al. 2012). In this early-time viscous regime,
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Inertial coalescence of drops with some viscosity

both the initial drop profile (AHB; Beaty & Lister 2022, 2023) and the presence of an outer
fluid (ELS; Thompson & Billingham 2012; SS14) can significantly alter the dynamics, for
example by allowing a bubble of external fluid to accumulate at the advancing meniscus
and change its curvature.

As the bridge radius increases, inertia becomes more important relative to viscosity in
the bridge-scale flow. For sufficiently low viscosity drops after the initial viscous regime,
or for ideal (inviscid) drops, there is also an inertial regime of coalescence in which inertial
forces balance surface tension at leading order. Both ELS and DEJ considered this regime
theoretically and numerically for an ideal fluid in the early-time geometry when the fluid
bridge is still small compared to the macroscopic scale of the drop, as we will outline
shortly. The primary purpose of this paper is to give an analytic description of the effects
of small, but non-zero, drop viscosity in this early-time inertial regime.

To establish some notation, consider, as shown in figure 1(a), two axisymmetric drops of
fluid with dynamic viscosity μ, density ρ and surface tension γ . We assume that any outer
fluid has negligible viscosity and inertia. Initially, at t = 0 the drops are spheres of radius a
touching at a point. At later times, the drops are joined by a fluid bridge of radius rb(t) � a
in the plane z = 0 of cylindrical polar coordinates (r, θ, z). Ahead of the fluid bridge, the
surface of the drop is given by z = ±h(r, t). In the far field, r � rb, the surface matches
to the initial spherical drop shape: hence on scales rb � r � a, we have h = r2/2a to
leading order. At the edge of the fluid bridge, r = rb, the surface is tightly curved on a
length scale rc � rb given by the local radius of curvature. Consequently, surface tension
exerts a large stress on the ‘tightly curved’ region |r − rb| ∼ rc, which drives the growth
of the fluid bridge.

In the inertial regime, ELS argued that the radius of curvature scales with the width of
the gap in the tightly curved region, giving rc ∼ r2

b/a. Therefore, the interfacial stress due
to surface tension in this region scales as γ /(r2

b/a). By assuming that this stress balances
the inertial term ρ|u|2 for a flow with velocity u that scales as ṙb ≡ drb/dt ∼ rb/t, where
t is the elapsed time, ELS obtained the key scaling result

rb = D
(
γ a
ρ

)1/4

t1/2, (1.1)

where D is an O(1) dimensionless prefactor, whose value is not predicted by scaling.
Given the scaling (1.1), the Reynolds number Re for the flow in the tightly curved region
is Re ∼ rcṙb/ν ∼ rb/(Oh a), where ν is the kinematic viscosity, and Oh ≡ μ/(ρaγ )1/2 is
the Ohnesorge number. The assumed inertial stress balance for flow in the tightly curved
region is self-consistent if Re � 1 or, equivalently, rb � Oh a. Since rb � a at early times,
Oh � 1 is required for the existence of an early-time inertial regime, and drops with
Oh � 1 remain in the viscous regime. (In general, Oh describes the relative importance
of viscosity and inertia for surface-tension-driven flows.)

The existence of the inertial regime, the scaling relation (1.1) and the transition to
the inertial regime at bridge radius rb ∼ Oh a have all been confirmed experimentally
(e.g. Menchaca-Rocha et al. 2001; PBN). Using electrical techniques to measure rb, PBN
found the coefficient D to be in the range 1–1.6 for 0.002 < Oh < 0.2. The inertial scaling
has also been confirmed numerically by simulations of the full Navier–Stokes equations,
including by SS14, who found that D = 1.5 holds for their early-time results.

Other experiments (Wu, Cubaud & Ho 2004; Aarts et al. 2005) also confirmed the
scaling (1.1) for the inertial regime, but with lower values of D in the range 1–1.3. However,
these results were obtained by fitting (1.1) to experimental data for rb/a in the range
0.05–0.5, and for the larger values of rb/a, Sprittles & Shikhmurzaev (2014b) showed
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that the azimuthal curvature at the edge of the fluid bridge significantly resists its growth.
Hence the lower values of D may simply reflect the inclusion of larger values of rb/a in
the fits.

In numerical calculations for an ideal fluid (Oh = 0), DEJ found that the early-time
inertial dynamics is given by a self-similar sequence of reconnection events. As the
fluid bridge advances, capillary waves grow on the surface until there is an intersection
between waves on opposing surfaces. The edge of the fluid bridge jumps outwards to
the intersection point, and a bubble is trapped in the drop. Averaging over successive
reconnection events (and zeroing the flow numerically at each reconnection), DEJ found
that the fluid bridge evolves as (1.1) with D ≈ 1.6. This is faster than some of the
above results from experiments and simulations with small, but non-zero, viscosity
(0 < Oh � 1).

Reconnection has also been seen during the viscous regime in simulations for Oh = 0.01
(SS12), though it can be suppressed by a small external viscosity (SS14), which may
explain why bubble trapping has not been observed experimentally. It is not clear to us if,
or when, reconnection is possible in the inertial regime for drops with small, but non-zero,
viscosity. For example, in full simulations of the Navier–Stokes equations in the case
Oh = 0.001, AHB found that the capillary waves had much smaller amplitudes than in
DEJ and, in particular, there were no reconnection events in these calculations. (Similarly,
SS14 did not observe reconnection during the inertial regime.) For the bulk of this paper,
motivated by the results of AHB, we will analyse the early-time inertial regime assuming
that we are in the case of no reconnection. In § 6, we will return briefly to discussion of
reconnection-driven coalescence, and outline how the flow structure that we describe for
Oh > 0 might be adapted to this case and affect the results of DEJ.

The structure of our paper follows the structure of the flow shown schematically in
figure 1(b), which was initially motivated by the qualitative features that we observed in
figure 8 of the AHB numerical simulation for Oh = 0.001 (reproduced here in figure 5a).
Here, we analyse each of these features of the inertial regime in turn, and demonstrate
that small, but non-zero, viscosity has a leading-order effect on the rate of coalescence.
In § 2, we show that radial momentum, created by the net surface tension force acting
on the tightly curved edge of the fluid bridge, is left behind by the expanding edge in
a thin viscous wake, analogous to the Oseen wake behind a translating body. There is a
radial mass flux in the wake, whose divergence drives entrainment into the wake from
above and below. In § 3, we show that the entrainment velocity into the wake drives an
irrotational Euler flow outside the wake on the fluid-bridge scale. The streamlines of this
entrainment-driven outer flow originate on the free surface ahead of the fluid bridge in
r > rb, thus the outer flow opens up the gap between the drops ahead of the bridge. In § 4,
we calculate the cumulative opening of the gap as the tightly curved edge of the bridge
approaches a given radius, and show that this increased gap width results in a slower rate
of coalescence. In § 5, we compare our theoretical predictions with previous numerical
and experimental results, and we conclude with discussion in § 6.

2. The wake

In the early-time inertial regime, coalescence is driven by surface tension acting on the
tightly curved region around the circular edge of the fluid bridge. Ahead of the tightly
curved region, the opposing surfaces of the drop are approximately parallel, since ∂h/∂r ∼
rb/a � 1 for rb � a. Thus surface tension acting on the surface as it turns through nearly
180◦ at the edge gives a net radial force of 2γ per unit azimuthal length. (This result can be
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Inertial coalescence of drops with some viscosity

thought of as coming from tension γ in the radial direction on each of the top and bottom
surfaces, or can be calculated from an integral of γ κn, where κ is the curvature, and n is
the surface normal.)

Though the force 2γ is distributed over the small length scale rc, on the much larger
length scale rb, it looks like a line (or ring) force acting around the circular bridge edge
and moving radially through the fluid as rb(t) increases. The line force creates radial
momentum, and this momentum is left behind the expanding bridge edge to form a thin
radially directed wake in the plane of the bridge (see figure 1b). On the bridge scale, this
mechanism of wake formation by a line force is similar to wake formation in the solution
for a translating point force, or ‘Oseenlet’ (Chan & Chwang 2000), and depends only
on creation and advection of momentum. Because rc � rb, the time scale rc/ṙb of wake
formation is much smaller than the time scale rb/ṙb on which the rate of coalescence ṙb(t)
varies. Hence the rate of coalescence is approximately constant on the local time scale of
wake formation. We define U(r) to be the value of ṙb when the edge of the fluid bridge
reaches r. Near the edge of the bridge, on intermediate length scales rc � |r − rb| � rb,
we can consider U(r) to be constant and the bridge edge to be straight at leading order.

Hence, for simplicity, we first consider two-dimensional wake formation in Cartesian
coordinates (x, z) behind a horizontal point force of strength 2γ ex (per unit length in
the third direction ey) that is translating at constant velocity Uex. We assume that the
momentum generated by the force is left behind as the force translates, and that its
subsequent evolution is given by viscous diffusion. The momentum is thus confined to a
thin viscous wake. At a distance X behind the force, the wake has vertical width (νX/U)1/2

given by the distance (ντ )1/2 of diffusion over the time τ = X/U that has elapsed since
the force went past.

Following Hinch (1993), who considers the Oseen wake behind a solid sphere in
uniform flow, we consider the momentum flux and volume flux through the wake using
conservation arguments. The momentum flux across a vertical plane that is a fixed distance
behind the point force is ρu(u − Uex) (allowing for the translating plane). Therefore, since
|u| � U away from the tightly curved region, the total rate at which horizontal momentum
is left in the wake is

∫
ρUux dz at leading order, where ux is the horizontal fluid velocity.

The rate at which momentum is left in the wake must also equal the applied horizontal
force 2γ . This implies a volume flux along the wake

Q =
∫

ux dz = 2γ
ρU

(2.1)

(per unit length in the transverse direction). The same argument can be applied locally to
the case of a force that translates with a slowly varying velocity U(x) to produce a local
volume flux Q(x) in its wake.

Having obtained the local volume flux (2.1), we now consider volume conservation in
a three-dimensional wake for, as shown in figure 2, a vertically integrated area element
between r and r + δr, where δr � r, with angular extent δθ � 1. The volume flux through
the wake into the element at r is Q(r) r δθ , and the corresponding flux out of the element at
r + δr is Q(r + δr) (r + δr) δθ . The difference between these terms must be balanced by
entrainment into the wake. Denote the vertical entrainment velocity by W(r), which acts
over the combined area ≈ 2r δθ δr of the top and bottom of the wake element. Then, to
leading order in δr and δθ , conservation of volume gives

2W(r) r δθ δr = Q(r + δr) (r + δr) δθ − Q(r) r δθ =⇒ W(r) = γ

ρ

1
r

d
dr

r
U(r)

. (2.2)
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δθ

r r + δr

Q(r)

W(r)

W(r)

Q(r + δr)z

Figure 2. A vertically integrated area element in the viscous wake between r and r + δr, where δr � r, with
angular extent δθ � 1. The radial flow through the wake gives a vertically integrated flux Q(r) = 2γ /ρ U(r)
at r, which is multiplied by the length r δθ in the azimuthal direction to give a volume flux. The difference
between the volume fluxes at r and r + δr is balanced by entrainment into the element with vertical velocity
uz = −W(r) from above, and +W(r) from below, which is multiplied by the area r δθ δr to give the volume
flux.

Equation (2.2) for the entrainment velocity W applies generally to any thin axisymmetric
wake with slowly varying U(r). In the inertial regime, rb(t) is given by (1.1), and we can
differentiate r2

b(t) to obtain

U(r) = D2

2r

(
γ a
ρ

)1/2

. (2.3)

Substitution into (2.2) then yields

W = 4
D2

(
γ

ρa

)1/2

. (2.4)

For this case, W is constant in time and uniform over the fluid bridge.

3. Outer entrainment-driven flow

The entrainment velocity (2.4) drives a flow outside the wake on the fluid-bridge scale with
Reynolds number Re ∼ rbW/ν ∼ rb/(Oh a) � 1, since rb � Oh a in the inertial regime.
Therefore, viscosity is negligible, and the outer entrainment-driven flow satisfies the Euler
equations

∂u
∂t

+ u · ∇u = − 1
ρ

∇p and ∇ · u = 0. (3.1a,b)

Furthermore, comparison of the unsteady ∂u/∂t and nonlinear u · ∇u terms in (3.1a)
shows that

|u · ∇u|
|∂u/∂t| ∼ W2/rb

W/t
∼ rb

a
� 1, (3.2)

since rb � a for early-time coalescence. Therefore, the nonlinear term in (3.1a) can be
neglected. Neglecting the nonlinear term, the curl of (3.1a) and the radial component of
(3.1a) yield

∂

∂t

(
∇2 − 1

r2

)
Ψ

r
= 0 and

∂p
∂r

= ρ

r
∂2Ψ

∂z ∂t
, (3.3a,b)

where Ψ is the Stokes streamfunction, defined in terms of the velocity components by
ur = −r−1 ∂Ψ/∂z and uz = r−1 ∂Ψ/∂r. For convenience, we also define a potential ψ =
Ψ/r.
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r

z

0
rb

ψ = −1/2 Wr ∂ψ/∂z = 0

(∇2 − 1/r2) ψ = 0

Figure 3. A sketch of the boundary-value problem (3.4) and (3.5). The equations for the potential ψ
represent irrotational flow in z > 0 subject to boundary conditions uz = −W in r < rb, and p = 0 in r > rb.

For no initial flow, ψ ≡ 0 at t = 0, so (3.3a) integrates to(
∇2 − 1

r2

)
ψ = 0, (3.4)

reflecting the fact that ‘inviscid irrotational flow remains irrotational’.
The vertical extent of the outer flow is comparable to its radial extent O(rb). On the

other hand, the vertical extent of the wake is small compared to the radial scale rb,
since (νt)1/2 ∼ Oh1/2rb � rb. Hence the matching condition of the outer flow to the
entrainment velocity (2.2) at the top and bottom of the wake can be linearized onto
z = 0. This gives the vertical fluid velocity of the outer flow as uz = −W on z = 0+,
r < rb. Likewise, the free-surface condition p = 0 on z = h, r > rb can be linearized onto
z = 0 since h ∼ r2

b/a � rb. Integrating these conditions along the boundary and in time,
respectively, with p given by (3.3b), we obtain mixed boundary conditions for the potential
ψ :

ψ = −Wr
2

on z = 0, r < rb and
∂ψ

∂z
= 0 on z = 0, r > rb, (3.5a,b)

where we have set ψ(0, 0) = 0 without loss of generality. Figure 3 shows a sketch of the
boundary-value problem (3.4) and (3.5).

3.1. Tranter’s method
Equations of the form (3.4) with boundary conditions, such as (3.5), that are different
inside and outside a disk on z = 0 can be solved using Tranter’s method (see e.g. Sneddon
1960; Copson 1961). Taking an order-one Hankel transform of (3.4) with respect to r gives(

∂2

∂z2 − k2
)
ψ̃ = 0, (3.6)

where

ψ̃(k, z) =
∫ ∞

0
ψ(r, z) J1(kr) r dr, (3.7)

and J1(r) is the regular Bessel function of order one. The general solution of (3.6) that
decays as z → ∞ is

ψ̃ = A(k) e−kz, (3.8)

where the coefficient A(k) is determined by the boundary conditions on z = 0.
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0.5

0.5

1.0

1.0 1.5

r/rb

z/
r b

2.00

Figure 4. Streamlines of the inviscid entrainment-driven flow (3.12).

Using the inverse Hankel transform of (3.8), the mixed boundary conditions (3.5)
become ∫ ∞

0
k A(k) J1(kr) dk = −Wr

2
for r < rb (3.9a)

and ∫ ∞

0
k2 A(k) J1(kr) dk = 0 for r > rb. (3.9b)

The dual integral equations (3.9) are solved by Tranter (1956, p. 121), from which the
coefficient A is given as

A(k; rb) = 2W
π

krb cos krb − sin krb

k3 . (3.10)

Given A(k; rb), the solution ψ to the linearized Euler equation (3.4) with the mixed
boundary conditions (3.5) is then given by the inverse Hankel transform of (3.8) as

ψ = 2W
π

∫ ∞

0

krb cos krb − sin krb

k2 e−kz J1(kr) dk. (3.11)

Equation (3.11) can be expressed as the imaginary part of integrals that are known in
terms of elementary functions (Olver et al. 2023, eq. 10.22.49), which gives the Stokes
streamfunction Ψ = rψ as

Ψ = W
π

Im
[
(z + irb)[r2 + (z − irb)

2]1/2 + r2 tanh−1 (z − irb)

[r2 + (z − irb)2]1/2

]
. (3.12)

Figure 4 shows the streamlines of (3.12). The entrainment into the wake in r < rb drives
a flow that ultimately draws in fluid from the free surface ahead of the fluid bridge in
r > rb. This flow opens up the gap ahead of the fluid bridge, as we now consider.
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4. Opening of the gap

From the entrainment-driven streamfunction (3.12) we can calculate the normal velocity
uz = r−1 ∂Ψ/∂r on the free surface z = 0 for r > rb(t), and thus obtain

uz(r, 0; rb) = 2W
π

[
rb

(r2 − r2
b)

1/2
− sin−1 rb

r

]
. (4.1)

This velocity is positive for all r > rb, and therefore, as previously stated, it opens up the
gap ahead of the fluid bridge. (From the boundary condition (3.5b), we can also obtain
ur(r, 0; rb) = 0 for r > rb.)

The kinematic boundary condition on the free surface is ∂h/∂t = uz, where h(r, t) is
the surface height. By integrating with respect to time, the total increase �h in the surface
height by time t > 0 at any fixed r > rb(t) is given by

�h =
∫ t

0
uz(r, 0; rb(t′)) dt′. (4.2)

To evaluate the integral (4.2), we first use (1.1) to change variables, which yields

�h(r, rb) = 2
D2

(
ρ

γ a

)1/2 ∫ rb(t)

0
uz(r, 0; r′

b) r′
b dr′

b. (4.3)

We then substitute from (4.1) for uz, with W given by (2.4), and obtain

�h(r, rb) = 12
πD4a

[(
r2 − 2

3
r2

b

)
sin−1 rb

r
− rb(r2 − r2

b)
1/2

]
. (4.4)

As rb(t) increases towards r, the entrainment-driven opening of the surface at r increases
towards the value

�hb(r) ≡ lim
rb→r−

�h(r, rb) = 2r2

D4a
. (4.5)

Thus when rb(t) reaches r, the total surface height hb at r is the original surface height
r2/2a plus the additional opening (4.5), i.e. hb(r) = r2/2a +�hb(r). The additional
opening changes the boundary conditions for the leading-order flow in the tightly curved
region (within which the gap width closes to zero), with the gap width ahead of this region
now given by 2hb. This gap width is approximately constant on the radius-of-curvature
length scale rc, since (4.4) varies on the length scale rb � rc.

We determine the rate of coalescence by a volume conservation argument. From § 2,
the wake provides the edge of the fluid bridge with volume flux Q(rb) = 2γ /ρ ṙb per unit
length. We make a simple assumption that the gap ahead of the fluid bridge is filled by
this flux. Since the gap of width 2hb needs to be filled at a volumetric rate 2hbṙb (per unit
length) for the edge of the fluid bridge to advance at speed ṙb, such a balance implies that

2γ
ρ ṙb

=
(

1 + 4
D4

)
r2

bṙb

a
. (4.6)

Solving (4.6) for D with rb of the form (1.1) gives D = 21/2. We note that if the effects
of entrainment and the additional opening (4.5) were omitted (i.e. if there were no 4/D4

term), then this argument would give D = 23/4.
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Figure 5. Numerical and theoretical results for the streamlines (black lines) and surface profile (blue lines) in
the case Oh = 0.001 for rb = 0.03a. (a) Contours of the Stokes streamfunction (not equally spaced) and the
surface profile found numerically by AHB (see their figure 8a). (b) Composite streamlines given by the external
streamfunction (3.12) plus, for the flow in the wake, the Gaussian profile produced by vertical diffusion of
momentum over the time τ(r) since it was left behind by the advancing edge of the fluid bridge. Curves
z = ±2(ντ )1/2 (red dashed lines) represent a diffusive scaling for the width of the wake. The surface profile
includes the opening (4.4).

5. Comparison with previous results

We first compare our prediction for the structure of the flow to the numerical data of AHB.
Figure 5 shows that outside the wake on the fluid-bridge scale, the streamlines of the
external flow given by (3.12) are in good qualitative agreement with the contours of the
Stokes streamfunction (not evenly spaced) given in AHB for Oh = 0.001 and rb = 0.03a.
Furthermore, near the fluid bridge, the contours of the streamfunction found by AHB are
consistent with a thin wake of width ∝ (ντ )1/2, and match a simple calculation of the flow
in the wake from vertical diffusion of momentum to give a Gaussian profile. In the wake,
the fluid velocity is significantly larger than elsewhere, and it is clear in figure 5(a) that
there is indeed entrainment into the wake that is fed by the outer flow.

Figure 6 shows how the surface profile given by the initial profile r2/2a plus the
additional opening (4.4) for D = 21/2 compares to the profile obtained by AHB in the
case Oh = 0.001 for rb = 0.008a. There is excellent agreement for r/rb > 1.05. The small
undershoot of the predicted profile near the tip has only a small volume compared to the
total opening due to the entrainment-driven flow, which is consistent with the assumption
that the gap ahead of the tip is filled at leading order by the mass provided by the wake.
The rounding of the tip on the scale (r − rb)/rb = O(rb/a) is to be expected. There is also
good agreement for r/rb > 1.2 with the numerical profile obtained by SS14 for Oh = 0.01
and rb ≈ 0.08a even though these parameter values are further from the asymptotic limit
that we are considering. (SS14 also included a small external viscosity 0.006μ.)

The theoretical analysis in this paper does not attempt to calculate the detailed flow and
interfacial shape on the scale rc ∼ r2

b/a of the tightly curved region, and the mechanisms of
wake formation, entrainment, external flow and gap opening seen in figure 5 depend not on
those details, only on the force 2γ . The comparison with the numerical results of AHB, in
particular, in figures 5 and 6 provides strong support for the wake-and-entrainment model
of the fluid-bridge scale flow that we have derived in this paper.
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/
a)

1.8 2.0
0

0.2

0.4

0.6

0.8

1.0
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1.8

2.0

Theoretical profile for D = 21/2 

Initial profile r2/2a

Numerical simulation (AHB)

Numerical simulation (SS14)

1 : 1 shape (AHB)

Figure 6. The theoretical surface profile ahead of the fluid bridge for Oh � 1 and r � rb (dashed red line)
obtained by adding the entrainment-driven opening (4.4) for D = 21/2 to the initial surface profile r2/2a (blue
dotted line). Also shown are numerically obtained surface profiles ahead of the fluid bridge for the cases
Oh = 0.001 at rb = 0.008a (solid line; see figure 9 of AHB) and Oh = 0.01 at rb ≈ 0.078a (short-dashed line;
see figure 10 of SS14). The theoretical prediction does not include the rounding of the profile tip on a radial
length scale r − rb = O(r2

b/a), which can be seen in the numerical solutions and in a 1 : 1 plot of the shape
(inset).

10–2
1.0

1.2

1.4

1.6

1.8

2.0

Oh

D

10–1

Figure 7. The constant D for the fluid-bridge radius rb = D(γ a/ρ)1/4t1/2 in the inertial regime. Experimental
results of PBN (dots and error bars) for various Ohnesorge numbers Oh and the numerical value D = 1.5
from SS14 (dashed line) are shown alongside our theoretically predicted value D = 21/2 (blue line) and, for
comparison, the value D = 23/4 (red line) obtained by omitting entrainment.

Figure 7 shows how our theoretically predicted value D = 21/2 for the coefficient of
the rate of coalescence (1.1) compares to both the early-time numerical result D = 1.5 of
SS14 and the experimental results of PBN. The value D = 1.5 is only about 6 % larger
than 21/2, which seems reasonably good agreement. The values of D that PBN observe
experimentally for various fluids with different Oh < 0.2 are in reasonable agreement with
21/2, given the experimental variations. (We omitted the data for Oh > 0.2 as they do not
satisfy Oh � 1.)

6. Discussion and conclusions

We have determined the leading-order flow on the fluid-bridge scale during an inertial
regime of early-time drop coalescence. Over the fluid bridge, there is a viscous wake that
contains the momentum created by surface tension in the tightly curved region at the
edge of the fluid bridge. Fluid is entrained into the wake from above and below, and this
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entrainment drives an inviscid flow on the fluid-bridge scale that opens up the gap ahead
of the fluid bridge. The opening of the gap alters the far-field conditions for the flow at the
edge of the fluid bridge, and consequently alters the rate of coalescence.

In the tightly curved region, there is a leading-order force balance between inertia and
surface tension that gives the evolution of the fluid-bridge radius as

rb = D
(
γ a
ρ

)1/4

t1/2, (6.1)

where D is a constant. For a drop with non-zero viscosity, we determined D = 21/2 using
a volume conservation argument equating the flux provided to the tightly curved region
through the wake and the flux used to fill the gap ahead of the fluid bridge. Interestingly,
the coefficient D does not depend on the viscosity of the fluid in the drop, even though it
provides the mechanism for wake formation and entrainment, and the entrainment has a
leading-order effect on the value of D.

For D = 21/2 the streamlines that we obtained for the entrainment-driven flow and the
resultant surface profile are in very good agreement with the available numerical data
of AHB. In particular, the assumptions made for mass and momentum conservation in
the wake and gap are well supported by the numerical results. Moreover, the theoretical
value D = 21/2 that we have obtained is in fairly good agreement with the numerical result
D = 1.5 of SS14, and in reasonable agreement with the experimental results of PBN.

For sufficiently small Oh (at least Oh < 0.001) and sufficiently small external viscosity,
it is possible that the dynamics of inertial coalescence might include a series of
reconnection events, as calculated for the case of an ideal fluid (Oh = 0) by DEJ. (This
has yet to be observed in experiments.) If so, then the flow that we have found on the
fluid-bridge scale could also be applied in an average sense to such a case. The momentum
created by surface tension between each reconnection event should be left behind with
the toroidal bubble in the fluid bridge after each reconnection. (Numerically, DEJ set
the existing flow back to zero after each reconnection.) Averaging over many sequential
reconnections, this momentum forms a wake with a mass and momentum flux as described
in § 2. Then, away from the tightly curved region, there is again an entrainment-driven
flow (3.12) that opens up the gap ahead of the fluid bridge. Rescaling the results of DEJ to
account for this additional gap opening would reduce the coefficient D from approximately
1.6 to 1.3.
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