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ASYMPTOTIC RESULTS ON TAIL MOMENT AND TAIL CENTRAL
MOMENT FOR DEPENDENT RISKS
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Abstract

In this paper, we consider a financial or insurance system with a finite number of indi-
vidual risks described by real-valued random variables. We focus on two kinds of risk
measures, referred to as the tail moment (TM) and the tail central moment (TCM), which
are defined as the conditional moment and conditional central moment of some individ-
ual risk in the event of system crisis. The first-order TM and the second-order TCM
coincide with the popular risk measures called the marginal expected shortfall and the
tail variance, respectively. We derive asymptotic expressions for the TM and TCM with
any positive integer orders, when the individual risks are pairwise asymptotically inde-
pendent and have distributions from certain classes that contain both light-tailed and
heavy-tailed distributions. The formulas obtained possess concise forms unrelated to
dependence structures, and hence enable us to estimate the TM and TCM efficiently.
To demonstrate the wide application of our results, we revisit some issues related to
premium principles and optimal capital allocation from the asymptotic point of view.
We also give a numerical study on the relative errors of the asymptotic results obtained,
under some specific scenarios when there are two individual risks in the system. The
corresponding asymptotic properties of the degenerate univariate versions of the TM
and TCM are discussed separately in an appendix at the end of the paper.

Keywords: Tail moment; tail central moment; risk measure; asymptotic independence;
regular variation; Gumbel max-domain of attraction
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1. Introduction

Consider a financial or insurance system that contains a finite number of, say d ≥ 2, indi-
vidual components. Let X1, . . ., Xd be d real-valued random variables describing the net losses
(i.e., risks) of the individual components, and denote by Sd =∑d

i=1 Xi the overall risk of the
system. All of X1, . . ., Xd are assumed to be unbounded from above, since the ones with finite
upper bounds will not pose substantial risks to the system. The tail moment (TM) of the kth
individual risk for some 1 ≤ k ≤ d is defined as the conditional moment of Xk given that Sd

exceeds a certain threshold. Specifically, for each positive integer n ∈ N+, each 1 ≤ k ≤ d, and
any t > 0, the nth-order TM of the kth individual risk is formulated as

TM(n)
k (t) =E

(
Xn

k |Sd > t
)

. (1.1)
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Asymptotic results on tail moment and tail central moment 1117

Here and hereafter, a mathematical expectation is assumed to exist by default whenever it
appears. We further define the corresponding nth-order tail central moment (TCM) of the kth
individual risk as

TCM(n)
k (t) =E

((
Xk − TM(1)

k (t)
)n∣∣∣ Sd > t

)
. (1.2)

In practice, the threshold t is usually chosen to be the value at risk (VaR) of Sd under a
confidence level q ∈ (0, 1), i.e., VaRq(Sd) = inf{x : P(Sd ≤ x) ≥ q}.

The TM and TCM with even orders, i.e., TM(2n)
k (t) and TCM(2n)

k (t) for n ∈ N+, are always
non-negative for any t > 0. In addition, the following study indicates that under our mod-
els, TM(2n−1)

k (t) will eventually be positive as t increases, which is not always the case for

TCM(2n−1)
k (t). Hence, under our models, TM(n)

k (t) and TCM(2n)
k (t) can be regarded as standard

measures with non-negativity when t is large or, correspondingly, when q is close to 1 if t is
chosen to be VaRq(Sd). It is worth noting that a risk measure is usually not required to be non-

negative (see, e.g., McNeil et al. [36]), and then both TM(n)
k (t) and TCM(n)

k (t) can be applied

as risk measures. In fact, most of the time we are only interested in properties of TM(n)
k (t) and

TCM(n)
k (t) when t is very large, since only in such a case does the conditioning event {Sd > t}

mean an extreme system crisis that is of real concern. On the other hand, in general it is dif-
ficult or even impossible to derive exact closed-form expressions for TM(n)

k (t) and TCM(n)
k (t)

with respect to t, especially when there are various dependence structures among the individ-
ual risks. Thus, one of the main lines of study in this area is to seek effective and efficient
estimates of TM(n)

k (t) and TCM(n)
k (t) for large t, and this is also the main target of the present

paper.
Remarkably, TM(1)

k (t) is a very popular risk measure and has attracted much scholarly atten-
tion from both researchers and practitioners in recent decades. In the literature, it is usually
called the marginal expected shortfall and is used to measure the contribution of some individ-
ual component to a system crisis. Additionally, it is also widely applied in capital allocation.
Some regulatory environments (e.g., the Swiss Solvency Test) require that the total capital of
the system equals the conditional tail expectation of Sd with respect to some threshold t, i.e.,
E(Sd |Sd > t ). Then the most intuitive and commonly used capital allocation rule is the famous
Euler one, which assigns the amount of TM(1)

k (t) to the kth individual component; see Denault
[13], Asimit and Li [3], and Baione et al. [4]. There have been many fruitful contributions
to the study of TM(1)

k (t). See Cai and Li [9], Furman and Landsman [20], Dhaene et al. [14],
Bargès et al. [5], Vernic [43], Ignatieva and Landsman [25], and Marri and Moutanabbir [35]
for works devoted to finding exact expressions for TM(1)

k (t) when (X1, . . . , Xd) follows some
specific joint distributions. On the other hand, assuming that X1, . . ., Xd are non-negative and
have distributions from the Fréchet or Gumbel max-domain of attraction (MDA), Asimit et al.
[2] obtained a series of asymptotic formulas for TM(1)

k (t) as t → ∞ under certain dependence
structures, including both the asymptotic independence and asymptotic dependence cases.
Some of the results in Asimit et al. [2] were extended to more general frameworks in the
recent work of Li [34]. See Joe and Li [26], Hua and Joe [23], Zhu and Li [45], and Kley
et al. [29] for related discussions under the assumption that (X1, . . . , Xd) is of multivariate
regular variation. Tang and Yuan [42] considered a variant of TM(1)

k (t), in which (X1, . . . , Xd)
is modeled by a randomly weighted form (ξ1Y1, . . . , ξdYd). They obtained asymptotic results
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under the assumptions that Y1, . . ., Yd are independent random variables with heavy-tailed dis-
tributions and that ξ1, . . ., ξd satisfy certain moment conditions. Recently, Chen and Liu [11]
extended the work of Tang and Yuan [42] to allow an asymptotic independence structure among
Y1, . . ., Yd. For related investigations from the statistical perspective, we refer the reader to El
Methni et al. [17], Cai et al. [8], Acharya et al. [1], Hou and Wang [22], and Sun et al. [41].

Moreover, TCM(2)
k (t) is a multivariate extension of the so-called tail variance (TV) risk

measure proposed by Furman and Landsman [19], and it quantifies the degree of deviation
between an individual risk and the corresponding marginal expected shortfall. Furman and
Landsman [19] and Ignatieva and Landsman [24] derived explicit expressions for TCM(2)

k (t)
when (X1, . . . , Xd) follows multivariate elliptical distributions. Other related studies have
mainly concentrated on the TV, i.e., the degenerate univariate version of TCM(2)

k (t) with d = 1,
and most of the results obtained have been for the random risk with a distribution of ellip-
tical type; see Kim [27] and Kim and Kim [28]. We can also find applications of TM(1)

k (t)

and TCM(2)
k (t) in optimal capital allocation problems based on tail mean-variance models; see

Landsman [30], Xu and Mao [44], Eini and Khaloozadeh [16], and Cai and Wang [10] for
details. Nevertheless, few existing works have focused on TM(n)

k (t) or TCM(n)
k (t) with higher

orders, which also have a wide range of applications in constructing insurance premium prin-
ciples and other risk measures incorporating higher tail moments (e.g., tail skewness and tail
kurtosis); see Ramsay [39] and Bawa and Lindenberg [6]. Among the few contributions, Kim
[27] gave some explicit expressions for the degenerate univariate version of TM(n)

k (t) with
d = 1 when the risk has a distribution from the exponential family, and Landsman et al. [31]
extended the work of Kim [27] to the elliptical and log-elliptical distribution classes.

In this paper, we study the asymptotic behavior of TM(n)
k (t) and TCM(n)

k (t) as t → ∞ under
the framework in which X1, . . ., Xd are pairwise asymptotically independent and possess dis-
tributions from the Fréchet or Gumbel MDA. Under our models, we will provide a uniform
methodology by which asymptotic results on TM(n)

k (t) and TCM(n)
k (t) can be obtained for

any n ∈ N+. All of our results are in the concise form of some constant times tn. The con-
stants appearing in the formulas for TM(n)

k (t) and TCM(2n)
k (t) are proved to be positive, and

the constant corresponding to TCM(2n−1)
k (t) is also nonzero for most of choices of the model

parameters. Hence, most of our asymptotic results are precise ones which enable us to effec-
tively estimate TM(n)

k (t) and TCM(n)
k (t) for large t. Additionally, thanks to the assumption of

asymptotic independence among X1, . . ., Xd, the results obtained depend only on information
from the marginal distributions of (X1, . . . , Xd), and hence can bring high efficiency to practi-
cal calculations. Another interesting finding observed from the derivations of our main results
is that, although X1, . . ., Xd are set to be real-valued, the left tails of X1, . . ., Xd do not affect
the asymptotic properties of TM(n)

k (t) and TCM(n)
k (t) under our models, even when they are

asymptotically comparable to the corresponding right tails.
The rest of this paper consists of four sections and an appendix. Section 2 introduces nec-

essary preliminaries regarding some classes of distributions and asymptotic independence.
Section 3 states the underlying assumptions of this work and presents our main asymptotic
results for the TM and TCM. Section 4 gives a numerical study on the relative errors of the
asymptotic results obtained when there are two components in the system. Section 5 proves our
main results after some preparatory lemmas. The appendix is devoted especially to discussing
the degenerate univariate versions of TM(n)

k (t) and TCM(n)
k (t) with d = 1.

https://doi.org/10.1017/apr.2022.74 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.74


Asymptotic results on tail moment and tail central moment 1119

2. Preliminaries

In what follows, a distribution V = 1 − V is always assumed to have an infinite upper end-
point, i.e., V(x) > 0 for any x ∈ (−∞, ∞). In extreme value theory, V is said to belong to the
Fréchet MDA if there is some α ≥ 0 such that the relation

lim
t→∞

V(tx)

V(t)
= x−α (2.1)

holds for any x > 0. In this case, V is also said to be from the class of regular variation, and
we express the regularity property in (2.1) as V ∈R−α , so that R is the union of all R−α

over the range α ≥ 0. The class R is an important class of heavy-tailed distributions, and its
main members include the Pareto distribution, Student’s t-distribution, and the log-gamma
distribution. See Bingham et al. [7] for a monograph on regular variation. By definition, V is
said to belong to the Gumbel MDA (with an infinite upper endpoint) if there is some positive
auxiliary function h such that the relation

lim
t→∞

V(t + h(t)x)

V(t)
= e−x (2.2)

holds for any x ∈ (−∞, ∞). We denote by V ∈ GMDA(h) the property stated in (2.2). It is
known that the function h is unique up to asymptotic equivalence and satisfies h(t) = o(t);
see Chapter 1.1 of Resnick [40] or Chapter 3.3.3 of Embrechts et al. [18]. The Gumbel
MDA contains both light-tailed distributions (e.g., the exponential and normal distributions)
and heavy-tailed distributions (e.g., the log-normal distribution). It is easy to check that if
V ∈ GMDA(h), then V belongs to the class of rapid variation, which is denoted by R−∞ and
is characterized by the following relation:

lim
t→∞

V(tx)

V(t)
= 0, x > 1.

Clearly, the concepts of regular and rapid variation can be naturally extended to a general
positive function g. Namely, for some β ∈ [−∞, ∞], we write g ∈Rβ if (2.1) holds with V
and −α replaced by g and β, respectively. The well-known Karamata-type results hold for
regularly and rapidly varying functions; i.e., if g ∈Rβ with β ∈ (−∞, −1), then

lim
t→∞

∫∞
t g(x)dx

tg(t)
= − 1

β + 1
, (2.3)

while if β = −∞ and g is non-increasing, then it holds for any r ∈ (−∞, ∞) that

lim
t→∞

∫∞
t xrg(x)dx

tr+1g(t)
= 0. (2.4)

See, e.g., Appendix A3 of Embrechts et al. [18] for more details.
Given d real-valued random variables Z1, . . ., Zd without upper bounds, we say they are

pairwise asymptotically independent if, for each pair 1 ≤ i �= j ≤ d,

lim
t→∞

P(|Zi| > t, Zj > t)

P(Zi > t) + P(Zj > t)
= 0; (2.5)
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see, among many others, Chen and Yuen [12], Li [33], and Leipus et al. [32] for discussions
and applications of this dependence structure. Note that the relation (2.5) will play an important
role in dealing with joint probabilities related to the left or right tails of the random variables. If
the right tails of Z1, . . ., Zd are asymptotically proportionally equivalent, i.e., limt→∞ P(Zi >

t)/P(Z1 > t) = ci for each 1 ≤ i ≤ d and some ci > 0, then the relation (2.5) is equivalent to

lim
t→∞

P(|Zi| > t, Zj > t)

P(Z1 > t)
= 0. (2.6)

If, further, Z1 has a regularly varying tail, then (2.6) implies that for any a > 0 and b > 0,

lim
x→∞

P(|Zi| > at, Zj > bt)

P(Z1 > t)
= 0. (2.7)

To verify (2.7), we only need to note that

lim sup
t→∞

P(|Zi| > at, Zj > bt)

P(Z1 > t)
≤ lim

t→∞
P
(|Zi| > min{a, b}t, Xj > min{a, b}t)

P(Z1 > min{a, b}t)
P(Z1 > min{a, b}t)

P(Z1 > t)
= 0.

Hereafter, unless otherwise stated, all limit relationships hold as t → ∞. For two posi-
tive functions g1 and g2, we write g1 (t)� g2 (t) or g2 (t)� g1 (t) if lim sup g1 (t) /g2 (t) ≤ 1;
we write g1 (t) ∼ g2 (t) if lim g1 (t) /g2 (t) = 1; and we write g1 (t) 
 g2 (t) if 0 <

lim inf g1 (t) /g2 (t) ≤ lim sup g1 (t) /g2 (t) < ∞. For a real number a, we write a+ =
max{a, 0} and a− = − min{a, 0}. As usual, 1{·} stands for the indicator function.

3. Main results

In this section, we present our main asymptotic results for the TM and TCM defined by
(1.1) and (1.2) with n ∈ N+. Denote by F1, . . ., Fd the distributions of the individual risks X1,
. . ., Xd. We conduct our study under the following two assumptions, respectively.

Assumption 3.1. F1 ∈R−α for some α > n, and Fi(t) ∼ ciF1(t) and Fi(−t) = O(F1(t)) for
each 1 ≤ i ≤ d and some ci > 0. Also, X1, . . ., Xd are pairwise asymptotically independent.

Assumption 3.2. F1 ∈ GMDA(h), and Fi(t) ∼ ciF1(t) and Fi(−t) = O(F1(t)) for each 1 ≤ i ≤
d and some ci > 0. Also, for each pair 1 ≤ i �= j ≤ d,

lim
t→∞

P
(|Xi| > εh(t), Xj > t

)
F1(t)

= 0, for any ε > 0, (3.1)

and

lim
t→∞

P
(
Xi > Lh(t), Xj > Lh(t)

)
F1(t)

= 0, for some L > 0. (3.2)

The conditions regarding the marginal distributions of (X1, . . . , Xd) in Assumptions 3.1
and 3.2 guarantee the existence of the TM and TCM. The dependence structure defined by
(3.1) and (3.2) was first proposed in Mitra and Resnick [37] and has been extensively studied
and applied in risk theory; see Asimit et al. [2], Hashorva and Li [21], and Asimit and Li
[3]. Since h(t) = o(t), the relation (3.1) obviously implies pairwise asymptotic independence
among X1, . . ., Xd.
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For brevity, in what follows we write

Ci = ci∑d
j=1 cj

∈ (0, 1) , 1 ≤ i ≤ d, (3.3)

where c1, . . ., cd are the positive constants from Assumption 3.1 or 3.2. Now we are ready to
state our main results.

Theorem 3.1. Consider the TM defined by (1.1) with n ∈ N+.

(i) Under Assumption 3.1, it holds for each 1 ≤ k ≤ d that

TM(n)
k (t) ∼ α

α − n
Cktn. (3.4)

(ii) Under Assumption 3.2, it holds for each 1 ≤ k ≤ d that

TM(n)
k (t) ∼ Cktn. (3.5)

Recall the TCM defined by (1.2). By the binomial expansion theorem, we have

TCM(n)
k (t) =

n−1∑
i=0

(
n
i

)
(−1)i

(
TM(1)

k (t)
)i

TM(n−i)
k (t) + (−1)n

(
TM(1)

k (t)
)n

,

where

(
n
i

)
= n!/ (i!(n − i)!). Then, applying Theorem 3.1 immediately yields the following

corollary for the TCM.

Corollary 3.1. Consider the TCM defined by (1.2) with n ∈ N+.

(i) Under Assumption 3.1, it holds for each 1 ≤ k ≤ d that

TCM(n)
k (t) = (

Aα,n,k + o(1)
)

tn, (3.6)

where

Aα,n,k =
n−1∑
i=0

(
n
i

)
(−1)i αi+1

(α − 1)i (α − n + i)
Ci+1

k + (−1)n
(

α

α − 1

)n

Cn
k . (3.7)

(ii) Under Assumption 3.2, it holds for each 1 ≤ k ≤ d that

TCM(n)
k (t) = (

An,k + o(1)
)

tn, (3.8)

where
An,k = lim

α→∞ Aα,n,k = Ck (1 − Ck)
(
(1 − Ck)

n−1 + (−1)nCn−1
k

)
. (3.9)

Remark 3.1. The relations (3.4) and (3.5) imply that TM(n)
k (t) → ∞ for any n ∈ N+ under our

models. Hence, when t is large enough, TM(n)
k (t) and TCM(2n)

k (t) define two standard measures
with non-negativity. Moreover, it is easy to see from (3.9) that A2n,k > 0, since 0 < Ck < 1.
Actually, we can also prove that

Aα,2n,k > 0 (3.10)
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under the conditions of Corollary 3.1(i); see Section 5. Therefore, (3.6) and (3.8) provide
us with precise asymptotic estimates of TCM(2n)

k (t). On the other hand, both Aα,2n−1,k and
A2n−1,k may be less than or equal to 0 for certain choices of α and Ck. When Aα,2n−1,k < 0
or A2n−1,k < 0, (3.6) or (3.8) implies that TCM(2n−1)

k (t) tends to −∞ and hence is not a non-
negative measure for large t. In case Aα,2n−1,k = 0 or A2n−1,k = 0, (3.6) or (3.8) fails to give a
precise asymptotic result for TCM(2n−1)

k (t). Seeking precise estimates of TCM(2n−1)
k (t) in such

a case requires more nuanced analysis, and we will not focus on it in the present paper.

Further consider the special case where, as mentioned before, the threshold t is chosen to be
VaRq(Sd) with q ∈ (0, 1). By Theorem 3.1 of Chen and Yuen [12] and Theorem 3.1 of Hashorva
and Li [21], we have

P(Sd > t) ∼ P

(
d∑

i=1

X+
i > t

)
∼

d∑
i=1

Fi(t) ∼
(

d∑
i=1

ci

)
F1(t) (3.11)

under Assumption 3.1 or 3.2. Then, using Lemma 2.1 of Asimit et al. [2] gives that

VaRq(Sd) ∼
(

d∑
i=1

ci

)1/α

VaRq(X1), q ↑ 1, (3.12)

under Assumption 3.1, while using Lemma 2.4 and the analysis under Corollary 3.2 of Asimit
et al. [2] gives that

VaRq(Sd) ∼ VaR1−(1−q)/
∑d

i=1 ci
(X1), q ↑ 1, (3.13)

under Assumption 3.2. Hence, plugging (3.12) into (3.4) and (3.6) and plugging (3.13) into
(3.5) and (3.8), we obtain the following asymptotic results for the corresponding TM and TCM
as q ↑ 1.

Corollary 3.2. Consider the TM and TCM defined by (1.1) and (1.2) with n ∈ N+ and t =
VaRq(Sd).

(i) Under Assumption 3.1, we have, for each 1 ≤ k ≤ d,

TM(n)
k

(
VaRq(Sd)

)∼ α

α − n
Ck

(
d∑

i=1

ci

)n/α (
VaRq(X1)

)n
, q ↑ 1,

and

TCM(n)
k

(
VaRq(Sd)

)=
⎛⎝( d∑

i=1

ci

)n/α

Aα,n,k + o(1)

⎞⎠ (VaRq(X1)
)n

, q ↑ 1,

where Aα,n,k is given by (3.7).

(ii) Under Assumption 3.2, we have, for each 1 ≤ k ≤ d,

TM(n)
k

(
VaRq(Sd)

)∼ Ck

(
VaR1−(1−q)/

∑d
i=1 ci

(X1)
)n

, q ↑ 1,

and
TCM(n)

k

(
VaRq(Sd)

)= (
An,k + o(1)

) (
VaR1−(1−q)/

∑d
i=1 ci

(X1)
)n

, q ↑ 1,

where An,k is given by (3.9).
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Remark 3.2. Sine X1, . . ., Xd are pairwise asymptotically independent, all of the asymptotic
results obtained in Theorem 3.1, Corollary 3.1, and Corollary 3.2 involve only information
from the marginal distributions of (X1, . . . , Xd). This feature enables us to overcome the
difficulties caused by dependence structures when estimating the values of the TM and TCM.

Remark 3.3. Furman and Landsman [19] proposed the tail variance premium (TVP) and tail
standard deviation premium (TSDP) principles for individual insurance risks. In terms of our
notation, they are formulated as

TVPk(t) = TM(1)
k (t) + wTCM(2)

k (t)

and

TSDPk(t) = TM(1)
k (t) + w

√
TCM(2)

k (t),

where w is a non-negative constant; see Definition 3 of Furman and Landsman [19]. Applying
Theorem 3.1 and Corollary 3.1 immediately yields that

TVPk(t) ∼ wTCM(2)
k (t) ∼ w

(
α

α − 2
Ck − α2

(α − 1)2
C2

k

)
t2

and

TSDPk(t) ∼
(

α

α − 1
Ck + w

√
α

α − 2
Ck − α2

(α − 1)2
C2

k

)
t

under Assumption 3.1, and that

TVPk(t) ∼ wTCM(2)
k (t) ∼ wCk (1 − Ck) t2

and
TSDPk(t) ∼

(
Ck + w

√
Ck (1 − Ck)

)
t

under Assumption 3.2.

Remark 3.4. Our results can also be applied to find asymptotic solutions for some optimal
capital allocation problems based on tail moment models. Denote by pk the capital allocated to
Xk for each 1 ≤ k ≤ d, and by p =∑d

i=1 pi the total capital, which is a fixed number. Dhaene
et al. [15] proposed a capital allocation criterion suggesting that the individual capital pk be
set as close as possible to Xk, in the sense of minimizing some distance measure. Xu and Mao
[44] extended the idea of Dhaene et al. [15] to a tail mean-variance model. Here we choose
a quadratic distance measure and consider the following reduced version of the optimization
problem studied in Xu and Mao [44]:

min
p1(t),...,pd(t)

d∑
i=1

E

(
(Xi − pi(t))

2
∣∣∣ Sd > t

)
, s.t.

d∑
i=1

pi(t) = p(t), (3.14)

where p1(t), . . ., pd(t) and p(t) are the individual capitals and total capital corresponding to the
threshold t. By Theorem 2.2 of Xu and Mao [44], the optimal solution of (3.14) is

p∗
k (t) = p(t) −∑d

i=1 TM(1)
i (t)

d
+ TM(1)

k (t), 1 ≤ k ≤ d. (3.15)
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Note that (3.15) holds for any X1, . . ., Xd with finite second-order moments that make the
problem (3.14) meaningful. Now, given the conditions of Theorem 3.1, the asymptotic estimate
of p∗

k (t) depends on the asymptotic behavior of p(t). Assume that p(t) is set to be asymptotically
proportionally equivalent to the conditional tail expectation of Sd, i.e., for some H ≥ 1,

p(t) ∼ HE(Sd |Sd > t ) = H
d∑

i=1

TM(1)
i (t).

Then, applying Theorem 3.1 to (3.15) gives that

p∗
k (t) ∼ α

α − 1

(
H − 1

d
+ Ck

)
t

under Assumption 3.1, and that

p∗
k (t) ∼

(
H − 1

d
+ Ck

)
t

under Assumption 3.2. When H = 1, so that p(t) ∼E(Sd |Sd > t ), it holds under both
Assumptions 3.1 and 3.2 that

p∗
k (t) ∼ TM(1)

k (t),

which coincides with the Euler rule. Actually, in the case of H = 1, the asymptotic optimal
solution

(
p∗

1(t), . . . , p∗
d(t)

)
minimizes each term in the summation of the optimization objective

in (3.14). Moreover, if p(t) is set to be a quantity such that t = o(p(t)), say, a linear combination
of some higher-order TM and TCM, then it holds under both Assumptions 3.1 and 3.2 that

p∗
1(t) ∼ · · · ∼ p∗

d(t) ∼ 1

d
p(t).

In this case, the asymptotic optimal allocation rule is just to allocate the total capital equally to
each individual risk.

4. Numerical study on relative errors

In this section, we study the relative errors between our main asymptotic results and the
accurate values corresponding to them when there are two individual risks (i.e., d = 2) in the

system. For this purpose, denote by T̃M(n)
k (t) and T̃CM

(n)
k (t) with k = 1, 2 the asymptotic results

obtained in Theorem 3.1 and Corollary 3.1 for TM(n)
k (t) and TCM(n)

k (t). Denote by R(n)
TM,k(t) and

R(n)
TCM,k(t) the corresponding relative errors, i.e.,

R(n)
TM,k(t) =

∣∣∣TM(n)
k (t) − T̃M(n)

k (t)
∣∣∣

TM(n)
k (t)

(4.1)

and

R(n)
TCM,k(t) =

∣∣∣∣TCM(n)
k (t) − T̃CM

(n)
k (t)

∣∣∣∣
TCM(n)

k (t)
. (4.2)
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For simplicity, let the random risks X1 and X2 be non-negative in this section. We assume
that the joint distribution of (X1, X2) belongs to the Farlie–Gumbel–Morgenstern (FGM) family
with a parameter θ ∈ [−1, 1], i.e.,

P(X1 ≤ x, X2 ≤ y) = F1(x)F2(y)
(
1 + θF1(x)F2(y)

)
. (4.3)

It follows from (4.3) that

P(X1 > x, X2 > y) = F1(x)F2(y) (1 + θF1(x)F2(y)) , (4.4)

which implies asymptotic independence between X1 and X2. Note that X1 and X2 are positively
dependent if θ ≥ 0, and are negatively dependent if θ ≤ 0; see Definition 5.2.1 of Nelsen [38].

In what follows, we give some numerical analyses in two specific scenarios to illustrate the
effects of different model parameters on the convergence rates of R(n)

TM,1(t) and R(2)
TCM,1(t).

Scenario 4.1. Let (X1, X2) have the joint distribution given by (4.3) with the marginal
distributions

Fi(x) = 1 − λα
i (x + λi)

−α , x ≥ 0, α > 0, i = 1, 2,

where λ1 and λ2 are set to be 100 and 120, respectively.

In this scenario, it is easy to check that Assumption 3.1 holds with c1 = 1 and c2 = (λ2/λ1)
α .

For choices of α and n such that α > n, applying Theorem 3.1(i) gives that

T̃M(n)
1 (t) = α

(α − n) (1 + (λ2/λ1)
α)

tn. (4.5)

On the other hand, denote by fi the density of Xi for i = 1, 2, i.e.,

fi(x) = αλα
i (x + λi)

−α−1 , x ≥ 0.

By (4.3), the joint density of (X1, X2) is

fX1,X2 (x, y) = f1(x)f2(y) (1 + θ(1 − 2F1(x)) (1 − 2F2(y))) , x, y ≥ 0.

Then, the joint density of (X1, X1 + X2) can be calculated and has the form

fX1,X1+X2 (x, y) = f1(x)f2(y − x) (1 + θ(1 − 2F1(x)) (1 − 2F2(y − x))) , 0 ≤ x ≤ y.

Further calculations yield that

P(X1 ∈ dx, X1 + X2 > t) =
∫ ∞

t
fX1,X1+X2 (x, y)dydx

= f1(x)F2(t − x) (1 − θ(1 − 2F1(x)) F2(t − x)) dx,

and

P(X1 + X2 > t) =
∫ ∞

0
P(X1 ∈ dx, X1 + X2 > t)

=
∫ t

0
f1(x)F2(t − x) (1 − θ(1 − 2F1(x)) F2(t − x)) dx + F1(t).
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FIGURE 1. The graph of R(n)
TM,1(t) in Scenario 4.1 with different parameters.

Thus, we can obtain the exact value of TM(n)
1 (t) using

TM(n)
1 (t) =

∫ ∞

0
xnP(X1 ∈ dx| X1 + X2 > t)

=
∫ t

0 xnf1(x)F2(t − x) (1 − θ(1 − 2F1(x)) F2(t − x)) dx + ∫∞
t xnf1(x)dx∫ t

0 f1(x)F2(t − x) (1 − θ(1 − 2F1(x)) F2(t − x)) dx + F1(t)
. (4.6)

Then, plugging (4.5) and (4.6) into (4.1) gives R(n)
TM,1(t). We calculate the values of R(n)

TM,1(t)
from t = 1000 to t = 3000 in steps of 50 for different choices of α, θ , and n, respectively, with
the other parameters fixed. The corresponding numerical results are plotted in Figure 1. It is
worth noting that the parameters α, θ , and n describe the tail behavior of the risks, the degree
of the dependence, and the order of the TM, respectively. Thus, Figure 1(i) indicates that a
heavier tail of X1, i.e., a smaller value of α, implies a faster convergence rate for R(1)

TM,1(t).

Additionally, Figure 1(ii) shows that the convergence rate of R(1)
TM,1(t) increases as the value of

θ increases. In other words, the positive dependence between the risks may help to speed up
the convergence of R(1)

TM,1(t), while the case of negative dependence is just the opposite. On the

other hand, however, Figure 1(iii) seems inadequate to reveal a clear change law for R(n)
TM,1(t)

with respect to the order parameter n.
For R(n)

TCM,1(t), we consider here only R(2)
TCM,1(t), which corresponds to the interesting TV

risk measure. By Corollary 3.1(i), it holds for α > 2 that

T̃CM
(2)
1 (t) =

(
α

(α − 2) (1 + (λ2/λ1)
α)

− α2

(α − 1)2 (1 + (λ2/λ1)
α)2

)
t2. (4.7)

The exact value of TCM(2)
1 (t) can be calculated by using (4.6) and the equality

TCM(2)
1 (t) = TM(2)

1 (t) −
(

TM(1)
1 (t)

)2
. (4.8)

https://doi.org/10.1017/apr.2022.74 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.74


Asymptotic results on tail moment and tail central moment 1127

FIGURE 2. The graph of R(n)
TCM,1(t) in Scenario 4.1 with different parameters.

Then, R(2)
TCM,1(t) can be obtained by plugging (4.7) and (4.8) into (4.2). We calculate the val-

ues of R(2)
TCM,1(t) from t = 1000 to t = 3000 in steps of 50 for different choices of α and θ ,

respectively, and present the corresponding numerical results in Figure 2. In contrast to the
phenomenon shown in Figure 1(i) for R(1)

TM,1(t), Figure 2(i) indicates that the lighter the tail of

X1 is, the faster R(2)
TCM,1(t) converges to 0. On the other hand, we cannot make a clear judg-

ment on the change law of R(2)
TCM,1(t) with respect to the dependence parameter θ according to

Figure 2(ii).

Scenario 4.2. Let (X1, X2) have the joint distribution given by (4.3) with the marginal
distributions

F1(x) = F2(x) = 1 − e−(log(x+1))γ , x ≥ 0, γ > 1.

In this scenario, we have F1 ∈ GMDA(h) with

h(t) ∼ t

γ (log t)γ−1
.

Since h(t) → ∞, (3.1) follows from (4.4). It is not difficult to verify that

F
2
1 (h(t)) = o

(
F1 (t)

)
,

which, combined with (4.4), implies (3.2). Thus, Assumption 3.2 holds with c1 = c2 = 1.
Applying Theorem 3.1(ii) gives that

T̃M(n)
1 (t) = 1

2
tn. (4.9)

The exact value of TM(n)
1 (t) can be obtained using (4.6) with

f1(x) = γ (log (x + 1))γ−1 e−(log(x+1))γ

x + 1
, x ≥ 0.
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FIGURE 3. The graph of R(n)
TM,1(t) in Scenario 4.2 with different parameters.

Then, plugging (4.9) and (4.6) into (4.1) gives R(n)
TM,1(t). Additionally, by Corollary 3.1(ii), we

have

T̃CM
(2)
1 (t) = 1

4
t2,

which, together with (4.8) and (4.2), gives R(2)
TCM,1(t). Similarly as in Scenario 4.1, we calcu-

late the values of R(n)
TM,1(t) and R(2)

TCM,1(t) from t = 1000 to t = 3000 in steps of 50 for different
choices of the model parameters; we present the corresponding numerical results in Figures 3
and 4. In this scenario, X1 and X2 have an identical rapidly varying tail, which is lighter than
any regularly varying tails as considered in Scenario 4.1. The numerical results reflect dif-
ferent relationships between the model parameters and the convergence rates of R(n)

TM,1(t) and

R(2)
TCM,1(t). Figures 3(i, ii) and 4(i, ii) indicate that a lighter tail of X1 or a larger value of θ may

lead to faster convergence rates for both R(1)
TM,1(t) and R(2)

TCM,1(t). Moreover, Figure 3(iii) shows

that a smaller value of n tends to give a faster convergence rate for R(n)
TM,1(t).

It should be clarified that all the observations from the numerical study above are based on
the model setups and value range of t that we considered in Scenarios 4.1 and 4.2. Rigorous
investigations of the convergence properties of R(n)

TM,k(t) and R(n)
TCM,k(t) would require us to

seek analytical asymptotic expressions for R(n)
TM,k(t) and R(n)

TCM,k(t) with respect to the model

parameters. This task is essentially related to second-order asymptotic results on TM(n)
k (t) and

TCM(n)
k (t), and we will not pursue it in this paper. The reader is referred to Section 5.1 of Li

[34] for analytical asymptotic results on R(1)
TM,1(t) in some special cases of Scenario 4.1.

5. Proofs of the main results

We begin with two lemmas established under general frameworks, in which the distributions
of the random variables are not assumed to be of any specific type.
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FIGURE 4. The graph of R(n)
TCM,1(t) in Scenario 4.2 with different parameters.

Lemma 5.1. Let Z1, . . ., Zd be d real-valued random variables with distributions V1, . . ., Vd.
Assume that the following conditions hold:

(a) Vi(t) 
 V1(t) for each 1 ≤ i ≤ d.

(b) For any ε > 0 and each pair 1 ≤ i �= j ≤ d,

lim
t→∞

P
(
Zi > εt, Zj > t

)
V1(t)

= 0.

(c) P

(∑d
i=1 Zi > t

)
∼ P

(∑d
i=1 Z+

i > t
)

∼∑d
i=1 Vi(t).

Then, for each 1 ≤ k ≤ d, we have the following assertions:

(i) For any 0 < ε ≤ 1, it holds uniformly for y ∈ [ε, 1] that

P

(
Zk > yt,

d∑
i=1

Zi > t

)
∼ Vk(t).

(ii) It holds uniformly for s ∈ [t, ∞) that

P

(
Zk > s,

d∑
i=1

Zi > t

)
∼ Vk(s).

Proof. Part (i): Clearly, for all y ∈ [ε, 1],

P

(
Zk > t,

d∑
i=1

Zi > t

)
≤ P

(
Zk > yt,

d∑
i=1

Zi > t

)
≤ P

(
Zk > εt,

d∑
i=1

Zi > t

)
.
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Thus, we only need to prove

P

(
Zk > εt,

d∑
i=1

Zi > t

)
� Vk(t) (5.1)

and

P

(
Zk > t,

d∑
i=1

Zi > t

)
� Vk(t). (5.2)

We have

P

(
Zk > εt,

d∑
i=1

Zi > t

)
≤ P

(
Zk > εt,

d∑
i=1

Z+
i > t

)

= P

(
d∑

i=1

Z+
i > t

)
− P

(
d∑

i=1

Z+
i > t, Zk ≤ εt

)

=: P

(
d∑

i=1

Z+
i > t

)
− I(t). (5.3)

It holds that

I(t) ≥ P

(
d⋃

i=1

{Zi > t} , Zk ≤ εt

)

= P

(
d⋃

i=1

{Zi > t}
)

− P

(
d⋃

i=1

{Zi > t} , Zk > εt

)

≥
d∑

i=1
i �=k

P(Zi > t) −
∑

1≤i<j≤d

P
(
Zi > t, Zj > t

)−
d∑

i=1
i �=k

P(Zi > t, Zk > εt) , (5.4)

where in the last step we used the Bonferroni inequality and the fact that {Zk > t, Zk > εt} =
{Zk > t}, since 0 < ε ≤ 1. We then obtain (5.1) by plugging (5.4) into (5.3) and applying the
conditions (a)–(c). On the other hand, we write

P

(
Zk > t,

d∑
i=1

Zi > t

)
= P

(
d∑

i=1

Zi > t

)
− P

(
d∑

i=1

Zi > t, Zk ≤ t

)

=: P

(
d∑

i=1

Zi > t

)
− J(t). (5.5)
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It holds that

J(t) = P

⎛⎜⎜⎝ d∑
i=1

Zi > t, Zk ≤ t,
d⋃

i=1
i �=k

{Zi > t}

⎞⎟⎟⎠+ P

(
d∑

i=1

Zi > t,
d⋂

i=1

{Zi ≤ t}
)

≤
d∑

i=1
i �=k

P(Zi > t) + P

(
d∑

i=1

Z+
i > t,

d⋂
i=1

{Zi ≤ t}
)

=
d∑

i=1
i �=k

P(Zi > t) + P

(
d∑

i=1

Z+
i > t

)
− P

(
d⋃

i=1

{Zi > t}
)

≤ P

(
d∑

i=1

Z+
i > t

)
− P(Zk > t) +

∑
1≤i<j≤d

P
(
Zi > t, Zj > t

)
. (5.6)

Plugging (5.6) into (5.5) and noting the conditions (a)–(c), we obtain (5.2) and complete the
proof of the assertion (i).

Part (ii): We always have

P

(
Zk > s,

d∑
i=1

Zi > t

)
≤ Vk(s).

By the assertion (i) with ε = 1, it holds uniformly for s ∈ [t, ∞) that

P

(
Zk > s,

d∑
i=1

Zi > t

)
≥ P

(
Zk > s,

d∑
i=1

Zi > s

)
∼ Vk(s).

Combining the two estimates above, we obtain the assertion (ii). �
Lemma 5.2. Let Z1, . . ., Zd be d real-valued random variables with distributions V1, . . ., Vd.
Assume that the condition (a) of Lemma 5.1 and the following conditions hold:

(b′) For any ε > 0 and each pair 1 ≤ i �= j ≤ d,

lim
t→∞

P
(
Z−

i > εt, Zj > t
)+ P

(
Zi > t, Zj > t

)
V1(t)

= 0.

(c′) P

(∑d
i=1 Z+

i > t
)

∼∑d
i=1 Vi(t).

Then, for each 1 ≤ k ≤ d and any ε > 0, it holds uniformly for y ∈ [ε, ∞) that

P

(
Z−

k > yt,
d∑

i=1

Zi > t

)
= o

(
Vk(t)

)
.

Proof. It holds for all y ∈ [ε, ∞) that

P

(
Z−

k > yt,
d∑

i=1

Zi > t

)
≤ P

(
Z−

k > εt,
d∑

i=1

Z+
i > t

)
.
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Then, using steps similar to those shown in (5.3) and (5.4) and noting the fact that{
Zk > t, Z−

k > εt
}=∅, we have

P

(
Z−

k > εt,
d∑

i=1

Z+
i > t

)
≤ P

(
d∑

i=1

Z+
i > t

)
−

d∑
i=1

P(Zi > t)

+
∑

1≤i<j≤d

P
(
Zi > t, Zj > t

)+
d∑

i=1
i �=k

P
(
Zi > t, Z−

k > εt
)

.

Applying the conditions (a), (b′), and (c′) to the above relation completes the proof. �
The next two lemmas can be regarded as a decomposition of the proof of Theorem 3.1.

Through these two lemmas, we also find that the left tails of the individual risks do not affect
the asymptotic properties of the TM and TCM under our models.

Lemma 5.3. Let TM(n)
k,+(t) =E

((
X+

k

)n |Sd > t
)

for each 1 ≤ k ≤ d.

(i) If all the conditions, except Fi(−t) = O(F1(t)), of Assumption 3.1 are satisfied, then

TM(n)
k,+(t) ∼ α

α − n
Cktn.

(ii) If all the conditions, except Fi(−t) = O(F1(t)), of Assumption 3.2 are satisfied, then

TM(n)
k,+(t) ∼ Cktn.

Proof. By Theorem 3.1 of Chen and Yuen [12] and Theorem 3.1 of Hashorva and Li [21],
the equivalence relations shown in (3.11) hold under the conditions of this lemma. Recalling
also (2.7) and (3.1), it is easy to check that all the conditions of Lemma 5.1 are satisfied by
(X1, . . . , Xd), and hence the assertions obtained in Lemma 5.1 hold for (X1, . . . , Xd). For any
0 < ε < 1, we write

TM(n)
k,+(t) =

(∫ εtn

0
+
∫ tn

εtn
+
∫ ∞

tn

)
P

(
Xk > x1/n |Sd > t

)
dx

=: I1(t) + I2(t) + I3(t). (5.7)

Clearly,

0 ≤ I1(t) ≤ εtn. (5.8)

For I2(t), we first note that, by (3.11) with Fi(t) ∼ ciF1(t) for each 1 ≤ i ≤ d,

Fi(t)

P(Sd > t)
→ Ci, 1 ≤ i ≤ d, (5.9)
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where Ci is given by (3.3). Then, under Assumption 3.1 or 3.2, it holds that

I2(t) =
∫ tn

εtn P
(
Xk > x1/n, Sd > t

)
dx

P(Sd > t)

=
∫ 1
ε
P
(
Xk > ty1/n, Sd > t

)
dy

P(Sd > t)
tn

∼ (1 − ε)
Fk(t)

P(Sd > t)
tn

∼ (1 − ε) Cktn, (5.10)

where in the second step we used a change of variables, in the third step we used Lemma 5.1(i),
and in the last step we used (5.9). Finally, under Assumption 3.1 or 3.2, we have

I3(t) =
∫∞

tn P
(
Xk > x1/n, Sd > t

)
dx

P(Sd > t)

∼
∫∞

tn Fk(x1/n)dx

P(Sd > t)

= n
∫∞

t yn−1Fk(y)dy

tnFk(t)

Fk(t)

P(Sd > t)
tn,

where in the second step we used Lemma 5.1(ii) and in the last step we used a change of
variables. If Assumption 3.1 holds, then tn−1Fk(t) ∈R−α+n−1 with −α + n − 1 < −1. Hence,
it follows from (5.9) and (2.3) that

I3(t) ∼ n

α − n
Cktn. (5.11)

If Assumption 3.2 holds, then using (5.9) and (2.4) gives that

I3(t) = o
(
tn
)

. (5.12)

Plugging (5.8), (5.10), and (5.11) or (5.12) into (5.7) and letting ε → 0, we complete the
proof. �

Lemma 5.4. Let TM(n)
k,−(t) =E

((
X−

k

)n |Sd > t
)

for each 1 ≤ k ≤ d. Under Assumption 3.1 or
3.2, we have

TM(n)
k,−(t) = o

(
tn
)

.

Proof. In view of (3.11), it is easy to see that Lemma 5.2 is applicable for (X1, . . . , Xd)
under Assumption 3.1 or 3.2. For any 0 < ε < 1, we write

TM(n)
k,−(t) =

(∫ εtn

0
+
∫ ε−1tn

εtn
+
∫ ∞

ε−1tn

)
P

(
X−

k > x1/n |Sd > t
)

dx

=: I1(t) + I2(t) + I3(t). (5.13)
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Clearly, the relation (5.8) still holds for I1(t). In addition, under Assumption 3.1 or 3.2,

I2(t) =
∫ ε−1tn

εtn P
(
X−

k > x1/n, Sd > t
)

dx

P(Sd > t)

≤ P
(
X−

k > ε1/nt, Sd > t
)

Fk(t)

Fk(t)

P(Sd > t)

(
ε−1 − ε

)
tn

= o
(
tn
)
, (5.14)

where in the last step we used Lemma 5.2 and (5.9). Moreover, since Fk(−t) = O(F1(t)) under
Assumption 3.1 or 3.2, there is some constant B such that P

(
X−

k > t
)≤ BF1(t) for t large

enough. Hence, we have

I3(t) =
∫∞
ε−1tn P

(
X−

k > x1/n, Sd > t
)

dx

P(Sd > t)

≤
∫∞
ε−1tn P

(
X−

k > x1/n
)

dx

P(Sd > t)

�
B
∫∞
ε−1tn F1

(
x1/n

)
dx

P(Sd > t)

= Bn
∫∞
ε−1/nt yn−1F1(y)dy

ε−1tnF1
(
ε−1/nt

) F1
(
ε−1/nt

)
P(Sd > t)

ε−1tn,

where in the last step we used a change of variables. If Assumption 3.1 holds, then using (2.3),
F1 ∈R−α , and (5.9) yields that

I3(t) � Bn

α − n
C1ε

α/n−1tn. (5.15)

If Assumption 3.2 holds, then it follows from (2.4) and (5.9) that

I3(t) �
Bn
∫∞
ε−1/nt yn−1F1(y)dy

ε−1tnF1
(
ε−1/nt

) F1 (t)

P(Sd > t)
ε−1tn = o

(
tn
)

. (5.16)

Plugging (5.8), (5.14), and (5.15) or (5.16) into (5.13) and letting ε → 0, we complete the
proof. �

Proof of Theorem 3.1. It is clear that

TM(n)
k (t) =E

((
X+

k − X−
k

)n |Sd > t
)

=E
((

X+
k

)n + (−1)n (X−
k

)n |Sd > t
)

= TM(n)
k,+(t) + (−1)nTM(n)

k,−(t).

A combination of Lemmas 5.3 and 5.4 indicates that

TM(n)
k,−(t) = o(1)TM(n)

k,+(t)

under Assumption 3.1 or 3.2. Hence, we have

TM(n)
k (t) ∼ TM(n)

k,+(t).
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Then the assertions (i) and (ii) of Lemma 5.3 imply the assertions (i) and (ii) of Theorem 3.1,
respectively.

Proof of (3.10). Noting that the random variable
(

Xk − TM(1)
k (t)

)2n
∣∣∣∣D is non-negative for

any event D, we have

t2n ≤E

((
Xk − TM(1)

k (t)
)2n
∣∣∣∣ Xk > t + TM(1)

k (t), Sd > t

)

=
∫∞

0 P

((
Xk − TM(1)

k (t)
)2n

> x, Xk > t + TM(1)
k (t), Sd > t

)
dx

P

(
Xk > t + TM(1)

k (t), Sd > t
)

≤
∫∞

0 P

((
Xk − TM(1)

k (t)
)2n

> x, Sd > t

)
dx

P(Sd > t)

P(Sd > t)

P

(
Xk > t + TM(1)

k (t), Sd > t
)

= TCM(2n)
k (t)

P(Sd > t)

P

(
Xk > t + TM(1)

k (t), Sd > t
) .

Thus,

TCM(2n)
k (t) ≥

P

(
Xk > t + TM(1)

k (t), Sd > t
)

P(Sd > t)
t2n

∼
Fk

(
t + TM(1)

k (t)
)

P(Sd > t)
t2n,

where the last step follows from Lemma 5.1(ii). By Theorem 3.1(i), it holds that

TM(1)
k (t) ∼ α

α − 1
Ckt ≤ 2α

α − 1
Ckt.

Then,

TCM(2n)
k (t) �

Fk

((
1 + 2α

α−1 Ck

)
t
)

P(Sd > t)
t2n

∼ Ck

(
1 + 2α

α − 1
Ck

)−α

t2n,

where in the last step we used Fk ∈R−α and (5.9). Comparing the above estimate with (3.6)
gives that

Aα,2n,k ≥ Ck

(
1 + 2α

α − 1
Ck

)−α

> 0.

This completes the proof of (3.10).
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Appendix A. Supplementary discussions on univariate cases

In this appendix, we turn to the degenerate versions of the TM and TCM defined by (1.1)
and (1.2) with only one risk under consideration. Denoting by a real-valued random variable X
the single risk, for n ∈ N+ and t > 0 we write

TM(n)(t) =E
(
Xn |X > t

)
(A.1)

and
TCM(n)(t) =E

((
X − TM(1)(t)

)n∣∣∣ X > t
)

. (A.2)

Note that X|X > t is a non-negative random variable with the same distribution as X+ ∣∣X+ > t .
Hence, the asymptotic behavior of TM(n)(t) and TCM(n)(t) has nothing to do with the left tail
of X. Let F be the distribution of X. When F ∈R, TM(n)(t) and TCM(n)(t) possess asymptotic
expansions similar to those obtained for their multivariate counterparts in Theorem 3.1(i) and
Corollary 3.1(i).

Theorem A.1. Consider TM(n)(t) and TCM(n)(t) defined by (A.1) and (A.2) with n ∈ N+. If
F ∈R−α for some α > n, then

TM(n)(t) ∼ α

α − n
tn (A.3)

and
TCM(n)(t) = (

Aα,n + o(1)
)

tn, (A.4)

where

Aα,n =
n−1∑
i=0

(
n
i

)
(−1)i αi+1

(α − 1)i (α − n + i)
+ (−1)n

(
α

α − 1

)n

.

Proof. We have

TM(n)(t) =
(∫ tn

0
+
∫ ∞

tn

)
P

(
X > x1/n |X > t

)
dx

= tn +
∫∞

tn F
(
x1/n

)
dx

F(t)

= tn + n
∫∞

t yn−1F(y) dy

tnF(t)
tn, (A.5)

where in the last step we used a change of variables. Since tn−1F(t) ∈R−α+n−1 with −α +
n − 1 < −1, applying (2.3) to the second term of (A.5) gives (A.3). Then, (A.4) follows from
combining (A.3) with the equality

TCM(n)(t) =
n−1∑
i=0

(
n
i

)
(−1)i

(
TM(1)(t)

)i
TM(n−i)(t) + (−1)n

(
TM(1)(t)

)n
. (A.6)

This completes the proof. �
Not surprisingly, the right-hand sides of (A.3) and (A.4) are equal to those of (3.4) and (3.6),

respectively, with Ck = 1. By an approach similar to that used in proving (3.10), we can verify
that Aα,n > 0 for any even n.
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On the other hand, we can also obtain a precise asymptotic formula for TM(n)(t) by similar
treatment when F comes from the wide class of rapid variation.

Theorem A.2. Consider TM(n)(t) defined by (A.1) with n ∈ N+. If F ∈R−∞ then

TM(n)(t) ∼ tn. (A.7)

Proof. The relation (A.7) can be derived by following the same approach as the proof of
Theorem A.1, but applying (2.4) instead of (2.3). �

In fact, it is easy to see from the proofs of Theorems A.1 and A.2 that (A.3) and (A.7) hold
for any positive (not necessarily integer-valued) order satisfying the conditions of the theorems,
because X|X > t is a non-negative random variable as mentioned before.

Now, plugging (A.7) into (A.6) yields only a rough estimate of TCM(n)(t), i.e., TCM(n)(t) =
o(tn) for any n ∈ N+. Thus, more conditions are required to obtain a precise asymptotic result
of TCM(n)(t) when F ∈R−∞. Here we consider only TCM(2)(t), i.e., the TV risk measure,
which is the simplest but also the most interesting special case of TCM(n)(t). For this purpose,
we restrict F to being a von Mises function with an infinite upper endpoint. That is to say, there
is some real number z such that

F(x) = δ exp

{
−
∫ x

z

1

h(y)
dy

}
, x > z, (A.8)

where δ is some positive constant and h is a positive and absolutely continuous function with
density h′ such that h′(t) → 0. It is known that if F is a von Mises function with the representa-
tion (A.8), then F ∈ GMDA(h) ⊂R−∞, and F is differentiable on (z, ∞) with positive density
f such that

f (x) = F(x)

h(x)
; (A.9)

see Chapter 1.1 of Resnick [40] or Chapter 3.3.3 of Embrechts et al. [18]. The class of von
Mises functions is an important subclass of the Gumbel MDA, and it contains many commonly
used distributions, including the exponential, Erlang, normal, and log-normal distributions.

Theorem A.3. Consider TCM(2)(t) defined by (A.2) with n = 2. Let F be a von Mises function
with the representation (A.8). If h is differentiable on (z, ∞) and lim th′(t)/h(t) exists, then

TCM(2)(t) ∼ h2(t). (A.10)

Proof. Denote by v the value of lim th′(t)/h(t), i.e.,

th′(t)
h(t)

→ v ∈ (−∞, ∞). (A.11)

Recalling (A.5), it holds that

TM(1)(t) = t +
∫∞

t F(x) dx

F(t)
. (A.12)

We write

I(t) =
∫∞

t F(x) dx/F(t) − h(t)

h2(t)/t
= t

∫∞
t F(x) dx − tF(t) h(t)

F(t) h2(t)
. (A.13)
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Since F ∈ GMDA(h), Theorem 3.3.26 of Embrechts et al. [18] tells us that∫ ∞

t
F(x) dx ∼ F(t) h(t). (A.14)

The fact that F ∈R−∞ implies that tKF(t) → 0 for any K > 0. Then, noting also h(t) = o(t),
we have

lim
t→∞ t

∫ ∞

t
F(x) dx = lim

t→∞ tF(t) h(t) = lim
t→∞ F(t) h2(t) = 0.

Thus, applying L’Hospital’s rule yields that

lim
t→∞ I(t) = lim

t→∞

∫∞
t F(x) dx − tF(x) − F(t) h(t) + tf (t) h(t) − tF(t) h′(t)

−f (t) h2(t) + 2F(t) h(t)h′(t)

= lim
t→∞

∫∞
t F(x) dx − F(t) h(t) − tF(t) h′(t)

−F(t) h(t) + 2F(t) h(t)h′(t)

= lim
t→∞

∫∞
t F(x) dx/(F(t) h(t)) − 1 − th′(t)/h(t)

−1 + 2h′(t)
= v,

where in the second step we used (A.9) and in the last step we used (A.14), (A.11), and
h′(t) → 0. Recalling (A.13), we have∫∞

t F(x) dx

F(t)
= h(t) + v

h2(t)

t
+ o(1)

h2(t)

t
.

Plugging the above estimate into (A.12) gives that

TM(1)(t) = t + h(t) + v
h2(t)

t
+ o(1)

h2(t)

t
,

and hence (
TM(1)(t)

)2 = t2 + 2th(t) + (2v + 1) h2(t) + o(1)h2(t). (A.15)

On the other hand, it follows from (A.5) that

TM(2)(t) = t2 + 2

∫∞
t xF(x) dx

F(t)
. (A.16)

Let

J(t) =
∫∞

t xF(x) dx/F(t) − th(t)

h2(t)
=
∫∞

t xF(x) dx − tF(t) h(t)

F(t) h2(t)
.

It is easy to check via (2.2) that tF(t) is a tail of a distribution from GMDA(h). Thus, in terms
of tF(t), (A.14) says that ∫ ∞

t
xF(x) dx ∼ tF(t) h(t) → 0.

Applying L’Hospital’s rule and the same arguments as used in deriving lim I(t), we can obtain
that

J(t) → v + 1,
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which implies that ∫∞
t xF(x) dx

F(t)
= th(t) + (v + 1) h2(t) + o(1)h2(t).

Plugging the above estimate into (A.16) gives that

TM(2)(t) = t2 + 2th(t) + 2 (v + 1) h2(t) + o(1)h2(t). (A.17)

A combination of (A.15) and (A.17) yields that

TCM(2)(t) = TM(2)(t) −
(

TM(1)(t)
)2 = h2(t) + o(1)h2(t),

which is equivalent to (A.10). �
Since the trend of the function h at infinity is quite flexible, the asymptotic properties of

TCM(2)(t) corresponding to different choices of h may also be dramatically different. The
following examples fully demonstrate this fact.

Example A.1. Let X follow an exponential distribution with

F(x) = e−ρx1{x>0} + 1{x≤0}, ρ > 0.

Clearly, F is a von Mises function with

h(x) = F(x)

f (x)
= 1

ρ
.

Thus, h′(t) = th′(t)/h(t) = 0. Using Theorem A.3 gives that

TCM(2)(t) → 1

ρ2
.

Actually, in this case routine calculations via (A.5) and (A.6) indicate that, for any t > 0,

TCM(2)(t) = 1

ρ2
.

Example A.2. Let X follow a normal distribution with

F(x) = �

(
x − μ

σ

)
, μ ∈ (−∞, +∞), σ > 0,

where � is the standard normal distribution.

Denote by ϕ(x) = �′(x) the density of the standard normal distribution. It is easy to check
by Proposition 1.1(b) of Resnick [40] that F is a von Mises function with

h(x) = F(x)

f (x)
= σ�

( x−μ
σ

)
ϕ
( x−μ

σ

) .

Using L’Hospital’s rule yields the well-known Mill’s ratio, i.e.,

� (t)

ϕ(t)
∼ 1

t
. (A.18)
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Note also that
ϕ′(x) = −xϕ(x). (A.19)

We have

th′(t)
h(t)

= −tf 2(t) − tF(t) f ′(t)
F(t) f (t)

= − t
σ 2 ϕ2

( t−μ
σ

)− t
σ 2 �

( t−μ
σ

)
ϕ′ ( t−μ

σ

)
1
σ
�
( t−μ

σ

)
ϕ
( t−μ

σ

)
= −σ tϕ

( t−μ
σ

)+ t(t − μ) �
( t−μ

σ

)
σ 2�

( t−μ
σ

) , (A.20)

where in the last step we used (A.19). It is easy to see that both the numerator and denominator
of the right-hand side of (A.20) tend to 0 as t → ∞. Applying L’Hospital’s rule gives that

lim
t→∞

th′(t)
h(t)

= lim
t→∞

−σϕ
( t−μ

σ

)− tϕ′ ( t−μ
σ

)+ (2t − μ) �
( t−μ

σ

)− t(t−μ)
σ

ϕ
( t−μ

σ

)
−σϕ

( t−μ
σ

)
= lim

t→∞
ϕ
( t−μ

σ

)− 2 t−μ
σ

�
( t−μ

σ

)− μ
σ
�
( t−μ

σ

)
ϕ
( t−μ

σ

)
= −1,

where in the second step we used (A.19) and in the last step we used (A.18). Hence, by
Theorem A.3 and (A.18), we have

TCM(2)(t) ∼
(

σ�
( t−μ

σ

)
ϕ
( t−μ

σ

) )2

∼ σ 4

t2
,

which implies that TCM(2)(t) → 0 in this case.

Example A.3. Let X follow a log-normal distribution with

F(x) = �

(
log x − μ

σ

)
1{x>0} + 1{x≤0},

for μ, σ , and � as specified in Example A.2.
Proposition 1.1 (b) of Resnick [40] tells us that F is a von Mises function with

h(x) = F(x)

f (x)
=

σx�
(

log x−μ
σ

)
ϕ
(

log x−μ
σ

) .

It follows from (A.19) that

f ′(x) = − 1

σx2
ϕ

(
log x − μ

σ

)
+ 1

σ 2x2
ϕ′
(

log x − μ

σ

)
= − log x − μ + σ 2

σ 3x2
ϕ

(
log x − μ

σ

)
.
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Then, by steps similar to those shown in (A.20), we have

th′(t)
h(t)

=
−σϕ

(
log t−μ

σ

)
+ (

log t − μ + σ 2
)
�
(

log t−μ
σ

)
σ 2�

(
log t−μ

σ

) .

Applying L’Hospital’s rule gives that

lim
t→∞

th′(t)
h(t)

= lim
t→∞

− 1
t ϕ

′
(

log t−μ
σ

)
+ 1

t �
(

log t−μ
σ

)
− log t−μ+σ 2

σ t ϕ
(

log t−μ
σ

)
−σ

t ϕ
(

log t−μ
σ

)
= lim

t→∞
− 1

σ
�
(

log t−μ
σ

)
+ ϕ

(
log t−μ

σ

)
ϕ
(

log t−μ
σ

)
= 1,

where in the second step we used (A.19) and in the last step we used (A.18). Hence, by
Theorem A.3 and (A.18), we obtain that

TCM(2)(t) ∼
⎛⎝σ t�

(
log t−μ

σ

)
ϕ
(

log t−μ
σ

)
⎞⎠2

∼ σ 4t2

(log t)2
,

which implies that TCM(2)(t) → ∞ in this case.

Finally, recall the TVP and TSDP premium principles mentioned in Remark 3.3. The
univariate versions of these premium principles are

TVP(t) = TM(1)(t) + wTCM(2)(t)

and

TSDP(t) = TM(1)(t) + w
√

TCM(2)(t).

Applying Theorems A.1–A.3 gives that

TVP(t) ∼ wTCM(2)(t) ∼ wα

(α − 2) (α − 1)2
t2

and

TSDP(t) ∼ 1

α − 1

(
α + w

√
α

α − 2

)
t

if F ∈R−α with α > 2, and that
TVP(t) ∼ t + wh2(t)

and
TSDP(t) ∼ TM(1)(t) ∼ t

under the conditions of Theorem A.3.
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