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Abstract
For a class of uncertain systems with large-error sensing, the low-order stable signal corrector and observer are
presented for signal correction and uncertainty estimation according to completely decoupling estimation. The
model-free signal corrector can reject the bounded stochastic disturbance/error in global position sensing, and
system uncertainty can be estimated by the observer, even the existence of large disturbance in position sensing.
Furthermore, a general form of signal corrector is given. The describing function method is used to analyse the
robustness of the corrector in frequency domain, and the parameter selection rules are presented. The merits of the
signal corrector includes its model free, gain-bounded stable structure, sufficient rejection of bounded stochastic
disturbance/error in sensing and ease of parameters’ regulation. The corrector and observer are applied to a UAV
navigation and control for large disturbance/error corrections in position/attitude angle and the uncertainties esti-
mation in the UAV flight dynamics. The control laws are designed according to the correction-estimation results.
Finally, experiments demonstrate the effectiveness of the proposed method.

Nomenclature

x1 system variable
x2 system variable
x3 system extended variable
h(t) unknown function in system
σ (t) system uncertainty
cσ (t) unknown derivative ofσ (t)
Lσ upper bound of cσ (t)
yo1 position measurement
yo2 velocity measurement
d(t) bounded disturbance in position
n1(t) high frequency noise in position
n2(t) high frequency noise in velocity
Ld upper bound of d(t)
x̂1 corrector variable
x̂2 corrector variable
x̂3 observer variable
x̂4 observer variable
ωnc natural frequency of corrector
ωno natural frequency of observer
k1 corrector parameter
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k2 corrector parameter
k3 observer parameter
k4 observer parameter
εc perturbation parameter in corrector
εo perturbation parameter in observer
αc function power in corrector
αo function power in observer
m mass of UAV
g gravity acceleration
l rotor distance to gravity centre
x position in x-direction
y position in y-direction
z position in z-direction
ψ yaw angle
θ pitch angle
φ roll angle
Jφ moment of inertia about roll
Jθ moment of inertia about pitch
Jψ moment of inertia about yaw
b rotor force coefficient
k rotor torque coefficient
	x uncertainty in x-direction
	y uncertainty in y-direction
	z uncertainty in z-direction
	ψ uncertainty in yaw
	θ uncertainty in pitch
	φ uncertainty in roll
kx drag coefficient in x-direction
ky drag coefficient in y-direction
kz drag coefficient in z-direction
kψ drag coefficient in yaw
kθ drag coefficient in pitch
kφ drag coefficient in roll
Fi thrust force by rotor i
Qi reactive torque of rotor i
ωi rotor i rotational velocity

1. Introduction
Usually UAV flight needs information of position, attitude and dynamic model. Global position plays
very important roles for large-range navigation and control [1, 2]. Meanwhile, the uncertainties exist in
UAV flight dynamics: aerodynamic disturbance, unmodelled dynamics and parametric uncertainties are
inevitable. These uncertainties bring serious challenges for control system design.

GPS (Global positioning system) can provide position information with accuracy of several meters
or even tens of meters [3, 4]. Also, the adverse circumstances may contaminate signals from GPS [4].
Velocity is also necessary for UAV navigation and control. GPS can measure device velocity with two
different accuracies: (1) large-error velocity by the difference method with accuracy of a meter per
second due to GPS position accuracy and noise effect; (2) precise velocity by Doppler shift measurement
with accuracy of a few centimeters even millimeters per second [5, 6]. Alternatively, accurate velocity
of device can be measured by a Doppler radar sensor [7]. Except for sensing, velocity can be estimated
from position using robust observers [8–13]. However, the relatively accurate measurements of position
are required for these observer, and position with stochastic disturbance brings much worse velocity
estimation.
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Without position and velocity sensing, INS (inertial navigation system) can estimate them through
integrations from acceleration measurement. However, even small measurement error or very weak
non-zero mean noise in acceleration through integrations can cause velocity and position to drift over
time. The observer-based INS methods were used to estimate unknown variables in navigation [14, 15].
However, position signals are limited to be local and bounded, but not global.

For attitude information, an IMU (inertial measurement unit) can determine the attitude angles from
the measured angular rates through integration, and angle drifts happen. Meanwhile, the outputs of
the accelerometers and the magnetometer in IMU can determine the large-error pitch, roll and yaw
angles [16].

In order to reduce the disturbances/errors in position/attitude angle, KF (Kalman filter) or EKF
(extended Kalman filter) is adopted for signals fusion to restrict the defects of individual measurements
based on the optimisation of a recursive least mean square error [17–19]. Thus, the accuracy of system
outputs is improved. For KF/EKF, the relatively accurate system models are needed. Moreover, exis-
tence of uncertainty in noise statistics limits the KF/EKF parameters’ regulation. In addition, for EKF,
system model linearisation may cause filter divergence, and the derivation of the Jacobian matrices are
nontrivial.

The uncertainties or disturbances in system can be estimated by the extended state observers [8, 11,
20–22]. However, the accurate position measurements are required as these observer inputs. Even the
accurate velocity is used for uncertainty estimation, the disturbance in position cannot be corrected.

In this paper, a class of uncertain systems with large disturbance/error in position measurement are
considered. As an example, the relevant problems in UAV navigation and control are also considered.
According to the relations between position, velocity and uncertainty in system, as well as the large
disturbance/error in position sensing and the relatively accurate measurement in velocity, the position
correction and uncertainty estimation are completely decoupled. The independent signal corrector and
uncertainty observer are presented according to finite-time stability [23, 24] and the complete decou-
pling estimation. In the stable signal corrector, the bounded stochastic disturbance in position sensing
can be reduced by the accurate velocity measurement. With the specific nonlinear functions and the
perturbation parameter, the corrector can reduce the disturbance/error in sensing further. Moreover, the
bounded system gains can avoid peaking phenomenon for the corrector. Importantly, through estimation
decoupling, the observer can estimate the system uncertainty using the accurate velocity measurement
independently, avoiding the use of large-error position information. Both corrector and observer are the
low-order systems, their system parameters are regulated easily. Frequency analysis is used to explain
the robustness of the corrector and observer.

The signal corrector and uncertainty observer are applied to an experiment on a quadrotor UAV nav-
igation and control, and the performance is compared to the traditional KF-based navigation [25]. In
the experiment, the following adverse conditions are considered: large stochastic disturbances/errors
in GPS position/IMU attitude angles, uncertainties in position/attitude dynamics, and existence of
high-frequency noise. The signal correctors are adopted to correct the disturbances/errors in GPS posi-
tion/IMU attitude angles, and the observers are used to estimate the uncertainties in the UAV dynamics.
Finally, the control laws based on the correction and estimation are formed to stabilize the UAV flight.

Comparing with the existing related studies, the contributions of this paper include:

(1) Completely decoupling estimation: The completely decoupling estimation is implemented for
a class of systems with large stochastic disturbance in position sensing and system uncertainty. Thus,
using the same accurate velocity measurement but towards the opposite directions, the presented signal
corrector can correct the stochastic disturbance in position sensing, and the system uncertainty is esti-
mated by the uncertainty observer. However, the usual observers cannot correct the disturbance/error in
position sensing, and the positions are taken as the input for estimation. It brings the large estimation
errors, even it makes the system unstable.
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(2) Relax requirements for system model and sensing disturbance: For the uncertain systems with
large stochastic disturbance in position sensing, the presented method does not need the accurate models
and complete noise statistics information. Only the upper bounds of the stochastic disturbance in sensing
and system uncertainty are required. The design of the signal corrector is model free, and only two
measurement signals in position and velocity are required for the correction. The design of the observer
is based on partial system model. For KF/EKF, the relatively accurate system model and noise statistics
are necessary, and the parameters’ regulation and estimation performance are affected adversely by
uncertainties in system model and noise statistics.

(3) High-precision correction/estimation and strong robustness: The signals fusion in the corrector
is implemented according to the finite-time stability with strong robustness against bounded distur-
bance. With the use of specific continuous nonlinear functions, and due to the strong robustness against
bounded stochastic disturbance, the correction error is small enough even for large disturbance. In addi-
tion, through frequency analysis, the design corrector and observer have the ability of low-pass filters.
Therefore, the corrector and observer provide the accurate and smoothed correction/estimation outputs.

(4) Ease of parameters’ regulation: The implementation of completely decoupling estimation makes
both corrector and observer in low order. For the stability, the parameters’ selection is only required to
be satisfied with a Routh–Hurwitz Stability Criterion. For improving the robustness, the power of the
nonlinear function in the corrector is regulated.

(5) Suitable to the complex and adverse dynamic systems: The corrector and observer can be
applied to the complex flight dynamic systems: relatively accurate navigation and control are imple-
mented even large stochastic disturbances/errors in position/attitude sensing and existence of modelling
uncertainites/disturbances.

2. Problem description
The technical problems considered in this paper for a class of uncertain systems with large-error sensing
include:

(1) large bounded stochastic error/disturbance in position sensing; (2) existence of system uncer-
tainty; (3) overshoot/oscillations existence and difficult parameters selection in high-order estimation
systems.

2.1 Correction of large error in position and estimation of uncertainty in position dynamics
Measurement conditions: GPS provides the large error/disturbance position of device, and the relatively
accurate velocity can be determined by GPS with Doppler shift measurement or by a Doppler radar
sensor. Also, the uncertainties/disturbances exist in system dynamics. Under these conditions, we have:

Question 1: How to correct the bounded stochastic error/disturbance in position and to estimate
uncertainty in position dynamics?

2.2 Correction of large error in attitude angle and estimation of uncertainty in attitude dynamics
Measurement conditions: The gyroscopes in IMU provide the direct measurement of relatively accurate
angular rate. The large-error attitude angles can be determined by the outputs of the accelerometer and
magnetometer in IMU. Then:

Question 2: How to correct the bounded error/disturbance in attitude angle and to estimate uncer-
tainty in attitude dynamics?

https://doi.org/10.1017/aer.2022.86 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.86


800 Wang

2.3 Difficult parameters selection and oscillations existence for high-order estimation system
For multivariate estimation/correction, a high-order observer can be used. However, many system
parameters need to be adjusted cooperatively, and oscillations are prone to occur. The oscillations
can amplify the noise in the estimation outputs. Therefore, we hope the decoupling low-order estimate
systems can be designed to overcome these issues instead of a single high-order observer.

3. General form of decoupling corrector and observer for uncertain systems with large error
sensing

3.1 Uncertain system with large error/disturbance sensing
The following uncertain system has a minimum number of states and inputs, but it retains the features
that is considered for many applications:

ẋ1 = x2

ẋ2 = h(t) + σ (t)

yo1 = x1 + d(t)

yo2 = x2 + n(t), (1)
where, x1 and x2 are the states; h(t) ∈ � is the known function including the controller and the other
unknown terms; σ (t) ∈ � is the system uncertainty; yo1 and yo2 are the sensing outputs; d(t) is the
unknown bounded stochastic error/disturbance in measurement, it may be in the low, intermediate or
high frequency bands, and supt∈[0,∞) |d(t)| ≤ Ld <+∞; n(t) is the high-frequency noise. The design
missions include: error correction in yo1; estimation of σ (t).

3.2 System extension

Assumption 3.1. Suppose uncertainty σ (t) in system (1) satisfies
σ̇ (t) = cσ (t), (2)

where, cσ (t) is unknown and bounded, and supt∈[0,∞) |cσ (t)| ≤ Lσ <+∞. Actually, this assumption holds
for many applications, e.g., crosswind dynamics.

In system (1), in order to estimate the uncertainty σ (t), we define it as a new variable, i.e., x3 =
σ (t). Therefore, ẋ3 = σ̇ (t) = cσ (t) holds. Then, second-order system (1) is extended equivalently into a
third-order system, i.e.,

ẋ1 = x2

ẋ2 = x3 + h(t)

ẋ3 = cσ (t)

yo1 = x1 + d(t)

yo2 = x2 + n(t). (3)

3.3 System decoupling according to the accurate measurement
The estimations of x1 and x3 are in the opposite directions from the relatively accurate measurement yo2.
Then, system (3) can be decoupled into the following two systems:

(1) the unobservable (from yo2) system
ẋ1 = x2

yo1 = x1 + d(t)

yo2 = x2 + n(t). (4)
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(2) and the observable system

ẋ2 = x3 + h(t)

ẋ3 = cσ (t)

yo2 = x2 + n(t). (5)

3.4 General form of completely decoupling correction and estimation
We give the following assumptions before the correction and estimation systems are constructed.

Assumption 3.2. Suppose the origin is the finite-time-stable equilibrium of system

ż1 = z2

ż2 = fc(z1, k · z2), (6)

where, fc() is continuous and fc(0, 0) = 0, and k> 1.

Assumption 3.3. For (6), there exist ρ ∈ (0, 1] and a nonnegative constant a a such that

|fc(z̃1, k · z2) − fc(z̄1, k · z2)| ≤ a |z̃1 − z̄1|ρ , (7)

where, z̃1, z̄1 ∈ �.

Remark 3.1. There are many types of functions satisfying this assumption. For example, one such
function is |x̃ρ − xρ | ≤ 21−ρ |x̃ − x|ρ , ρ ∈ (0, 1].

Assumption 3.4. Suppose the origin is the finite-time-stable equilibrium of system

ż3 = z4 + fo1(z3)

ż4 = fo2(z3), (8)

where, fo1() and fo2() are continuous, and fo1(0) = 0 and fo2(0) = 0.

Usually high-frequency noise does not determine (but affects) system stability. Thus, the noise n(t)
is ignored when we consider the system stability. When considering the system robustness in frequency
analysis, we will analyze the effect of noise n(t).

Theorem 3.1 (General form of decoupling signal corrector and uncertainty observer):
The following uncertain system, for which Assumptions 3.1∼3.4 hold, is considered:

ẋ1 = x2

ẋ2 = h(t) + σ (t)

yo1 = x1 + d(t)

yo2 = x2, (9)

where, x1 and x2 are the states; h(t) ∈ � is the known function including the controller; σ (t) ∈ � is
the system uncertainty, σ̇ (t) = cσ (t), and cσ (t) is bounded with supt∈[0,∞) |cσ (t)| ≤ Lσ <+∞; yo1 and yo2

are the measurement outputs; d(t) is the bounded stochastic disturbance/error in measurement yo1, and
supt∈[0,∞) |d(t)| ≤ Ld <+∞. In order to correct large error in measurement yo1 and to estimate uncertainty
σ (t) (i.e., x3), the completely decoupling second-order corrector and observer are designed, respectively,
as follows:

(1) Signal corrector

˙̂x1 = x̂2

ε3
c
˙̂x2 = fc(εc (̂x1 − yo1), x̂2 − yo2), (10)

where, εc ∈ (0, 1); and
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(2) Uncertainty observer

εo
˙̂x3 = εôx4 + fo1 (̂x3 − yo2)+ εoh(t)

ε2
o
˙̂x4 = fo2 (̂x3 − yo2) , (11)

where, εo ∈ (0, 1). Then, there exist γc >
3
ρ
, γo > 1 and ts > 0, such that, for t ≥ ts,

x̂1 − x1 = O
(
εργc−1

c

)
; x̂2 − x2 = O

(
εργc−2

c

)
;

x̂3 − x2 = O
(
ε2γo

c

)
; x̂4 − σ (t) = O

(
ε2γo−1

c

)
, (12)

where, O
(
εργc−1

c

)
means that the error between x̂1 and x1 is of order O

(
εργc−1

c

)
[26]. The proof of Theorem

3.1 is presented in the Appendix.

Remark 3.2. In the signal corrector (10), the input signals include the measurements yo1 and yo2, and
the states x̂1and x̂2 estimate the system states x1 and x2, respectively. Importantly, the bounded stochastic
disturbance/error d(t) in measurement yo1 is rejected. In the observer (11), the input signal is the mea-
surement yo2, and x̂3 and x̂4 estimate x2 and uncertainty σ (t), respectively. Two independent low-order
estimation systems are designed to correct the large error in measurement and to estimate the uncertainty,
and the completely decoupling estimations are implemented.

4. Implementation of completely decoupling corrector and observer for uncertain systems
In the following, we implement: For a class of uncertain systems with bounded stochastic
error/disturbance sensing, the completely decoupling low-order corrector and observer are designed
to implement signal correction and uncertainty estimation, respectively.

4.1 Design of decoupling low-order corrector and observer for uncertain system with large-error
sensing

Theorem 4.1: The following uncertain system is considered:

ẋ1 = x2

ẋ2 = h(t) + σ (t)

yo1 = x1 + d(t)

yo2 = x2, (13)

where, x1 and x2 are the states; h(t) ∈ � is the known function including the controller; σ (t) ∈ � is
the system uncertainty, σ̇ (t) = cσ (t), and cσ (t) is bounded with supt∈[0,∞) |cσ (t)| ≤ Lσ <+∞; yo1 and yo2

are the measurement outputs; d(t) is the bounded stochastic disturbance/error in measurement yo1, and
supt∈[0,∞) |d(t)| ≤ Ld <+∞. In order to correct large error in measurement yo1 and to estimate uncer-
tainty σ (t), the completely decoupling second-order corrector and observer are designed, respectively,
as follows:

(1) Signal corrector

˙̂x1 = x̂2

ε3
c
˙̂x2 = −k1 |εc (̂x1 − yo1)| αc

2−αc sign (̂x1 − yo1)− k2 |̂x2 − yo2|αc sign (̂x2 − yo2) , (14)
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where, k1 > 0, k2 > 0, αc ∈ (0, 1), and time-scale parameter εc ∈ (0, 1); and

(2) Uncertainty observer

εo
˙̂x3 = εôx4 − k4 |̂x3 − yo2| αo+1

2 sign (̂x3 − yo2)+ εoh (t)

ε2
o
˙̂x4 = −k3 |̂x3 − yo2|αo sign (̂x3 − yo2) , (15)

where, k3 > 0, k4 > 0, αo ∈ (0, 1), and time-scale parameter εo ∈ (0, 1). Then, there exist γc >
6−3αc
αc

, γo >

1 and ts > 0, such that, for t ≥ ts,

x̂1 − x1 = O
(
ε

αc
2−αc

γc−1
c

)
; x̂2 − x2 = O

(
ε

αc
2−αc

γc−2
c

)
;

x̂3 − x2 = O
(
ε2γo

c

)
; x̂4 − σ (t) = O

(
ε2γo−1

c

)
, (16)

where, O
(
ε

αc
2−αc

γc−1
c

)
means that the error between x̂1 and x1 is of order O

(
ε

αc
2−αc

γc−1
c

)
. The proof of

Theorem 4.1 is presented in the Appendix.

4.2 Analysis of stability and robustness
Here, the describing function method is used to analyse the nonlinear behaviours of the corrector and
observer. Although it is an approximation method, it inherits the desirable properties from the frequency
response method for nonlinear systems. We will find that the corrector and observer lead to perform
accurate estimation and strong rejection of noise under the condition of the bounded estimation gains.

In signal corrector (14) and uncertainty observer (15), for the nonlinear function |∗|αi sign (∗), by
selecting ∗ = Ai sin (ωt), its describing function can be expressed by Ni(Ai) = �(αi)

A
1−αi
i

, where, �(αi) =
2
π

∫ π

0
|sin (ωτ )|αi+1 dωτ , and �(αi) ∈ [

1, 4
π

)
when αi ∈ (0, 1).

For the corrector (14), define: αc2 = αc ∈ (0, 1) and αc1 = αc2

2 − αc2

; x̂1 − yo1 = Ac1 sin (ωt) and x̂2 −
yo2 = Ac2 sin (ωt). Here, Ac1 is the error magnitude in position sensing, and Ac2 is the error magnitude in
velocity sensing. Therefore, the approximations of signal corrector (14) and uncertainty observer (15)
through the describing function method are given, respectively, by

˙̂x1 = x̂2

ε3 ˙̂x2 = −k1�(αc1)

A1−αc1
c1

ε (̂x1 − yo1)− k2�(αc2)

A1−αc2
c2

(̂x2 − yo2) , (17)

and

˙̂x3 = x̂4 −
k4�(

1 + αo

2
)

εoA
1−αo

2
o

(̂x3 − yo2)+ h (t)

˙̂x4 = −k3�(αo)

ε2
oA1−αo

o

(̂x3 − yo2) . (18)

Define the Laplace transforms X̂1(s) = L [̂x1], X̂2(s) = L [̂x2], and Y02(s) = L
[
y02

]
, for (17), the following

transfer functions are determined:

X̂j(s)

Y02(s)
=

k2

� (α2)

A1−α2
c2

sj−1 + εk1

� (α1)

A1−α1
c1

sj−2

ε3s2 + k2

� (α2)

A1−α2
c2

s + εk1

� (α1)

A1−α1
c1

, (19)

where, j = 1, 2. X̂2(s)
Y02(s)

means the velocity filtering output x̂2; and X̂1(s)
Y02(s)

means the effect of the corrector
output x̂1 from the velocity measurement y02.

https://doi.org/10.1017/aer.2022.86 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.86


804 Wang

Table 1. Values of �(αc2) and �(αc1) with different αc2

αc2 �(αc2) �(αc1)
0.8 1.0410 1.0712
0.5 1.1128 1.1596
0.3 1.1697 1.2093

We get the natural frequency of the corrector by

ωnc =
√

k1

√
�(α1)

εcA

1 − αc1

2
c1

, (20)

and similarly the natural frequency of the observer is

ωno =
√

k3

√
�(αo)

εoA

1 − αo

2
o

. (21)

The effects of the parameters on the corrector robustness are analysed as follows.
Frequency characteristic with different εc and αc2. For the corrector, We select: k1 = 1, k2 = 30; αc2 =

α = 0.8, 0.5, 0.3; εc = ε= 0.8, 0.4, 0.25, respectively. With different selections of αc2, we get the other
parameter values shown in Table 1.

The Bode plots of (19) with different εc and αc2 are presented in Fig. 1: Fig. 1(a) and (b) describe the
frequency characteristics of (y02 → x̂2) and (y02 → x̂1), respectively.

Conclusions on the correction and estimation
From the proof of Theorem 1, the systems are finite time stable, and their approximations are asymp-

totically stable according to (17) and (18). According to the analysis in time and frequency domains, the
system stability and robustness have the following properties:

(1) Large error rejection in sensing:

In time domain, from (16), in spite of the large error/disturbance in position sensing, the estimate
errors are always small enough after a finite time. In addition, we find that even for unbounded position
navigation, no drift exists in position due to the small bound of estimate errors. In frequency domain,
from (20) and Fig. 1(a), when the error magnitude Ac1 in position sensing is relatively large, the corrector
natural frequency ωnc is smaller, and much noise is rejected.

(2) Strong correction from accurate y02:
From the system (13), we know that, ẋ1 = x2. According to Theorem 1, x̂2 − y02 = x̂2 − x2 is small

enough. Thus x̂2 approaches x2. According to ˙̂x1 = x̂2 and system stability, the corrector output x̂1

approaches the actual position x1. Therefore, the large error/disturbance in position is corrected suf-
ficiently. Furthermore, from the Bode plot of X̂1(s)

Y02(s)
in Fig. 1(b), we find that, when y02 is in low frequency

band, y02 contributes the correction very well, and the corrector output x̂1 approaches the integral of y02;
while the noise in y02 is rejected in high frequency band.

(3) No peaking (bounded gains of corrector): If the large gains are selected, they make the bandwidth
very large, and it is sensitive to high-frequency noise. Moreover, peaking phenomenon happens. It means
that the maximal value of system output during the transient increases infinitely when the gains tend to
infinity. For the presented corrector and observer, the system gains do not need to be large, and no
peaking phenomenon happens. In fact, in the estimate errors, γc > 1 and γo > 1 are sufficiently large.
Therefore, for any εc ∈ (0, 1) and εo ∈ (0, 1), the estimate errors are sufficiently small. Thus, εc and εo do
not need small enough in the estimation systems. Meanwhile, from (17) and (18), near the neighborhood
of equilibrium, 1/A1−αc1

c1 and 1/A1−αc2
c2 in the corrector and 1/A

1−αo
2

o in the observer are large enough,
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Figure 1. Bode plot of corrector with different parameter selections. (a) y02 → x̂2 (ε= 0.8, 0.4, 0.25;
α = 0.8, 0.5, 0.3). (b) y02 → x̂1 (ε= 0.8, 0.4, 0.25; α = 0.8, 0.5, 0.3).

and these large terms make the feedback effect still strong. Therefore, the large parameter gains are
unnecessary, and peaking is avoided.

(4) No chattering: Both corrector and observer are continuous, and their system outputs are smoothed.
Therefore, the corrector and observer can provide smoothed estimations to reduce high-frequency
chattering.

(5) Robustness against noise: If the errors magnitudes Ac1 and Ao are relatively large, according to
(20) and (21), the natural frequencies ωnc and ωno for the corrector and observer are relatively small.
Thus, more disturbances/errors are rejected, and Ac1 and Ao become small. Furthermore, the corrector
and observer are continuous, and the estimate outputs are smoothed. Therefore, the high-frequency noise
in the estimations is rejected.
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Figure 2. Forces and torques of quadrotor UAV.

(6) Performance by parameter selections: εc affects the frequency bandwidth: Decreasing εc, the
frequency bandwidth becomes larger; increasing εc, the frequency bandwidth becomes smaller, and
much noise is rejected. αc2 ∈ (0, 1) affects the estimate precision: smaller αc2 ∈ (0, 1) can obtain more
precise estimations; on the other hand, relatively larger αc2 ∈ (0, 1) can reduce much noise.

4.3 Parameters selection rules of corrector and observer
Because the corrector and observer are completely decoupling, their parameters can be regulated
independently. According to stability of nonlinear continuous systems [23], we have:

(1) Parameters selection for system stability (Routh–Hurwitz Stability Criterion):

Signal corrector (14): For any εc ∈ (0, 1) and αc ∈ (0, 1), s2 + k2

ε
2αc
c

s + k1 is Hurwitz if k1 > 0 and k2 > 0.
Furthermore, in order to avoid oscillations, we select: k1 > 0, k2 > 0, k2

2 ≥ 4ε4αc
c k1, εc ∈ (0, 1) and αc ∈

(0, 1).
Uncertainty observer (15): s2 + k4s + k3 is Hurwitz if k3 > 0 and k4 > 0. Furthermore, in order to

avoid oscillations, we select: k3 > 0, k4 > 0, and k2
4 ≥ 4k3, εo ∈ (0, 1) and αo ∈ (0, 1).

Sensing error rejection: When the sensing error d(t) in yo1 increases, i.e., Ld becomes larger, in order
to reduce the error effect k1L

αc
2−αc
d of δc = 21− αc

2−αc k1L
αc

2−αc
d + Lp in (64), parameter k1 > 0 should decrease.

Meanwhile, αc ∈ (0, 1) can decrease to make L
αc

2−αc
d smaller.

(2) Parameters selection for filtering:

εc (or εo) affects the frequency band of the corrector (or observer). If much noise exists, εc ∈ (0, 1) (or
εo ∈ (0, 1)) should increase, and/or αc ∈ (0, 1) (or αo ∈ (0, 1)) increases, to make the low-pass frequency
bandwidth narrow. Thus, noise can be rejected sufficiently. Also, from (20), k1 decreases, the frequency
band also decreases, and much noise will be rejected.
αc ∈ (0, 1) (or αo ∈ (0, 1)) guarantees the finite-time stability of corrector (or observer), and it can

avoid the selection of sufficiently small εc (or εo).

5. UAV navigation and control based on decoupling estimations
A UAV navigation and control with large-error sensing in position/attitude angle are considered.
The UAV forces and torques are explained in Fig. 2, and the system parameters are introduced in
Table 2.
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Table 2. UAV parameters

Symbol Quantity Value
m Mass of UAV 2.01kg
g Gravity acceleration 9.81m/s2

l Rotor distance to gravity centre 0.2m
Jφ Moment of inertia about roll 1.25kg · m2

Jθ Moment of inertia about pitch 1.25kg · m2

Jψ Moment of inertia about yaw 2.5kg · m2

b Rotor force coefficient 2.923 × 10−3

k Rotor torque coefficient 5 × 10−4

5.1 Quadrotor UAV dynamics
The inertial and fuselage frames are denoted by �g = (

Ex, Ey, Ez

)
and �b = (

Eb
x , Eb

y , Eb
z

)
, respectively;

ψ , θ and φ are the yaw, pitch and roll angles, respectively. Fi = bω2
i is the thrust force by rotor i, and its

reactive torque is Qi = kω2
i . The sum of the four rotor thrusts is F =

4∑
i=1

Fi. The motion equations of the

UAV flight dynamics are expressed by

ẍi = hi(t) + σi(t), (22)

where, i = 1, · · · , 6; x1 = x, x2 = y, x3 = z, x4 =ψ , x5 = θ , x6 = φ; h1(t) = ux
m

, h2(t) = uy

m
, h3(t) = uz

m
− g,

h4(t) = uψ
Jψ

, h5(t) = uθ
Jθ

, h6(t) = uφ
Jφ

; σ1(t) = m−1( − kxẋ +	x); σ2(t) = m−1( − kyẏ +	y); σ3(t) = m−1( −
kzż +	z); σ4(t) = J−1

ψ
( − kψψ̇ +	ψ ); σ5(t) = J−1

θ
( − lkθ θ̇ +	θ ); σ6(t) = J−1

φ
( − lkφφ̇ +	φ); kx, ky, kz,

kψ , kθ and kφ are the unknown drag coefficients; (	x,	y,	z) and (	ψ ,	θ ,	φ) are the uncertainties
in position and attitude dynamics, respectively; J = diag{Jψ , Jθ , Jφ} is the matrix of three-axial moment
of inertias; cθ and sθ are expressed for cos θ and sin θ , respectively; and

ux = (cψsθcφ + sψsφ)F, uy = (sψsθcφ − cψsφ)F, uz = cθcφF,

uψ = k

b

4∑
i=1

( − 1)i+1Fi, uθ = (F3 − F1)l, uφ = (F2 − F4)l. (23)

5.2 Sensing
GPS provides the global position, and a microwave radar sensor measures velocity. An IMU gives the
attitude angle and angular rate. The sensing outputs are:

yi,1 = xi + di(t), yi.2 = ẋi + ni(t), (24)

where, di(t) is the bounded stochastic error/disturbance in sensing, and supt∈[0,∞) |di(t)| ≤ Li <∞; ni(t)
is the high-frequency noise; i = 1, · · · , 6.

The corrector (14) and observer (15) are used to estimate (x, y, z,ψ , θ ,φ) and the system uncertainties,
respectively.

5.3 Control law design
The control laws are designed to stabilise the UAV flight. For the desired trajectory (xd, yd, zd) and attitude
angle (ψd, θd, φd), the error systems of position and attitude dynamics can be expressed, respectively, by

ëp = m−1
(
up +�p + δp

)
, (25)
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and

ëa = J−1(ua +�a + δa), (26)

where, ep1 = x − xd, ep2 = ẋ − ẋd, ep3 = y − yd, ep4 = ẏ − ẏd, ep5 = z − zd, ep6 = ż − żd; ea1 =ψ −ψd,
ea2 = ψ̇ − ψ̇d, ea3 = θ − θd, ea4 = θ̇ − θ̇d, ea5 = φ − φd, ea6 = φ̇ − φ̇d;

ep=
⎡
⎢⎣

ep1

ep3

ep5

⎤
⎥⎦ , up =

⎡
⎢⎣

ux

uy

uz

⎤
⎥⎦ , δp=

⎡
⎢⎣
	x − kxẋ

	y − kyẏ

	z − kzż

⎤
⎥⎦ ,�p=

⎡
⎢⎣

−mẍd

−mÿd

−mz̈d − mg

⎤
⎥⎦ , (27)

and

ea =
⎡
⎢⎣

ea1

ea3

ea5

⎤
⎥⎦ , ua =

⎡
⎢⎣

uψ
uθ
uφ

⎤
⎥⎦ , �a =

⎡
⎢⎣

−Jψψ̈d

−Jθ θ̈d

−Jφφ̈d

⎤
⎥⎦ , δa =

⎡
⎢⎣
	ψ − kψψ̇

	θ − lkθ θ̇

	φ − lkφφ̇

⎤
⎥⎦ . (28)

5.3.1 Position dynamics control:
In the position dynamics, for the desired trajectory (xd, yd, zd), the control law

up = −�p − δ̂p − m
(
kp1̂ep + kp2̂ėp

)
, (29)

is designed to make position error vectors ep → �0 and ėp → �0 as t → ∞, where êp1 = x̂ − xd, êp2 =̂̇x − ẋd,
êp3 = ŷ − yd, êp4 =̂̇y − ẏd, êp5 = ẑ − zd, êp6 =̂̇z − żd and δ̂p are estimated by the correctors; kp1, kp2 > 0;
and

êp = [
êp1 êp3 êp5

]T
,̂̇ep = [

êp2 êp4 êp6

]T
. (30)

5.3.2 Attitude dynamics control:
In the attitude dynamics, for the desired attitude angle (ψd, θd, φd), the control law

ua = −�a − δ̂a − J
(
ka1̂ea + ka2̂ėa

)
, (31)

is designed to make attitude error vectors ea → �0 and ėa → �0 as t → ∞, where, êa1 = ψ̂ −ψd, êa2 =̂̇ψ − ψ̇d, êa3 = θ̂ − θd, êa4 =̂̇θ − θ̇d, êa5 = φ̂ − φd, êa6 = ̂̇φ − φ̇d and δ̂a are estimated by the observers;
ka1, ka2 > 0; and

êa = [
êa1 êa3 êa5

]T
,̂̇ea = [

êa2 êa4 êa6

]T
. (32)

6. Experiment on uav navigation and control
In this section, a UAV flight experiment is presented to demonstrate the proposed method. The UAV
flight platform is explained in Fig. 3. The UAV navigation and control based on the decoupling correc-
tor and observer are implemented in the platform setup. The control system hardware is described in
Fig. 4, whose elements include: A Gumstix and Arduino Mega 2560 (16MHz) are selected as the driven
boards; Gumstix is to collect data from measurements; Arduino Mega is to run algorithm of estima-
tion and control, and it sends out control commands; A XsensMTI AHRS (10kHz) provides the 3-axial
accelerations, the angular rates and the earth’s magnetic field.
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Figure 3. Platform of UAV flight control system.

Figure 4. Control system hardware.

Real position acquisition for comparison: In order to get the real position for comparison with the
estimation by the corrector, the output of the Vicon system with sub-millimeter accuracy is taken as the
real position.

Large-error position from GPS: A low-cost GPS receiver proivdes intermittent position signals with
accuracy of 10∼20m. When a intermittence happens, the most recent valid readings from GPS are taken
as the measured position signals.

Accurate velocity sensing: A 24GHz microwave Doppler radar sensor is adopted to measure the
velocity.
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Figure 5. UAV navigation based on corrector and observer. (a) Navigation trajectories. (b) Position
estimation.
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Figure 6. Uncertainty estimations.

Desired flight trajectory: The UAV desired trajectory includes: (1) take off and climb; (2) then fly in
a circle with the radius of 5m, the velocity of 1m/s and the altitude of 3m. The 3D desired trajectory is
shown in Fig. 5(a).

The corrected positions from the signal correctors and the uncertainty estimations from the observers
are used in the controllers. Controllers (29) and (31) drive the UAV to track the desired trajectory. The
corrector parameters: k1,i = 1, k2,i = 30, 1/εc,i = 1.2,αc,i = 0.1, i = 1, 2, 3. The observer parameters: k3,i =
20, k4,i = 4, 1/εc,i = 1.1, αo,i = 0.6, i = 1, 2, 3. The control law parameters: kp1 = 2.5, kp2 = 4, ka1 = 2.5,
ka2 = 4. The position-correction performance of corrector is compared with the EKF-based GPS/radar
sensor integration.

Figure 5(a) shows the comparison of flight trajectories in 3D space, including the measured from
GPS, the real from the Vicon, the desired trajectories, and the estimations by the corrector and the EKF.
Meanwhile, the trajectory comparisons in the three directions are shown in Fig. 5(b): The measurement
errors in position from GPS are about 20m. The estimate errors by the corrector are less than 0.04m,
while the estimate errors by the EKF are about 5m. Thus, the large errors/disturbances in position mea-
surements are rejected by the corrector, and the effect of noises is reduced sufficiently. In addition, during
a 1,000s-duration flight test, no drift happened.

Uncertainties estimation: The unexpected uncertainties exist in the UAV flight, and we cannot read
these uncertainties. Therefore, the real uncertainties cannot be determined to compare with the esti-
mate results. Here, we use a simulation to illustrate the uncertainty estimations by the observers. The
unknown drag coefficients in the UAV model are supposed to be: kx = ky = kz = 0.01N · s/m, kψ = kθ =
kφ = 0.012N · s/rad. The unmodelled uncertainties are assumed as: 	x = 0.3 sin (t) + 0.2 cos (0.5t),
	y = 0.2 sin (0.5t) + 0.5 cos (t),	z = 0.4 sin (0.6t) + 0.2 cos (t). Then, we can determine the real uncer-
tainty vector δp according to (27). All the parameters in the system model, correctors, observers and
controllers are selected the same as those in the above experiment. Figure 6 shows that the observers
can get the accurate estimation of uncertainties although much noise exists.

7. Conclusions
For a class of uncertain systems with large-error sensing, according to the completely decoupling, the
low-order signal corrector and observer have been developed to reject the large error in sensing and
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to estimate the system uncertainty. The proposed corrector and observer have been demonstrated by a
UAV navigation-control experiment: It succeeded in rejecting the large errors/disturbances in position
sensing, and the system uncertainties were estimated accurately. It confirms the merits of the corrector
and observer: They can provide accurate and smoothed estimation of position and uncertainty even
simultaneous existence of large sensing error and system uncertainty.
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A. Appendix
Proof of Theorem 3.1

Proof of the general signal corrector (10) in Theorem 3.1: Define the corrector error as e1 = x̂1 −
x1 and e2 = x̂2 − x2. Then, the error system of signal corrector (10) and decoupled system (4) can be
described by:

ė1 = e2;

ε3
c ė2 = fc(εc(e1 − d(t)), e2) − ε3

c ẍ2(t), (33)

and Equation (33) can be rewritten as
dεce1

dt/εc

= ε2
c e2;

dε2
c e2

dt/εc

= fc

(
εce1 − εcd(t),

1

ε2
c

ε2
c e2

)
− ε3

c ẍ2(t). (34)

By choosing the following coordinate transform

τc = t/εc, z1(τ ) = εce1, z2(τc) = ε2
c e2, zc = [

z1(τc) z2(τc)
]T

;d (τ )= εcd (t) ; p (τ )= ε3
c ẍ2(t), (35)

we get zc =�(εc)ec, where, �(εc) = diag{εc, ε2
c } and ec = [ e1 e2 ]T . It is rational the system acceleration

is bounded, and we can assume that |ẍ2(t)| ≤ Lp <+∞. Then, (34) becomes
dz1

dτc

= z2;

dz2

dτc

= fc

(
z1 − d (τc) ,

1

ε2
c

z2

)
− p (τc) . (36)

Define k = 1
ε2

c
and

g(τc, zc(τc)) = fc

(
z1 − d (τc) ,

1

ε2
c

z2

)
− fc

(
z1,

1

ε2
c

z2

)
− p (τc) , (37)

then, (36) can be rewritten as
dz1

dτc

= z2;

dz2

dτc

= fc(z1, k · z2) + g(τc, zc(τc)). (38)

From Assumption 3.3, the contraction mapping rule
∣∣∣fc

(
z1 − d (τc) , 1

ε2
c
z2

)
− fc

(
z1, 1

ε2
c
z2

)∣∣∣ ≤ a
∣∣d (τc)

∣∣ρ
holds, where, ρ ∈ (0, 1]. Then, we get

δ
define= sup

(τc ,zc)∈R3

|g(τc, zc(τc))| ≤ a |εcLd|ρ + ε3
c Lp ≤ ερδc, (39)

where δc = aLρd + Lp. From Assumption 3.2, the unperturbed system
dz1

dτc

= z2;

dz2

dτc

= f (z1, k · z2), (40)

is finite-time stable. Furthermore, from Proposition 8.1 in [23], Theorem 5.2 in [24] and (39), for (38),
there exist the bounded constants μc > 0 and � (zc (0)) > 0, such that, for τc ≥ � (zc (0)),

‖zc (τ )‖ ≤μcδ
γc ≤μc(ε

ρ

c δc)
γc . (41)
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Therefore, from (35) and (41), we get

‖ εce1 ε
2
c e2 ‖ ≤μc

(
ερc δc

)γc , (42)

for t ≥ εc� (�(εc)ec (0)). Thus, for ∀t ∈ [εc� (�(εc)ec (0)) , ∞), the following relations hold:

|e1| ≤ Lcε
ργc−1, |e2| ≤ Lcε

ργc−2, (43)

where, Lc =μcδ
γ
c . Then, (43) can be written as

e1 = O
(
εργc−1

c

)
, e2 = O(εργc−2

c ). (44)

From Theorems 4.3 and 5.2 in [24], γc can be chosen to be arbitrarily large, and

γc > 3/ρ, (45)

is not restrictive. Accordingly, we can get ργc − i> 1 for i = 1, 2. It implies that, for εc ∈ (0, 1), the
estimate error in (44) is of higher order than the small perturbation. Consequently, the corrector can
make the estimate errors sufficiently small.

Proof of the general uncertainty observer (11) in Theorem 3.1:
The decoupled system (5) from (1) can be rewritten by

εoẋ2 = εox3 + εoh(t)

ε2
o ẋ3 = ε2

ocσ (t). (46)

Define the observer error as e3 = x̂3 − x2 and e4 = x̂4 − x3. Then, the error system of the observer (11)
and the equivalent decoupled system (46) can be described by:

εoė3 = εoe4 + fo1(e3)

ε2
o ė4 = fo2(e3) − ε2

ocσ (t), (47)

and Equation (47) can be rewritten as
de3

dt/εo

= εoe4 + fo1(e3)

dεoe4

dt/εo

= fo2(e3) − ε2
ocσ (t). (48)

By choosing the following coordinate transform

τo = t/εo, z3(τo) = e3, z4(τo) = εoe4, zo = [
z3(τo) z4(τo)

]T
;c̄ (τo)= ε2

ocσ (t), (49)

we get zo =�(εo)eo, where, �(εo) = diag{1, εo} and eo = [ e3 e4 ]T . Then, (48) becomes

dz3

dτo

= z4 + fo1(z3)

dz4

dτo

= fo2(z3) − c̄ (τo) . (50)

From (49), we can get

δo
define= sup

τo∈R+
|c̄ (τo)| ≤ ε2

oLσ . (51)

From Assumption 3.4, the unperturbed system
dz3

dτo

= z4 + fo1(z3)

dz4

dτo

= fo2(z3), (52)
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is finite-time stable. Furthermore, from Proposition 8.1 in [23], Theorem 5.2 in [24] and (51), for (50),
there exist the bounded constants μo > 0 and � (zo (0)) > 0, such that, for τo ≥ � (zo (0)),

‖zo (τo)‖ ≤μoδ
γo
o ≤μo

(
ε2

oLσ
)γo . (53)

Therefore, from (49) and (53), we get
‖ e3 εoe4 ‖ ≤μo

(
ε2

oLσ
)γo , (54)

for t ≥ εo� (�(εo)eo (0)). Thus, for ∀t ∈ [εo� (�(εo)eo (0)) , ∞), the following relations hold:
|e3| ≤ Loε

2γo
o , |e4| ≤ Loε

2γo−1
o , (55)

where, Lo =μoLγo
σ

. Then, (55) can be written as
e3 = O(ε2γo

o ), e4 = O
(
ε2γo−1

o

)
. (56)

From Theorems 4.3 and 5.2 in [24], γo can be chosen to be arbitrarily large, and
γo > 1, (57)

is not restrictive. Accordingly, we can get 2γo − i> 1 for i = 0, 1. It implies that, for εo ∈ (0, 1), the esti-
mate error in (56) is of higher order than the small perturbation. Consequently, the uncertainty observer
can make the estimate errors sufficiently small.

Proof of Theorem 4.1
Proof of the signal corrector (14) in Theorem 4.1:
Define the corrector error as e1 = x̂1 − x1 and e2 = x̂2 − x2. Then, the error system of signal corrector

(14) and decoupled system (4) can be described by:
ė1 = e2;

ε3
c ė2 = −k1 |εc(e1 − d(t))| αc

2−αc sign (e1 − d(t))− k2 |e2|αc sign (e2)− ε3
c ẍ2(t), (58)

and Equation (58) can be rewritten as
dεce1

dt/εc

= ε2
c e2;

dε2
c e2

dt/εc

= −k1 |εce1 − εcd(t)| αc
2−αc sign (e1 − d(t))− k2

ε2αc
c

∣∣ε2
c e2

∣∣αc sign (e2)− ε3
c ẍ2(t). (59)

By choosing the following coordinate transform

τc = t/εc, z1(τc) = εce1, z2(τc) = ε2
c e2, zc = [

z1(τc) z2(τc)
]T

;d (τc)= εcd (t) ;p (τc)= ε3
c ẍ2(t), (60)

we get zc =�(εc)ec, where, �(εc) = diag{εc, ε2
c } and ec = [ e1 e2 ]T . Then, (59) becomes

dz1

dτc

= z2;

dz2

dτc

= −k1

∣∣z1 − d (τc)
∣∣ αc

2−αc sign
(
z1 − d (τc)

) − k2

ε2αc
c

|z2|αc sign (z2)− p (τc) . (61)

Define
g(τc, z(τc)) = −k1

{∣∣z1 − d(τc)
∣∣ αc

2−αc sign
(
z1 − d(τc)

) − |z1| αc
2−αc sign (z1)

}
− p (τc) , (62)

then, (61) can be rewritten as
dz1

dτc

= z2;

dz2

dτc

= −k1 |z1| αc
2−αc sign (z1)− k2

ε2αc
c

|z2|αc sign (z2)+ g(τc, z(τc)). (63)
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Since the contraction mapping rule |xρ − xρ | ≤ 21−ρ |x − x|ρ , ρ ∈ (0, 1], we obtain

δ
define= sup

(τc ,zc)∈R3

|g(τc, zc(τc))| ≤ 21− αc
2−αc k1L

αc
2−αc
d ε

αc
2−αc

c + ε3
c Lp ≤ ε

αc
2−αc
c δc, (64)

where δc = 21− αc
2−αc k1L

αc
2−αc
d + Lp. From [23], we know that the unperturbed system

dz1

dτc

= z2;

dz2

dτc

= −k1 |z1| αc
2−αc sign (z1)− k2

ε2αc
c

|z2|αc sign (z2) , (65)

is finite-time stable. Furthermore, from Proposition 8.1 in [23], Theorem 5.2 in [24] and (64), for (63),
there exist the bounded constants μc > 0 and � (zc (0)) > 0, such that, for τc ≥ � (zc (0)),

‖zc (τc)‖ ≤μcδ
γc
c ≤μc

(
ε

αc
2−αc
c δc

)γc

. (66)

Therefore, from (60) and (66), we get

‖ εce1 ε
2
c e2 ‖ ≤μc

(
ε

αc
2−αc

c δc

)γc

, (67)

for t ≥ εc� (�(εc)ec (0)). Thus, for ∀t ∈ [εc� (�(εc)ec (0)) , ∞), the following relations hold:

|e1| ≤ Lcε
αc

2−αc
γc−1

c , |e2| ≤ Lcε
αc

2−αc
γc−2

c , (68)

where, Lc =μcδ
γc
c . Then, (68) can be written as

e1 = O
(
ε

αc
2−αc

γc−1
)

, e2 = O
(
ε

αc
2−αc

γc−2
)

. (69)

From Theorems 4.3 and 5.2 in [24], γc can be chosen to be arbitrarily large, and

γc >
6 − 3αc

αc

, (70)

is not restrictive. Accordingly, we can get αc
2−αc

γc − i> 1 for i = 1, 2. It implies that, for εc ∈ (0, 1), the
estimate error in (69) is of higher order than the small perturbation. For εc ∈ (0, 1), according to the
Routh-Hurwitz Stability Criterion, s2 + k2

ε
2αc
c

s + k1 is Hurwitz if k1 > 0 and k2 > 0.

Proof of the uncertainty observer (15) in Theorem 4.1:

The decoupled system (5) from (1) can be rewritten by

εoẋ2 = εox3 + εoh(t)

ε2
o ẋ3 = ε2

ocσ (t). (71)

Define the observer error as e3 = x̂3 − x2 and e4 = x̂4 − x3. Then, the error system of observer (15) and
decoupled system (71) can be described by:

εoė3 = εoe4 − k4 |e3| αo+1
2 sign (e3)

ε2
o ė4 = −k3 |e3|αo sign (e3)− ε2

ocσ (t), (72)

and Equation (72) can be rewritten as
de3

dt/εo

= εoe4 − k4 |e3| αo+1
2 sign (e3)

dεoe4

dt/εo

= −k3 |e3|αo sign (e3)− ε2
ocσ (t). (73)

By choosing the following coordinate transform

τo = t/εo, z3(τo) = e3, z4(τo) = εoe4, zo = [
z3(τo) z4(τo)

]T
;c̄ (τo)= ε2

ocσ (t), (74)
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we get zo =�(εo)eo, where, �(εo) = diag{1, εo} and eo = [ e3 e4 ]T . Then, (73) becomes

dz3

dτo

= z4 − k4 |z3| αo+1
2 sign (z3)

dz4

dτo

= −k3 |z3|αo sign (z3)− c̄ (τo) . (75)

From (74), we can get

δo
define= sup

τo∈R+
|c̄ (τo)| ≤ ε2

oLσ . (76)

From Theorem 1 in [27], we know that the unperturbed system
dz3

dτo

= z4 − k4 |z3| αo+1
2 sign (z3) ,

dz4

dτo

= −k3 |z3|αo sign (z3) , (77)

is finite-time stable. Furthermore, from Proposition 8.1 in [23], Theorem 5.2 in [24] and (76), for (75),
there exist the bounded constants μo > 0 and � (zo (0)) > 0, such that, for τo ≥ � (zo (0)),

‖zo (τo)‖ ≤μoδ
γo
o ≤μo

(
ε2

oLσ
)γo . (78)

Therefore, from (74) and (78), we get

‖ e3 εoe4 ‖ ≤μo

(
ε2

oLσ
)γo , (79)

for t ≥ εo� (�(εo)eo (0)). Thus, for ∀t ∈ [εo� (�(εo)eo (0)) , ∞), the following relations hold:

|e3| ≤ Loε
2γo
o , |e4| ≤ Loε

2γo−1
o , (80)

where, Lo =μoLγo
σ

. Then, (80) can be written as

e3 = O(ε2γo
o ), e4 = O

(
ε2γo−1

o

)
. (81)

From Theorems 4.3 and 5.2 in [24], γo can be chosen to be arbitrarily large, and

γo > 1, (82)

is not restrictive. Accordingly, we can get 2γo − i> 1 for i = 0, 1. It implies that, for εo ∈ (0, 1), the
estimate error in (81) is of higher order than the small perturbation. According to the Routh-Hurwitz
stability criterion, s2 + k4s + k3 is Hurwitz if k3 > 0 and k4 > 0.

This concludes the proof.
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