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If we consider any particular topological semigroup S, it may seem
reasonable to ask for a characterization of all additions on S which make it
a topological semiring. We are interested here in this problem when

(i) S is an (Z)-semigroup;
(ii) S is [0, oo) and the multiplication on S is such that 0 and 1 are

zero and identity respectively.
We are able to give an almost complete solution in the first case

while our solution for the second case is complete except in so far as it
depends on the first case. The results given for (Z)-semigroups contain
Theorems 11 and 12 of [5] where Selden has given much information about
the commutative additions.

Recall that by a topological semiring we mean a system {S, + , •} where
S is a Hausdorff space, {S, + } and {S, •} are topological semigroups, and
the distributive laws

(1) z-

(2) (x+y)-z={x-z)

hold for all x, y, z in S.
The multiplications (i) and (ii) above have been completely clas-

sified by Mostert and Shields in [1], Theorem B and [2], Theorem A re-
spectively. In particular, they are commutative so that (1) and (2) are
equivalent.

Finally, in § 4, we record a brief observation concerning the multi-
plicative kernel of any compact connected semiring in Rt.

1. (/)-semigroups

An (I)-semigroup is defined to be any semigroup topologically iso-
morphic to a semigroup on [0, 1] for which 0 and 1 are zero and identity
respectively. Two important examples of (/)-semigroups are

(i) Jt which is [0, 1] with ordinary multiplication;
(ii) J2 which is [£, 1] with multiplication * given by
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172 K. R. Pearson [2]

x*y = max {\,xy),

where xy represents ordinary multiplication.
In [1], Theorem B, Mostert and Shields have identified all multi-

plications of (/)-semigroups. We quote their result.

THEOREM 1. Let S be an (I)-semigroup on [0, 1] with 0 as its zero and
1 as its identity. The set E of idempotents is closed and if x, y e E, then
xy = min (a;, y). The complement of E is the union of disjoint intervals. Let
P be the closure of one of these. Then P is topologically isomorphic to either
Ji or Ji • Finally, if x e P,y $ P, then xy = min (x, y) = yx.

In [4], Theorem 5, the author has found all additions of topological
semirings on J1. Of these, the only additions * which have 1 * 1 < 1 are
given by

(x'+y0)1'0 if x ^ 0 and y ^ 0,
x * y = ,

* I 0 if x = 0 or y = 0,
where c < 0 and + represents ordinary addition. The following lemma is
an immediate consequence.

L E M M A \. If * is an addition of a semiring on Jx and 1 * 1 < 1, then,

for all x, x*0 = 0*x = 0, l * z < l and x * 1 < 1.

We shall need the following example.

EXAMPLE 1. Let [0, 1] be an (/)-semigroup for which 0 and 1 are zero
and identity respectively. Choose a, b, c in E so that a ^b ^c. If c = 1 put
d = 1, while if c < 1 put

d = inf {/|/ e E and / > c}.

If c — d we define a binary operation -j- on [c, d] by putting c-\-c = c.
If c < d then [c, d] is isomorphic to J1 or J2 and we let -f be any addition
of a semiring on [c, d] for which d-\-d < d. (All additions of semirings on
Jx are given in [4], Theorem 5, but we are not able, as yet, to list all ad-
ditions of semirings on J2. In § 2, however, some results dealing with
semirings on / 2 are given.) Let $ : [0, c] -> [a, 1] be any continuous function
satisfying

(i) (f>(x) = x if a jS x f£ c;
(ii) <f> is decreasing on [0, a] and <j>{[0, a]) C E.

Let y> : [0, c] -> [b, 1] be any continuous function satisfying
(i) min (c, tp(x)) = max (b, min (c, <j>(x))) if 0 ^ x ^ c;
(ii) y is decreasing on [0, b] and y([0, b]) C £.

(Notice that if b < c and [a, c] <£ £, then, given <f>, f is completely deter-
mined by (i) above. If b = c or [a, c] C £, then, in general, \p is not
uniquely determined by <f>.) We can extend + to [0, 1] by
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[3] Certain topological semirings in Rl 173

f min (x, d)-\-min (y, d) if x S; c and y ^ c,
min (x, <f>(y)) if x ^ y and «/ < c,

min (?/, ^(^)) if x < 2/ and x < c.
THEOREM 2. Consider an (I)-semigroup on [0, 1] for which 0 ««rf 1 are

zero and identity respectively.
(i) / / + is given by (3) o/ Example 1 £Ae« + zs aw addition of a topological

semiring on [0, 1] and

(4) inf {l+x\xe [0, 1]} ^ inf {x+l |xe [0, 1]}.

(ii) Conversely, let + be an addition of a topological semiring on [0, 1] with

(4') a = inf {l+x\x e [0, 1]} ^ b = inf {x+l|x e [0, 1]}.

c = sup {/!/ e £ <mrf / + / = /},

define d as in Example 1, and let <f>(x) = \-\-x for x ^ c, ip(x) = x+1 for
x ^ c. Then [c, d] is a subsemiring, d-\-d < d if c < d, [0, c] is an additively
idempotent subsemiring, a 5S b ^ c and a, b, c e E, <j> and y> satisfy the con-
ditions in Example 1 and -f- satisfies (3).

REMARK. The conditions (4) and (4') are not significant restrictions
because we can, if necessary, change to the sum dual (i.e., consider * defined
by x*y = y+x).

PROOF. TO see that + given by (3) of Example 1 is an addition of a
topological semiring on [0, 1], it is necessary to check very many routine
cases. This is omitted. We remark, however, that it is essential to realize
when showing + is continuous that, if c < d, then c-j-x = x+c = c for all
x in [c, d}. (If [c, d] is isomorphic to Jx this follows from Lemma 1, while
if [c, d] is isomorphic to / 2 it follows from Lemma 3 of § 2.)

Now suppose that + is an addition of a topological semiring on [0, 1]
and let c, d be defined as in the theorem. (Notice that c exists because
0+0 = 0(1 + 1) = 0.) As {f\feE and / + / = /} is closed, c e £ and c+c = c.
If x, y e [c, d] then

min (c, x+2/) = c{x-\-y) = cx-\-cy = min (c, x)+min (c, y) = c-\-c — c,
min (d, x-\-y) = d{x-\-y) = dx-\-dy = min (d, x)+min (d, y) = x-\-y.

Thus [c, d] is a subsemiring. Also, because d+d e [c, d], we see from the
definition of c that d-\-d < d if c < d. If x, y e [0, c] then

x+x = xc\xc = x(c+c) = xc = x,
(x+y)c = xc+yc = x+y.

It follows that [0, c] is an additively idempotent subsemiring.
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Next we show that

x-\-y — min (x, i )+min (y, d)

if x ^ c and y ^ c. As this is trivial if d = 1, we can assume that d < 1.
Suppose firstly that c < d. If x ^ d and y ^ d,

min (x+y, d) = (x+y)<2 = xd-\-yd = d+rf < d

and so x+y = d-\-d. If c -^ x < d ^ y, then

min (x+?/, d) = (x+i/)d = xdA-yd = x + i .

But we know from Lemmas 1 and 3 that x+d < d; hence x-\-y = x-\-d.
Similarly, x+y = d-\-y if c ^ y < d ^ x. Suppose secondly that c = d,
and let x > c, y > c. It is clear from the definition of d that there exists
a sequence {cn} such that cn -*• c as n -> oo and, for all «, cn > c, cne E
and cn+cn 7̂  cn. Thus there is an n0 such that cn < x and cn < y if n Si «0.
Hence, if n ^ »0,

min (as+y, cM) = (aj+y)cn = xcn+ycn = cB+cn ^ cn,

and so x-\-y = cn-\-cn. Therefore

x\y = lim (cH+cn) = (lim c j + (lim cn) == c+c.
n—>oo n—>oo n—>oo

It now follows from the continuity of -(- that x+y = c+c if x S; c and

Let T = {l+x|x e [0, 1]}; then a = inf T. Now

1+c = min (1, d)-\-c = d-\-c.

If c = d it follows that l-fc = c+c = c, while if c < d, we know from
Lemmas 1 and 3 that d-\-c = c, and again 1+c = c. Thus a fS c. For any
x, y,

Hence T is a multiplicative semigroup which means that a e E. Similarly
b ^ c and b e E.

We now show that <f>(x) = x if a ^ x -^ c. Because we have shown
that <j)(c) = 1 + c = c, we can assume that a ^ x < c (and hence that
a < c). Because we have seen that l-\-y = ^ + m i n (y, d) ^ cify ^ c, there
exists xx with l + x x = a and xx < c. Thus

c+x x = c ( l+x 1 ) = ca = a.

Because c + c = c and + is continuous, there exists x2 in [x1(c) with
c + x 2 = x. Hence

c+x = c+(c+x2) = (c+c)+x2 = c+x2 = x,
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[5] Certain topological semirings in R1 175

and therefore <f>(x) = x since

min (c, <j>(x)) — c(l+x) = c+cx = c+x = x.

Let x ;£! y sS a. Then there exists 2 with zy = x and so

y+x = y+zy = (l+z)y = y

since y ^ a ^ 1 +2. Hence

1+2/ = i + (y+x) = (l+»)+*= (i+y)+*(i+y) - (i+»)(i+ +
Thus if> is decreasing on [0, a}. Also, if a; ^ a, then since a;2 ^ x,

a;2 = l + (x+x2) =

which means that <f>([0, a]) C E.
It can be shown similarly that %p{x) = x ii b ^ x ^ c, f is decreasing

on [0, b] and v([0, 6]) C £.
If a ^ a; ^ c, then

c+x = c(l+x) = ex = a;.
Also, if x ^ c, then

c+x = c(l+x) ^ ca = a.

Similarly, x+c = x i i b ^ x ^ c and x+c ^ b ii x ^ c. Consider x ^ b.
Then

c+cc+c = c+(a;+c) = x+c

since a:+c ^ b S; a. If c+x ^ 6, then

c+x+c = (c+x)+c — c+x

and so x+c = c+x. If, on the other hand, c+x < b, then since x+c 2s b,

b+x+c = b+ (x+c) = ft(x+c) + (x+c) = (6+c)(x+c) = 6(x+c) = b.

Also,

6+x+c = (6+x)+c = b(c+x)+c = (c+x)+c = c+x+c = x+c,

and so x+c = b. We conclude that, for x ^ b,

x+c = max (b, c+x).

But if b fg x g c, then x+c = c+x == x and so

x+c = max (b, c+x)

for x ^ c. However for x ^ c,

x+c = c(x+l) = cy(x) = min (c, yfc)).
c+x = c(l+x) = c<f>(x) = min (c, <£(x)),

https://doi.org/10.1017/S1446788700005206 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005206


176 K. R. Pearson [6]

and it follows that

min (c, tp(x)) = max (b, min (c, <f>{x))).

The proof will be complete when we verify the latter two lines of (3).
Suppose x 2g y and y < c. Then there exists z in [y, c] so that xz = y,
which means that

x+y = x-\-xz = x{\-\-z) == x<f>(z).

If y > a then, since </>(;z) = 2 and <f>(y) = y,

x+y = xz = y = min (a, y) = min (x, <j>{y)).

If i/ ^ a we can choose z ^ a and so <£(z) e £. Hence

x+y = min (a;, <f>(z)).

If also x ^ a then <£(z) ^ a; and <f>(y) ^ x which means that

x + y = min (x, <f>(z)) = x = min (x, ^(y)),

while if x > a, we can choose z = y and

x+y = min (x,<f>(y)).

The final line of (3) follows similarly.

2. J2

Because it is the only gap in our knowledge of semirings on (/)-semi-
groups, we consider here semirings on J2. We shall write multiplication as
xy. Note that if x < 1, then there is an integer n so that xm = ^ for all
integers m 3: n.

LEMMA 2. The only additions + of semirings on J2 which have 1 + 1 = 1
are given by

(i) x+y = x;
(ii) x+y = y;
(iii) x+y = min (x, y)\
(iv) x+y = max (x, y).

PROOF. This follows easily from Theorem 2, for here

1 = sup {/|/ e E and / + / = /},

and the only multiplicative idempotents are \ and 1.

LEMMA 3. / / + is an addition of a semiring on J2 and 1 + 1 < 1, then,
for all x, x+\ — \+x = \, 1+x < 1 and x + 1 < 1.
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PROOF. We see that

from which it follows that 1+^ is either \ or 1. Similarly ^+1 is either \
or 1.

Now suppose, if possible, that 1+^ = 1, and let 0 = 1 + 1. We prove
that if there exists z ^ \ so that \-\-x = 1 for all x ^ z, then \-\-x — 1
for all a; ^ min (1, z/0). For let a; ̂  min (1, z/0). Then

(1+z)2 = 1+z+z+a;2 = l+x0+z2.

But xd^z and so 1+Z0 = 1. Thus (1+a;)2 = 1+x2. Now x2 ̂  x ̂  min (1,2/0)
and so similarly,

(1+a;)4 = (1+x2)2 = 1+a;4.

Thus by induction we see that

(1+a;)2" = 1+z2"

for all n S: 1. But there is an integer m so that a;2" = \ and thus

which means that 1-j-a; = 1.
Because 1+^ = 1, we put z in turn equal to \, 1/20, 1/202, • • • and

see that, for all n ^ 1, 1+x = 1 if x ^ min (1, 1/20"). But eventually
1/20" ^ 1 and hence 1 + 1 = 1 which is a contradiction.

Thus 1 + \ = \ and so, for any x,

Similarly \-\-x = \ for all x.
Now consider any x. If x = 1 then 1+a; = 1+1 < 1. If x < 1, there

exists an integer n so that xn = ^. But (l+x)n is the semiring sum of
2" terms, the last of which is xn. Therefore (l+x)n = \ because yJ

r\ = \
for all y, and it follows that 1+a; < 1. Similarly x+1 < 1 for all x.

The following lemma shows that there are some rather badly behaved
additions on J2.

LEMMA 4. Suppose \ ^ d ^ l / \ /2 «w^ ^ <£; /2 -> /2 aM^ V- J2 ~*~ J2
be two continuous functions satisfying

(i) 4>(x) = v{x) = lif±^x<d;
(ii) <f>(x) ^ min (d, xj2d) if d < x <; 1;

(iii) v>(̂ ) ^ min (rf, a;/2rf) */ d < x ^ 1;

(iv) <£(1) = V ( l ) ;

(v) for some z0 in J2, either
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<f>(z0) = d or y>(z0) = d.

If a binary operation + on J2 is defined by

(5) X + y = (

then + *s «w addition of a topological semiring on J2, x-\-y-\-z = \ for all
x, y, z, and sup {x+y\x, y ej2} = d.

Conversely, let + be an addition of a topological semiring on J2 for which
x-\-y-\-z = \ for all x, y, z, and put d = sup {x-\-y\x, y e J2}, <f>(x) = \-\-x,
xp(x) = x-\-\. Then d t== lj\/2, <f> and y> satisfy the five conditions above and
+ satisfies (5).

PROOF. The first part of the lemma can be easily checked.
Now let + be an addition of a semiring on J2 for which x+y+z = \

for all x, y, z, and let d, 6, y> be defined as in the second part of the lemma.
We can assume that d ^ \ or else the conditions are trivially satisfied. If
* s? V, then

x+y = x+x(ylx) = x[l+{yjx)] = x<f>(yjx),

while similarly, x-\-y = yy>(xjy) if x < y. Also,

Because d = sup {x-\-y\x, y e/2}> there exist xlt y1 with d = x1-\-y1.
If x1^y1, then d = x1<f>(y1lx1). It follows that xx = 1 (or else 1 -f- {y-ifxy) > rf)
and so ^(yx) = rf. If, on the other hand, xx<yx, then yt = 1 and y(#i) = rf.
Also

and we conclude that d ^ l/-\/2-
Let x ^ d. Because x1

J
ry1 = d and J + £ = J, it follows from the

continuity of + that there exist x2, y2 with x2-\-y2 = x. Hence, for all y,

x+y = x2+y2+y = \

since the semiring sum of any three numbers is \. Similarly y+x — \ for
all y. In particular, <f>(x) = yi(x) = ^.

Finally, suppose that d < x 5g 1. If <j>(x) > x/2d, then

1 < {dlx)<f>(x) = (d/x)(l+x) = (d[x)+d

which contradicts the paragraph above. Also <f>(x) ^ d from the definition
of d. Hence <f>(x) 5g min (d, xj2d) and similarly y>(x) ^ min (d, xj2d).

If c < 0, it is easily seen that *, given by

(6) x * y = max (^, {xc+ycYlc), x,yej2,
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where, for once, + represents ordinary addition, is also an addition of a
semiring on J2. Whether or not these and the additions in Lemmas 2 and 4
are the only additions on J2 is the remaining query. (It should be noted
that for —In 3/ln 2 <[ c < 0, the additions * given by (6) are contained
in those given in Lemma 4.)

3. [0, co) with 0 as zero, 1 as identity

In Theorem A of [2], Mostert and Shields have characterized all
multiplications of this type. We quote their result.

THEOREM 3. Suppose [0, co) is a topological semigroup with zero at 0
and identity at 1. Then

(i) if there are no other idempotents, multiplication is (isomorphic to)
the ordinary multiplication of real numbers on [0, oo);

(ii) if S contains an idempotent different from 0 and 1, then it contains
a largest {in the sense of the regular order of real numbers) such idempotent e.
Moreover, e < 1, [e, oo) is a subsemigroup topologically isomorphic to [0, oo)
under ordinary multiplication of real numbers, and [0, e] is an (I)-semi-
group.

If the multiplication is as in (i) of Theorem 3, all additions of semi-
rings are given in Theorem 2 of [4]. Accordingly we shall assume that (ii)
holds. Notice that if x ĝ  e ^ y, then

xy = (xe)y = x(ey) = xe = x,

and similarly yx = x.

EXAMPLE 2. Suppose [0, oo) is a semigroup whose multiplication is
given in (ii) of Theorem 3 and let + be any addition of a semiring on the
(J)-semigroup [0, e] for which e-\-e < e. Then we can extend -(- to [0, co)
by putting

(7) x-\-y = min (x, e)-j-min (y, e)

for all x, y in [0, oo).

EXAMPLE 3. Suppose [0, oo) is a semigroup whose multiplication is
given in (ii) of Theorem 3. We can define a binary operation -f- on [0, oo)
in the following way. Let + restricted to [0, e] be any addition of a semi-
ring on the (Z)-semigroup [0, e] for which e-\-e = e, and let + restricted
to [e, oo) be any addition of a semiring on [e, oo) subject to requirements
that

(i) if z-\-e < e for some z ^ e, then e-\-\ = e;
(ii) if e+z < e for some z jg e, then l-\-e = e.
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It follows from Theorem 2 of [4] that each of l-\-e and e+l is either e or
1. We complete the definition of + as follows:

(i) If 0 ^ x < e < y, put x+y = x-\-e if e+\ = e and put x-\-y = y
if e+l = 1;

(ii) If 0 ^ y < e < x, put x+y = e+y if 1+e = e and put x+y = x
if l+e = 1.

THEOREM 4. Ze£ [0, oo) be a semigroup whose multiplication is given
in (ii) of Theorem 3.

If + is defined as in Example 2 or Example 3 then + is «« addition of a
topological semiring on [0, oo).

Conversely, if + *s «» addition of a topological semiring on [0, oo),
<Ae» [0, e] *s a subsemiring. Further, if e+e < <J, then -\- satisfies (7) o/
Example 2, while if e-\-e — e, then [e, oo) is a subsemiring and -\- satisfies
all the conditions in Example 3.

PROOF. It can be easily checked that + defined in Example 2 is an
addition of a semiring on [0, oo). If + is as defined in Example 3, then again
the verification that -f- is an addition of a semiring on [0, oo) is routine,
but involves the examination of many cases. This will be omitted.

Suppose that + is an addition of a topological semiring on [0, oo).
If x, y 5S e, then

{x+y)e = xe+ye = x+y.

Hence [0, e] is a subsemiring.
As in Theorem 2 we let

c = sup if\feE, f^e and / + / = / } .
Put

A = {x\x ̂  c and x-\-\ ^ e},
B = {x\x ̂  c and x+1 > e).

UxeB, then

(z+1)2 = a:(a;+l) + (a;+l) = x+x+1 = x(c+c) + l = xc+1 = x+1

which means that x-\-l is a multiplicative idempotent. Because 1 is the
only multiplicative idempotent greater than e, we see that

B = {x\x ̂  c and x+1 = 1}.

Clearly A and B are closed and 4 u B = [ 0 , c ] . As [0, c] is connected,
it follows that either A = [0, c] or B = [0, c]. Notice also that if x e A,
then

x+1 = e(x+l) = ex+e = x+e.

Consider any x 5S e for which x+e < e. Then as e(x+l) = x+e < e,
we see that x+1 = x+e.
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Suppose firstly that e+e < e; then c < e. As in Theorem 2 we let

A = inf {/|/ e E and / > c}.

We show that x-\-l = x+<? for x ^ e. If x 22 c and rf < e, it follows from
Theorem 2 that

= min (x, d)-\-d ^ d < e

and hence x-\-l = x-\-e. If x 2; c and d = e, it follows from Theorem 2
that [c, e] is a subsemiring which is multiplicatively isomorphic to Jx or
J2 and so, because x+g < e (see Lemmas 1 and 3), again x + 1 — x-\-e. In *
particular, c+1 = c+e ^ e and c e A. It is a consequence that A = [0, c]
and thus x-\-1 = x+e if x ^ c. We can now show that (7) holds. If x ^ e < y
then

= xy+y = (x-i-% = (x+e)y = x+e.

Similarly, if y 5S e < x then x+y = e+y. Finally, if x 5i e and y ^ e
then

and
Secondly let e+e = e; then c = e. If x, y Ŝ  e, then

e(x+2/) = ex+ey = e-\-e = e

and so x-\-y ^ e. Thus [e, oo) is a subsemiring. We have seen that if z+e < e
for some z 5j e, then z-\-\ = z-\-e < e, z e A and so A = [0, e]. In particular
« e i and thus e-\-l = e-\-e = e. Similarly, if e+z < e for some z ^ e
then l-f-0 = e. If e-\-\ = e, we see that because e e A, then A == [0, c].
Hence if x < e < y, then, because e ^ x + 1 = x-\-e,

x+y = xy+y = (x4-l)y = a; 4-1 = x+e.

If, on the other hand, e+l = 1, then, because e e B, B = [0, c]. Thus if
x < e < y,

x+y = xy+y = (x+l)y = ly = y.

Similar results hold according as 1+e is either e or 1.

4. Compact connected semirings in # ,

Let {S, 4-, •} be any compact connected semiring in R^, then S is a
closed interval. If K is the kernel of {S, •}, then K, being compact and con-
nected (Theorem 1.2.9 and Lemma 2.4.1 of [3]), is a closed interval.

If K is just a single point {0}, then 0 is a multiplicative zero and so
0+0 = 0(04-0) = 0.

If K is not a single point, then, because K has a cutpoint, it follows from
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the Corollary to Theorem 2.4.6 of [3] that either xy = x for all x, y in K
or xy = y for all x, y in K. In the former case,

x+y = xx+yx = (x-\-y)x e K

for all x, y in K, and so (i£, + , •} is a subsemiring with left-trivial multi-
plication. Similarly in the latter case, {K, + , •} is a subsemiring with right-
trivial multiplication. It is clear from the distributive laws, however, that,
because K has trivial multiplication, {K, + , •} is a topological semiring if
and only if {K, + } is an idempotent topological semigroup. Paalman-de
Miranda has listed all topological semigroups {T, + } on a closed interval
T of 7?x for which T+T = T (see § 2.6 of [3]). Any idempotent semigroup
{T, + } has this latter property and all idempotent topological semigroups
on a closed interval can be identified from his results. Hence the structure
of {K, + , •} is completely determined.
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