SOLUTIONS OF THE FUNCTIONAL EQUATION
(£(x))% - £(x?) = h(x)
I.N. Baker
(received April 16, 1959)

Introduction. In a recent paper [2] Lambek and Moser
have introduced the functional equations

(1) (£(x))% - £(x?) = h(x)
and
(2) (f(x))2 - £(2x) = h(x)

in connection with some problems of number theory, in parti-
cular in dealing with the sums by pairs of sets of integers.
The second may be put into the same form as (1) by the sub-
stitutions x = ln z, {{1ln z) = F(z) , h(ln z) = H(z).

In [2] solutions of (1) of a special form were discussed,
e.g., f(x) a polynomial with coefficients 0 or 1. If one is
interested in more general solutions natural starting points
are formal expansions for f(x) about x = 0 or 1 which are the
fixpoints of the function x2. We shall assume h(x) to be a poly-
nomial except for theorem 1 where regularity at the origin is
enough. Convergence of the formal series under certain
assumptions is proved (theorem 1) but in general these series
are not polynomials (8 2), nor are the expansions about the
different fixpoints in general elements of the same analytic
configuration.

1. The existence of solutions of (1) regular at the
origin. The assumption of a solution f(x) of (1) in the form

(3) (=Y - a x®

n=o 1
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yields two values for ag. If h(0) # O the values of ay are not 0;
if h(0) = 0 then one has aj = 0 or ag = 1. If h(0) = -1/4 the two
roots ag reduce to the single value 3. We prove

THEOREM 1. If h(x) = Bo- Bix - Box2 ..... is a power
series with a positive radius of convergence and if ag is a non-
zero root of

ag-aoz Po »

then there is a unique series (3) which solves (1) and has a
positive radius of convergence.

Thus if o # 0, -1/4 there are just two solutions of the
form (3). If B, = -1/4 there is just one. If B, = 0 there isone
solution with constant term ag =1 and if B4 = By ...=B,._1=0,
B # 0, there are further solutions of the form

)
f = k n ,
() = x5 )~ anx
where k is an integer satisfying l ¢k ¢ [%_—r]
Before proving the theorem we derive the following
LEMMA 1. For fixed q > 3 and all sufficiently large n

Y 2832 < 3(g-1)71n"2

Proof.

n_q n-q+l
> T it3(n-j)"2% < / 1 x~2(n-x)~2dx = 2(q-1)"1n"2 + o(n"2).
j=q a-

Proof of theorem 1. Since the series for h(x) has a
positive radius of convergence there is a K > 0 such that
| Bnl< KPlforn=1,2, ..... . Put(3)in(1l). The following
recursions are found.

(4) a0% - ap = Bo
(5) 2aga) = - B
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and in general

n-1
(6) 2agap=-f,- Z’j:li ajan.j+ (aln)

where the term (a%n) occurs only if n is even. We show that
for a suitable finite R > 0

(7) , lapgl < R%/n?,

We choose an integer q > 3 with (g-1)|ag] = 3, m so large
that lemma 1 is satisfied for all n > m and R so that

(a) (7) holds for n=1,2,3,..., m,

(®)  |ag] (m-j)% RI > 2(q+1) laj] m2 forj=1,2,..., g-1,

(c) (q+1) 2 K® < R® |a,| foralln > m,
and
(d) 4 R-B/2 < |ag| (g+1)-! for all n>m.

Then by induction (7) holds for all n. For suppose (7) holds
for 1,2,..., n-1. From (6) it follows that

-1 -
2lagan| < |Bnl +2 [chl=1 ajan_j| +|2 l:;zaj ap_j| + lalql

q-1 .
< K%+2 Zj=1 |lajl R2" (n-j)=2

n-q

1
j=q i=2 (n-j)=2 + 4 RZ%/n2

+RnZ

< laglR® 072 (g+1)=1 {1+ (g-1) + 3(q+1) |agl “H(g-1)" 1+ 1}

< 2]ag] RP/n?

and the induction is complete. In the above estimation we have
used (b) as follows:

Zlajl Rn"j(n-j)'2 < Zlajl Rn'j n-2 t'n2 (m-j)'2< ]a.ol R n'z(cﬁ-l)"l

in dealing with the second term on the right.
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The above analysis shows that the series (3) is determined

completely by a, and converges in the circle |x| < rR-L.

2. Entire solutions when h(x) is a polynomial. From now
on h(x) will be assumed to be a polynomial. The next question
we consider is the nature of the solutions whose existence is
proven by theorem 1. A first result is that they are certainly
not entire transcendental functions.

THEOREM 2. If h(x) is a polynomial any entire solution
of (1) is a polynomial.

Proof. Suppose a solution f(x) of (1) is entire and trans-
cendental. Let F(r) be the maximum modulus of f(x) for x = r.
From (1) it follows that

F(r2) = Max |y = |(£(x))? - h(x)|
< (F(r))2 + H(r)

where H(r) = Max |x|=r |h(x)| . Let the degree of h(x) be n.
There is a positive constant A such that

H(r) <A D
and
(F(r))% > A rP

hold simultaneously for all sufficiently large r so that for such
r values one has

(8) F(r?) < 2(F(r))2 .

But, as in [l, p. 140, Hilfssatz 4], Hadamard's theorem on
the convexity of log F(r) as a function of log r shows that such
an inequality as (8) can hold for no entire transcendent function.
This completes the proof of theorem 2. One may restate it in
the form

THEOREM 2" If h(x) is such that (1) has no polynomial
solution f(x) then there is no entire solution at all.

The occurrence of polynomial solutions is often excluded.
From
(£(x))2 - £(x2) = h(x)
follows
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(£(-x))% - £(x?) = B(-x)
and by subtraction of these two equations

{f(x) + £(-x)} {{(x) -f(-x)} = h(x) - h(-x) .

Put
f,(x) = even part of f(x) = % [f(x) + £(-x)]
f1(x) = odd part of f(x) = 3 [£(x) - £(-x)]
hy(x) = odd part of h(x) = % [h(x) - h(-x)] .

Then

(9 fo(x) £1(x) = 3 hy(x) .

To obtain a case where (1) has no polynomial solutions take
h(x) of degree at least 2nt+l, n an integer > 1, with hj(x) # 0
but of degree at most n. Suppose that (1) has a polynomial
solution f(x). Then from (9) neither fy(x) nor fj(x) can
vanish identically and the degree of each and thus of {(x) is at
most n. Then in (1) the left hand side has degree at most 2n
and the right has degree at least 2n+1, which affords a con-
tradiction.

Thus cases exist where h(x) is a polynomial but (1) has
no polynomial solutions f(x). If h(0) # 0 the recursive calcu-
lation of theorem 1 shows that there are at most two polynomial
solutions since there are only two solutions regular at 0.

3. Analytic continuation of the solutions when these are
not entire. The radius of convergence of the expansions in
theorem 1 cannot be greater than 1 unless they are entire.
Suppose the exact radius of convergence is p with 1 < p < w.
Then one may use the functional equation (1) in the form

(10) £(x) = - h(xZ) + (£(x3))2

to continue f(x) - say along radial paths emanating from the
origin - throughout the circle |x| < p 2. Since p“> p this is
a contradiction and the assumption p > 1 is false.

Moreover if f(x) is not a polynomial it is a (possibly
many valued) function which can be continued along some

radial paths from the origin to points arbitrarily close to the
unit circle but it is impossible to continue f(x) radially over
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any point on [x| = 1. For if p is the exact radms of convergence
of the expansion of theorem 1 we have p <

(a) p=1. Inthis case the unit circle forms a natural
boundary for if f(x) is regular at x = = ei0 then it is regular in
a whole sector of the form

{Ix] < p'sp' > 1, |argx - 0| <1/n}
and by repeated application of
£(x2) = (£(x))2 - h(x)

we may obtain sectors of regular\i\ty, of f(x) of opening
2/n, 4/n, 8/n, ... and so eventuaily continue f(x) into the full
circle |x]| < p's p‘ > 1 which is impossible.

(b) Suppose p< 1., The argument of case (a) shows that
f(x) cannot be continued along a radial path over any point on
the unit circle. Further if f(x) can even be continued to the
boundary of the unit circle in a whole sector

{Ix] <1, |Jargx - 0] < £}
the same argument would give a continuation throughout the whole
circle |[x| < 1 and so p = 1. Thus if p < 1 the radial distribu-

tion of the singularities met on radial continuation from x = 0
is dense in the neighbourhood of |x|

At least one singularity xg lies on |x| =p < 1. (1) shows
that (f(x))2 is regular at Xgo3 Xo is a branch point of order 1 for
f(x) which interchanges two branches + f(x) there. One has

f(x5) = 0 or
£(x3) + h(x,) =
so that xg is a root of

£(t) + h(t2) =

lying in | t] < 2 so there is at most a finite set of possible xg
with |xg| = p. Excluding the rays {arg x = arg %o, |x| > |Xol}
we can continue f(x) further by radial continuation using (1) in

the form

£(x) = [£(:2) + B(x)] 2
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and excluding (i) rays of x values for which x2 falls on rays
already excluded, (ii) rays to the boundary from any fresh
branch points which appear. The number of rays (i) and (ii)
intersecting any circle |x| < p] < 1 is finite.

The question arises whether it might not be possible to
continue f(x) outside the unit circle by a non-radial path. If
in particular one considers continuation over the point 1 it is
interesting to note that two formal expansions

Z::o ap (x-1)0

satisfying (1) may be obtained by direct calculation. For aé, one
has
(2p)% - ap = h(1)

and from ag all subsequent ap are determined by the recursion,
unless a:) has the form 2M, m a positive integer, when the
recursion breaks down. We prove

THEOREM 3. If = Z al nj i
. g{x) = ano ap (x-1)% is a power series

satisfying (1) formally then its radius of convergence o is
either 0, 1 or o and in the last case it is a polynomial. If

o = 1 the continuation of g(x) is restricted only by the point

x = 0 and g(x) is not part of the same analytic configuration as
the solutions in theorem 1.

Proof. From theorem 2, g(x) is a polynomial if ¢ =,
Suppose o # 0, o . g(x) certainly converges in a neighbourhood
of x = 1 and satisfies (1) there. By repeated use of (1) in the
form (10) we see that g(x) may be continued into a ""'sector' of
the form first of

{1-e<|x| <1l4+¢ ,|argx|<e, ©> 0}
|arg
and then :
{(1- £)2% < |x] < (1+¢)2", |arg x| < &}
and thus

{0 < |x] <« »o, Jargx]| < €}.

By further use of (10) g(x) may be continued along any circular
path around x = 0 paying due care to the appropriate branches

of x, x2 ,\g(x), g(xz). The radius of convergence o is there-
fore at least 1. If o were greater than 1 direct transformation
of the original expansion of g(x) about x = 1 to the new centre

x = 0 would give a solution of (1) of the form ano bp x2 and
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thus one of the expansions discussed in sections 1, 2 and the
beginning of section 3. This expansion would be radially con-
tinuable (along the positive real axis) beyond the unit circle,
which from the first part of this section is possible only if g(x)
is a polynomial, i.e. o = ®, Thus =0, 1l or ®. Itisalso
clear that in case ¢ = 1, i.e. when x = 0 is the only finite
singularity of g(x), it is impossible to have any regular element
of the function g(x) over x = 0.

4. Generalization. As a generalization of (1) one could
introduce the equation

(11) glf(x)) - 1(g(x)) = h(x)

where g(x) and h(x) are given polynomials and f(x) is to be
found. A variety of formal expansions about the fixpoints of
g(x) could be found. A fixpoint § of g(x) is a point with
g{(&§)=§ . The number of expansions about a given fixpoint

¢ would in general be the same as the degree of g(x) and this
would also equal the number of different § if all fixpoints were
distinct. Theorem 2 continues to hold; there are no entire
transcendent solutions f{(x). If f(x) is a convergent expansion
but not a polynomial its continuation will be a complicated
process depending on the iteration properties of g(x).

REFERENCES

1. I.N. Baker, Zusammensetzungen ganzer Funktionen,
Math. Z. 69 (1958), 121-163.

2. J. Lambek and L. Moser, On some two-way classifications
of integers, Canad. Math. Bull, 2 (1959), 85-89.

University of Alberta
and
Imperial College of Science, London.

120

https://doi.org/10.4153/CMB-1960-012-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-012-8

