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Introduction. In a recent paper [2] Lambek and Moser 
have introduced the functional equations 

(1) (f(x))2 - f(x2) = h(x) 
and 
(2) (f(x))2 » f(2x) = h(x) 

in connection with some problems of number theory, in pa r t i ­
cular in dealing with the sums by pai rs of sets of in tegers . 
The second may be put into the same form as (1) by the sub­
stitutions x = In z, f ( l nz ) = F(z) , h(ln z) = H(z). 

In [2] solutions of (1) of a special form were discussed, 
e*g* * f(x) a polynomial with coefficients 0 or 1. If one is 
interested in more general solutions natural starting points 
a r e formal expansions for f(x) about x = 0 or 1 which a re the 
fixpoints of the function x^. We shall assume h(x) to be a poly­
nomial except for theorem 1 where regulari ty at the origin is 
enough. Convergence of the formal se r i es under certain 
assumptions is proved (theorem 1) but in general these se r i es 
a re not polynomials ( § 2 ) , nor a re the expansions about the 
different fixpoints in general elements of the same analytic 
configuration. 

1- The existence of solutions of (1) regular at the 
origin. The assumption of a solution f{x) of (1) in the form 
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yields two values for aQ . If h(0) ^ 0 the values of a 0 a re not 0; 
if h(0) = 0 then one has aQ = 0 or aQ = 1. If h(0) = -1 /4 the two 
roots a0 reduce to the single value j . We prove 

THEOREM 1. If h(x) = £Q- ^ x - /32xz is a power 
ser ies with a positive radius of convergence and if aQ is a non­
zero root of 

a o " a o = £o > 

then there is a unique ser ies (3) which solves (1) and has a 
positive radius of convergence. 

Thus if p o t 0» -1 /4 there a re just two solutions of the 
form (3). If /3 0 = -1 /4 there is just one. If /3 0 = 0 there is one 
solution with constant t e rm a 0 = 1 and i f / S 0 = /S^ . . . = /3 r_i = 0, 
(3 r £ 0, there a re further solutions of the form 

f(x) = x k Y a n x n , 
-̂* n=o 

where k is an integer satisfying 1 ^ k ^ [i; r] • 

Before proving the theorem we derive the following 

LEMMA 1. For fixed q ^ 3 and all sufficiently large n 

I " ; q
q j - 2 (n - j ) " 2 < 3fcL-l)-ln-2 

Proof. 

Zi j "" 2 (n- j ) - 2 <̂  / x~ 2 (n-x)- zdx = 2 ( q - l ) - 1 n - z + o(n"Z) . 
j=q y q - i 

Proof of theorem 1. Since the se r ies for h(x) has a 
positive radius of convergence there is a K > 0 such that 
| p n | < Kn for n = 1, 2, Put (3) in ( 1). The following 
recurs ions are found. 

(4) a 0
2 - a 0 = (30 

(5) 2a0 ax = - p i 
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and in general 

(6) 2 a o a n = " Pn - L, j = 1
 a j a n - j + (Hn) 2 J 

where the term ( a l n ) occurs only if n i s even. We show that 
for a suitable finite R > 0 

(7) |an l <Rn/*2.. 

We choose an integer q > 3 with (q-1) | a 0 | ^ 3 , m so large 
that l e m m a 1 is sat isf ied for al l n > m and R so that 

(a) (7) holds for n = 1 ,2 , 3, . . . , m , 

(b) j a 0 | ( m - j ) 2 RJ > 2 ( q + l ) | a j | m 2 for j = 1 , 2 , . . . , q - 1 , 

(c) (q+1) n 2 K n < R n jaQ | for al l n > m, 

and 

(d) 4 R - n / 2 < | a 0 | (q+1) ' 1 f o r a l l n > m . 

Then by induction (7) holds for all n. For suppose (7) holds 
for 1 , 2 , . . . , n - 1 . F r o m (6) it follows that 

2 | a 0 a n | < iPnl + 2 IZ jl[ aj an-j | + | I Îq aj an-j | + l a ^ ' 

.q-1 
^ K" + 

2 Ij = 1 |aj | Rn"J(n-j)-

+ R n Z • J"2 (n - j )" 2 + 4 R â n / n 2 

< | a 0 | R n n - 2 (q+1)"1 ( l + (q-1) + 3(q+l) | a 0 | ^ ( q - l ) - l + l) 

< 2 | a 0 j R n / n 2 

and the induction i s comple te . In the above es t imat ion we have 
used (b) as fol lows: 

2 |aj l R n - J ( n - j ) - 2 < 2 | a j | Rn"J n"2 m 2 ( m - j ) - 2 < | a 0 | R n n ' ^ q + l ) " 1 

in dealing with the second t e r m on the right . 
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The above analysis shows that the se r i e s (3) is determined 
completely by aQ and converges in the circle | x | < R~*. 

2. Entire solutions when h(x) is a polynomial. F r o m now 
on h(x) will be assumed to be a polynomial. The next question 
we consider is the nature of the solutions whose existence is 
proven by theorem 1, A first resul t is that they a re certainly 
not entire t ranscendental functions. 

THEOREM 2. If h(x) is a polynomial any entire solution 
of (1) is a polynomial. 

Proof. Suppose a solution f(x) of (1) is entire and t r a n s ­
cendental. Let F(r) be the maximum modulus of f(x) for x = r . 
F r o m (1) it follows that 

F(r2) = M a x | x | = r |(f(x))2 - h(x) | 

< (F(r))2 + H(r) 

where H(r) = M a x i x | = r |h(x)| . Let the degree of h(x) be n. 
There is a positive constant A such that 

H(r) < A r n 

and 
(F(r))2 > A rn 

hold simultaneously for all sufficiently large r so that for such 
r values one has 

(8) F ( r 2 ) < 2(F(r))2 . 

But, as in [ l , p . 140, Hilfssatz 4] , Hadamard 's theorem on 
the convexity of log F(r) as a function of log r shows that such 
an inequality as (8) can hold for no entire t ranscendent function. 
This completes the proof of theorem 2. One may res ta te it in 
the form 

THEOREM Z\ If h(x) is such that (1) has no polynomial 
solution f(x) then there is no entire solution at a l l . 

The occurrence of polynomial solutions is often excluded. 
F r o m 

(f(x))2 - f(x2) = h(x) 
follows 
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( f ( -x) ) 2 - f(x2) = h(-x) 

and by s u b t r a c t i o n of t h e s e two equa t ions 

(f(x) + f(-x)} { f(x) -f(-x)} = h(x) » h(-x) . 
Pa t 

fQ(x) = even p a r t of f(x) = \ [f(x) + f(-x)] 

fx(x) = odd p a r t of f(x) = \ [f(xj - f(-x)] 

h x (x) = odd p a r t of h(x) = \ [h(x) - h(-x)] . 
T h e n 

(9) f0(x) fx(x) = \ hL(x) . 

To obta in a c a s e w h e r e (1) has no po lynomia l so lu t ions t ake 
h(x) of d e g r e e a t l e a s t 2 n + l , n an i n t e g e r > 1, with h^(x) # 0 
but of d e g r e e at m o s t n . Suppose tha t (1) has a po lynomia l 
so lu t ion f(x). Then f rom (9) n e i t h e r f0(x) nor f^(x) can 
van i sh i den t i ca l ly and the d e g r e e of each and thus of f(x) i s at 
m o s t n . Then in (1) the left hand s ide has d e g r e e at mos t 2n 
and the r i g h t has d e g r e e at l e a s t 2 n + l , which affords a con­
t r a d i c t i o n . 

Thus c a s e s ex i s t w h e r e h(x) i s a po lynomia l but (1) has 
no po lynomia l so lu t ions f(x) . If h(0) £ 0 the r e c u r s i v e c a l c u ­
la t ion of t h e o r e m 1 shows that t h e r e a r e a t m o s t two po lynomia l 
so lu t ions s ince t h e r e a r e only two so lu t ions r e g u l a r a t 0, 

3 . Ana ly t i c cont inua t ion of the so lu t ions when t h e s e a r e 
not e n t i r e . The r a d i u s of c o n v e r g e n c e of the expans ions in 
t h e o r e m 1 cannot be g r e a t e r than 1 un le s s they a r e e n t i r e . 
Suppose the exac t r a d i u s of c o n v e r g e n c e i s p with 1 < p < GO. 
T h e n one m a y use the funct ional equa t ion (1) in the f o r m 

(10) f(x) = - h ( x i ) + (f(xl))2 

to cont inue f(x) - s ay a long r a d i a l pa ths e m a n a t i n g f rom the 
o r i g i n - t h roughou t the c i r c l e | x | < p ^ • Since p > p th i s i s 
a c o n t r a d i c t i o n and the a s s u m p t i o n p > 1 i s f a l s e . 

M o r e o v e r if f(x) i s not a po lynomia l i t i s a (poss ib ly 
m a n y valued) funct ion which can be continued a long s o m e 
r a d i a l pa ths f r om the o r i g i n to points arbi trar i ly c l o s e to the 
unit c i r c l e but it i s imposs ib l e to continue f(x) radial ly over 
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any point on | x | = 1. F o r if p i s the exac t r a d i u s of c o n v e r g e n c e 
of the expans ion of t h e o r e m 1 we have p e l » 

(a) p = 1. In t h i s c a s e the unit c i r c l e f o r m s a n a t u r a l 
bounda ry for if f(x) i s r e g u l a r a t x = e i ô t hen it i s r e g u l a r in 
a whole s e c t o r of the f o r m 

{ | x | < p \ p > 1, | a r g x - 0 | < 1/n} 

and by r e p e a t e d a p p l i c a t i o n of 

f(x2) = (f(x))2 - h(x) 

we m a y ob ta in s e c t o r s of r e g u l a r i t y of f(x) of opening 
2 / n , 4 / n , 8 /n , . . . and so even tua l ly cont inue f(x) into the full 
c i r c l e | x | < p ' , p1 > 1 wh ich i s i m p o s s i b l e . 

(b) Suppose p < 1. The a r g u m e n t of c a s e (a) shows tha t 
f(x) cannot be cont inued a long a r a d i a l pa th ove r any point on 
the unit c i r c l e . F u r t h e r if f(x) can even be cont inued to the 
b o u n d a r y of the unit c i r c l e in a whole s e c t o r 

{ | x | < 1, | a r g x .- 0 | < e} 

the s a m e a r g u m e n t would give a con t inua t ion th roughou t the whole 
c i r c l e | x | < 1 and so p = 1. Thus if p < 1 the r a d i a l d i s t r i b u ­
t ion of the s i n g u l a r i t i e s m e t on r a d i a l con t inua t ion f rom x = 0 
i s d e n s e in the ne ighbourhood of | x | = 1. 

At l e a s t one s i n g u l a r i t y XQ l i e s on | x | = p < 1. (1) shows 
tha t (f(x))2 i s r e g u l a r a t xQ ; XQ i s a b r a n c h point of o r d e r 1 for 
f(x) wh ich i n t e r c h a n g e s two b r a n c h e s ± f(x) t h e r e . One has 
f(xo) = 0 o r 

f(x§) + h(xo) = 0 

so tha t x~ i s a roo t of 

f(t) + h( t i ) = 0 

lying in | t | £ p ^ S o t h e r e i s at m o s t a f ini te se t of p o s s i b l e x 0 

with | x o | = p . Exc lud ing the r a y s ( a r g x = a r g x Q , | x | > | x 0 | } 
we can cont inue f(x) f u r t h e r by r a d i a l con t inua t ion us ing (1) in 
the f o r m 

f(x) = [ftx2) + h(x)] * 
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and excluding (i) rays of x values for which x^ falls on rays 
already excluded, (ii) rays to the boundary from any fresh 
branch points which appear . The number of rays (i) and (ii) 
intersecting any circle | x | < p^ < 1 is finite. 

The question a r i s e s whether it might not be possible to 
continue f(x) outside the unit circle by a non-radial path, if 
in par t icular one considers continuation over the point 1 it is 
interest ing to note that two formal expansions 

Z °° i 

satisfying (1) may be obtained by direct calculation. For aQ one 
has 

(aj>)2 - a{ , = h(l) 

and from a 0 all subsequent a n a re determined by the recurs ion , 
unless ajj has the form Z*11, m a positive integer , when the 
recurs ion breaks down. We prove 

THEOREM 3. If g(x) = £ =
 a n (x-1)11 is a power se r ies 

satisfying (1) formally then its radius of convergence <r is 
either 0, 1 or oo and in the last case it is a polynomial. If 
<r = 1 the continuation of g(x) is res t r ic ted only by the point 
x = 0 and g(x) is not part of the same analytic configuration as 
the solutions in theorem 1. 

Proof. F r o m theorem 2, g(x) is a polynomial if <r = oo . 
Suppose <r £ 0, oo . g(x) certainly converges in a neighbourhood 
of x = 1 and satisfies (1) the re . By repeated use of (1) in the 
form (10) we see that g(x) may be continued into a "sector1 ' of 
the form first of 

( l - £ < | x | < l + i , | arg x | < £., t > 0] 
and then 

{ ( l - c ) 2 n < | x | < ( l+£ )2 n , | a rg x | < e} 
and thus 

{0 < | x | < oo , | arg x | < z\ . 

By further use of (10) g(x) may be continued along any circular 
path around x = 0 paying due care to the appropriate branches 
of x, x i ,^g(x), g(xâ). The radius of convergence <r is t h e r e ­
fore at least 1. If <r were greater than 1 direct transformation 
of the original expansion of g(x) about x = 1 to the new centre 
x = 0 would give a solution of (1) of the form Y ^ b n x n and 
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t hus one of the expans ions d i s c u s s e d in s e c t i o n s 1, 2 and the 
beginning of s ec t i on 3 . Th i s e x p a n s i o n would-be r a d i a l l y con -
t inuab le (along the pos i t ive r e a l ax i s ) beyond the unit c i r c l e , 
which from, the f i r s t p a r t of t h i s s e c t i o n is p o s s i b l e only if g(x) 
i s a p o l y n o m i a l , i . e . <r = co . Thus <r = 0, 1 o r oo . It i s a l s o 
c l e a r tha t in c a s e <r - 1, i . e . when x = 0 i s the only f ini te 
s i n g u l a r i t y of g(x) , it i s i m p o s s i b l e to have any r e g u l a r e l e m e n t 
of the funct ion g(x) o v e r x = 0. 

4 . G e n e r a l i z a t i o n . As a g e n e r a l i z a t i o n of (1) one could 
i n t r o d u c e the equa t ion 

(11) g(f(x)) - f(g(x)) = h(x) 

w h e r e g(x) and h(x) a r e given p o l y n o m i a l s and f(x) i s to be 
found. A v a r i e t y of f o r m a l e x p a n s i o n s about the f ixpoints of 
g(x) could be found. A fixpoint § of g(x) i s a point with 
g( § ) = Ç » The n u m b e r of e x p a n s i o n s about a g iven fixpoint 
f would in g e n e r a l be the s a m e a s the d e g r e e of g(x) and th i s 
would a l s o equal the n u m b e r of d i f fe ren t % if a l l f ixpoints w e r e 
d i s t i n c t . T h e o r e m 2 con t inues to hold; t h e r e a r e no e n t i r e 
t r a n s c e n d e n t so lu t ions f(x). If f(x) i s a c o n v e r g e n t expans ion 
but not a po lynomia l i t s con t inua t ion wil l be a c o m p l i c a t e d 
p r o c e s s depending on the i t e r a t i o n p r o p e r t i e s of g(x) . 
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