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We present an asymptotic theory for analytical characterization of the high-Reynolds-
number incompressible flow of a Newtonian fluid past a shear-free circular cylinder.
The viscosity-induced modifications to this flow are localized and except in the
neighbourhood of the rear stagnation point, behave like a linear perturbation of the
inviscid flow. Our theory gives a highly accurate description of these modifications
by including the contribution from the most significant viscous term in a correctional
perturbation expansion about an inviscid base state. We derive the boundary layer equation
for the flow and deduce a similarity transformation that leads to a set of infinite,
shear-free-condition-incompatible, self-similar solutions. By suitably combining members
from this set, we construct an all-boundary-condition-compatible solution to the boundary
layer equation. We derive the governing equation for vorticity transport through the
narrow wake region and determine its closed-form solution. The near and far-field forms
of our wake solution are desirably consistent with the boundary layer solution and the
well-known, self-similar planar wake solution, respectively. We analyse the flow in the
rear stagnation region by formulating an elliptic partial integro-differential equation for
the distortion streamfunction that specifically accounts for the fully nonlinear and inviscid
dynamics of the viscous correctional terms. The drag force and its atypical logarithmic
dependence on Reynolds number, deduced from our matched asymptotic analysis, are
in remarkable agreement with the high-resolution simulation results. The logarithmic
dependence gives rise to a critical Reynolds number below which the viscous correction
term, counterintuitively, reduces the net dissipation in the flow field.
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1. Introduction

Fluid flows over sheer-free surfaces are radically distinct from those over which the
relative motion between the fluid and the adjoining surface is forbidden by a no-slip
condition. A shear-free boundary offers no resistance to the motion of the fluid along
the surface, thus allowing the fluid to slip perfectly over it. This perfect slip condition
that prevails over a shear-free surface has far-reaching consequences. Notably, the finite
slippage of the fluid over a shear-free boundary suppresses vorticity generation from it,
which in turn inhibits the boundary layer formation and growth processes (Leal 1989). The
likelihood of flow separation on a shear-free boundary is therefore diminished substantially
(Leal 1989; Legendre, Lauga & Magnaudet 2009). As a consequence, surface stresses
and hydrodynamic loads are drastically reduced. This exceptional feature of a shear-free
surface is targeted in devising patterned superhydrophobic surfaces that effectively reduce
drag by inducing significant slip over underwater bodies (Ou, Perot & Rothstein 2004; You
& Moin 2007; Rothstein 2010; Bocquet & Lauga 2011; Muralidhar et al. 2011; Karatay
et al. 2013). The reduction in vorticity generation and flow separation offers additional
advantages such as slip-enhanced transport (Haase et al. 2015; Haase & Lammertink 2016;
Rehman, Kumar & Shukla 2017) and slip-induced flow stabilization (Legendre et al. 2009;
Muralidhar et al. 2011; Seo & Song 2012; Li et al. 2014; Xiong & Yang 2017; Sooraj et al.
2020) as well. Advances in theoretical analysis and fundamental understanding of flow
past shear-free surfaces is of significant technological importance and paramount for an
effective realization of the full range of their drag and dissipation reducing, and transport
enhancing capabilities.

In this work we develop an analytical model for the high-Reynolds-number flow past
a shear-free circular cylinder. The configuration we consider consists of a stationary
cylindrical boundary over which slip is realized through a finite tangential surface
velocity. This configuration is of significance due to its remarkable drag-reducing
and dissipation-minimizing attributes (Shukla & Arakeri 2013), and, is quite distinct
from the one in which a shear-free interface separates two fluid components with
contrasting viscosities. The no-slip variant of this prototypical bluff body configuration
has been extensively investigated both experimentally and through detailed simulations
(e.g. Strouhal 1878; von Karman 1911; Williamson 1996). Presence of hydrodynamic
slip over the cylinder surface has been shown to suppress flow separation and
prominent unsteady flow features including the Reynolds-number-dependent two- and
three-dimensional vortex shedding patterns (Legendre et al. 2009; Rehman et al. 2017).
Specifically, over a perfectly slipping cylindrical surface, computational investigations
in the low-Reynolds-number regime (Re < 800, Re being the Reynolds number) have
revealed formation of a relatively weak unseparated boundary layer and an asymptotic
saturation of the maximum surface vorticity towards a Reynolds number independent
upper limit (Legendre et al. 2009).

Our present investigation is, in part, motivated by the need of an in depth insight
into the peculiar characteristics of the flow past general non-planar shear-free surfaces
that only an elaborate theoretical analysis can facilitate. A distinctive outcome of our
analysis is the theoretical prediction of a non-uniformity (switch in the sign) in the
contribution to the net dissipation from the first-order viscous correctional terms. This
non-uniformity occurs well beyond the highest Reynolds number of 103 investigated in the
previous works cited above and its existence is fully supported by high-resolution direct
numerical simulations (see §4). The non-uniformity in the contribution to dissipation
is altogether absent in an axisymmetric configuration (Moore 1963) and its existence
is important from the perspective of drag reduction. Specifically, the non-uniformity in
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the contribution to dissipation implies a contrast in the optimal drag-reducing tangential
surface velocity in the low- and high-Reynolds-number regime with the shear-free- and
potential-flow-enabling tangential surface velocities minimizing the effective drag over a
circular cylinder in the Re — 0 and Re — oo limits, respectively. Our theoretical approach
provides a detailed description of the flow over boundary layer and wake regions (§§ 3.1
and 3.3, respectively) and, most importantly, reveals the non-trivial dynamics of the flow
in the vicinity of the rear stagnation region (§ 3.2).

Our analysis relies on an asymptotic expansion about an inviscid, irrotational base
state that follows from the potential flow theory. This frictionless base state violates
the shear-free boundary condition over a non-planar perfectly slipping surface at any
finite Reynolds number. Crucially, the inviscid base state suffers from the well-known
D’ Alembert’s paradox for not only cylindrical but any arbitrarily shaped perfectly slipping
boundary. To enforce a shear-free condition on the perfectly slipping cylinder, we introduce
corrections in the form of a series consisting of terms that diminish progressively with the
Reynolds number. For the most significant first-order correction term in the asymptotic
expansion, we derive the appropriate governing equations that are uniquely applicable in
each of the distinct, yet interdependent, boundary layer, rear stagnation and wake regions
of the flow field. We subsequently determine the interconnected explicit form of the most
significant correction term in these regions. Furthermore, by determining the dissipation
associated with the shear-free-condition-consistent and D’ Alembert’s-paradox-resolved
flow field, we show that the second-order term in the asymptotic expansion of the drag
coefficient exhibits an atypical logarithmic dependence on the Reynolds number.

The asymptotic approach adopted in our work belongs to the wider class of
well-established perturbation methods (Van Dyke 1975; Hinch 1991). Perturbation
techniques have been used with remarkable success in the analysis of a range of
flows including boundary layers, wakes and jets (Batchelor 2000; Schlichting &
Gersten 2003; Leal 2007). Specifically, to examine the high-Reynolds-number boundary
layer characteristics over a spherical shear-free surface, Moore (1963) developed an
axisymmetric, asymptotic expansion about an inviscid base state that is given by potential
flow theory. In arriving at a correction to the celebrated drag force expression of Levich
(1949), Moore (1963) relied on a linearized asymptotic analysis of the rear stagnation and
the wake regions in addition to the boundary layer analysis. Extensions of the analysis to an
oblate ellipsoidal shear-free surface and a stationary spherical interface that separates two
fluids with finite viscosity contrast have been considered in Moore (1965) and Harper &
Moore (1968), respectively. Owing to the relatively large viscosity contrast between water
and air, the frequently encountered water—air interface is very nearly shear free. As such, a
large body of theoretical work on flow past a shear-free spherical boundary under diverse
conditions arose out of an interest in bubble and droplet dynamics. A comprehensive
review of the early efforts on theoretical modelling of the hydrodynamics of spherical
and slightly deformed, near-spherical bubbles in motion can be found in Harper (1972).
Besides being of fundamental importance, explicit expressions of the hydrodynamic forces
exerted on bubbles are particularly useful in theoretical and computational investigations
on the collective dynamics of bubble swarms. Considerable theoretical and computational
effort has therefore gone into the characterization of forces experienced by a bubble
undergoing motion in laminar and turbulent flow regimes. For an exhaustive treatment
of this topic, we refer the interested readers to reviews by Magnaudet & Eames (2000) and
Michaelides (2003).

Our analysis and the analytical tractability of our approach are facilitated by an effective
linearization of the governing equations over the boundary layer and wake regions.
As in the case of a spherical shear-free interface, this linearization and the resulting
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simplifications are direct consequences of the formation of a relatively weak boundary
layer over the shear-free surface. Despite this apparent similarity in the analysis, numerous
crucial differences do arise between axisymmetric spherical configuration considered by
Moore (1963) and the cylindrical configuration analysed in our work. Notably, unlike
the axisymmetric spherical configuration, the similarity solutions to the boundary layer
equation for the cylindrical configuration turn out to be incompatible with the shear-free
boundary condition. This incompatibility has necessitated development of techniques
which exploit the linearity of the boundary layer equation and enable expression of the
solution in the form of an infinite series of distinct self-similar solutions. In addition,
the absence of a vortex stretching/contraction mechanism in two dimensions results in
substantial disparities between the stagnation region of the planar cylindrical and the
axisymmetric spherical configurations. Specifically, the Reynolds number dependence
of the size of the stagnation region differs markedly (O(Re~ /%) in the case of a
shear-free cylinder vs O(Re™!/%) for a shear-free sphere). Moreover, the perturbations in
the stagnation region of a shear-free cylinder are comparable to the base inviscid state so
that the assumptions that form the basis of a linearized analysis (small perturbations) are
invalidated. This complication in the analysis of the stagnation region is altogether absent
in a shear-free axisymmetric spherical configuration. Importantly, our analysis reveals a
striking dissimilarity between the Reynolds number dependence of the drag coefficient
associated with flow past a shear-free sphere and the one corresponding to flow past a
shear-free cylinder. A logarithmic dependence on the Reynolds number in the case of a
circular cylinder implies that above a critical Reynolds number, the dissipation associated
with a shear-free circular boundary exceeds the one for the irrotational potential flow. In
contrast, the far simpler dependence on the Reynolds number in the case of axisymmetric
flow past a sphere implies that the dissipation associated with a shear-free spherical
boundary is always lower than the one corresponding to the irrotational potential flow
past a sphere (Moore 1963).

This paper is organized as follows. The set-up consisting of a uniform flow past a
shear-free circular cylinder is described in §2. In §3 a perturbation expansion based
asymptotic analysis is developed. The analysis includes formulation of parabolic boundary
layer and wake vorticity transport equations in regions over which diffusion in the
wall-normal or transverse directions overwhelms the diffusion along the streamwise
direction. The flow in the neighbourhood of the rear stagnation region is quite distinct
from the boundary layer and wake regions and lacks a dominant direction for diffusive
or convective momentum transport. Our analysis of the flow in the rear stagnation
region relies on a nonlinear, elliptic partial integro-differential equation that is formulated
specifically to account for its distinct dynamics and non-local character. Our treatment
of the flow in the vicinity of the rear stagnation is detailed in § 3.2. In §4 an explicit
expression for the drag coefficient is deduced from the composite flow field constructed
by combining the solutions over the boundary layer, rear stagnation and wake regions. The
principal results and key conclusions from this work are summarized in § 5.

2. The flow configuration

We consider the uniform two-dimensional incompressible flow of a viscous Newtonian
fluid past a stationary, perfectly slipping circular cylinder of diameter D and infinite span.
A schematic of the set-up is shown in figure 1. The set-up is conveniently described in
a polar coordinate system (r, ), with » and 6 denoting the radial and circumferential
coordinates, respectively. We consider steady flow, the governing equations for which are
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Figure 1. Schematic depicting the two-dimensional flow configuration consisting of a shear-free circular
cylinder placed in a uniform crossflow of an incompressible Newtonian fluid. The coloured contours depict
the vorticity field with the overlaid thin black lines representing the streamlines.

the stationary incompressible Navier—Stokes equations,
pw-Vu=—-Vp+uViu, V.u=0, 2.1)

where u and p denote the velocity and pressure fields, respectively, p being the density
and p, the dynamic viscosity of the fluid. The following no-through-flow and shear-free
boundary conditions hold on the perfectly slipping cylinder’s surface given by r = a (a =
D/?2 being the radius of the circular cylinder):

u(a,6) =0, (2.2a)
5 6
@ 0) =0 o _ @b (2.2b)
or |,—, a

Here u, and up denote the radial and circumferential components of the velocity vector
u. In (2.2b), 1,9 represents the & component of the viscous stress tensor T = u(Vu +
(Vu)T). Sufficiently far away from the cylinder, the flow attains a quiescent state
corresponding to the uniform free stream along the positive x direction. The far-field
boundary conditions are given by

U —> Usoc0sB, ug — —Ussinf and p — poo asr — 00, (2.3a—c)

where Ui and poo denote the free-stream velocity and pressure, respectively, 7 being the
unit vector in the x direction. The flow is uniquely characterized by the Reynolds number
Re = pUxcD/ 1.

3. Asymptotic analysis

Potential flow theory provides a simple means of determining an approximation to the flow
field. For the present set-up, the irrotational potential flow given by

a’ a? 1
u, = Uy (1_r_2) cosf, up=—-Ux (H_ﬁ) sinf, p =poo+§p(Ugo—ﬁf — ug),
(3.1a—c)
is a solution of not just the incompressible Euler’s equations but also the incompressible
Navier—Stokes equations (2.1). The term viscous potential flow is often employed in
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recognition of this important characteristic of the irrotational potential flow (Joseph,
Funada & Wang 2007).

The potential flow solution satisfies the far-field conditions (2.3a—c) and the
no-through-flow condition (2.2a). The corresponding tangential shear stress on the
cylinder’s surface is given by T,9(a, ) = (4uUx/a) sinf. Clearly, at any finite Re, the
tangential shear stress over the cylinder surface predicted from the viscous potential
flow solution does not vanish identically. The incompatibility between the potential
flow solution and the shear-free boundary condition can also be viewed in terms of
vorticity production at the shear-free interface. At the shear-free cylinder surface, a direct
correspondence exists between the surface vorticity and the tangential surface velocity
w(a, 0) = 2uy(a, 0)/a, where @ denotes the vorticity component in the z direction. Since
ug (a, 0) 1is finite, the foregoing relationship would imply a contradictory existence of finite
surface vorticity in an otherwise irrotational and inviscid flow field.

The apparent contradiction described above can be resolved by accounting for the
existence of a boundary layer in the immediate vicinity of the shear-free cylinder surface.
At high Re, this boundary layer, like its no-slip counterpart, is thin but significantly weaker
as the relative change in the tangential surface velocity across it is O(UssRe™!/?) (as
opposed to O(Ux) for a no-slip boundary). The vorticity produced in this thin boundary
layer region is convected downstream first through a rear stagnation region and then
eventually into a narrow wake. Modifications to the potential flow solution in each of
these regions containing significant vorticity is necessary for elimination of an erroneous
fore-aft symmetry in the irrotational flow field given by (3.1a—c). We note here that
D’Alembert’s paradox and the erroneous prediction of a zero-net-momentum-deficit wake
are both direct consequences of the fore-aft symmetry of the potential flow solution. In
the forthcoming subsections we develop interdependent asymptotic analyses necessary to
account for the finite vorticity production, and its advection and diffusion into each of the
distinct subregions (boundary layer, stagnation zone and wake) of the flow field.

3.1. Boundary layer analysis

At sufficiently high Reynolds numbers (Re >> 1), the corrections to the potential flow
solution that are necessary to enforce the shear-free condition (2.2b) can be sought within
the broad purview of boundary layer theory. To analyse the flow characteristics in the
boundary layer region, we define a scaled normal coordinate y = (r — a)/a that is attached
to the cylinder surface, along with a new tangential coordinate ¢ = m — 0. The origin of
the (y, ¢) coordinate system coincides with the forward stagnation point. In this newly
defined (y, ¢) coordinate system, we next express the flow variables as a superposition of
the potential flow solution and a correction over it, i.e.

Uy =ty +ily, Up=1uy+1Uy, p=p-+p, (3.2a—c)
where iy, and uy are the normal and tangential potential flow velocity components in the
(v, @) coordinate system while p denotes the pressure deduced from the potential flow
theory. The corresponding corrections to the velocity components and the pressure field
are denoted by uy, ugy and p, respectively. Using (3.2b) and (3.1b) in (2.2b), we arrive at
the following expression for the shear-free condition at the surface of the cylinder y = 0,

ity
9y |y=0

Inside the boundary layer region, the thickness of the boundary layer serves as an
appropriate length scale along the normal direction. Denoting the boundary layer thickness

920 A44-6

= 4Uoo sin + iig|y—o- (3.3)


https://doi.org/10.1017/jfm.2021.446

https://doi.org/10.1017/jfm.2021.446 Published online by Cambridge University Press

High-Reynolds-number flow past a shear-free cylinder

scaled with a by &, we find that within the boundary layer (d/dy) ~ 1/§. The potential
flow velocity components iy and u, in the boundary layer scale as Uy and U,
respectively. Using the above facts and (3.3), we deduce that in the boundary layer iy ~
Uxod. The divergence-free constraint on the velocity field yields iy, ~ Uso8?. To arrive
at the boundary layer equations, we define a stretched coordinate system (y*, ¢) with a
normalization in the normal direction: y* = y/§. Furthermore, we define the following
non-dimensional velocity components
* Uy * Uy
Ug= U’ uy= Us’ (3.4a,b)
In the stretched coordinate system (y*, ¢), the circumferential momentum equation
assumes the following form:

duy, ugy  Ouy Suuy 1 op n
uy AT T YU AT N T AT W T T VN TR Y
ay*  (ys+1) dp  (ys+1) (y*8 + DpU% 3¢ pUscad
0} L8 g 8%} . 52 0 . 25° 0w
Iy (DA (yE+DE (S +D? agr (¥ S+ 1?3 )

(3.5)

The convective and the diffusive terms are both dominant in the boundary layer and,
hence, the quantity it/ (pUsead?) = 2/(Res?) should be O(1). Without loss of generality,
we set § = +/2/Re.

In the boundary layer coordinates (y*, ¢), the radial momentum equation assumes the
following non-dimensional form:

82u*8_u’yk + —Szu(’; % — Su(’zz ___ L o

Yoy (y8+Dag (841 pUL dy*
pY: 0%uy n §  duy 8%u} N 82 0ul B 268 %
ay2 | (y s+ 1)ayr (yS+ D2 (y S+ D202 (yS+1)2 8¢

(3.6)

From the above relationship, one can deduce that in the boundary layer region, the
contribution to the pressure from the inviscid potential flow p provides the centripetal
force necessary for the flow to turn around the cylinder (signified through the underlined
tern;s in the foregoing relationship (3.6)). The pressure perturbation p therefore scales as
0(5%).

Next, we invoke boundary layer approximations and retain only the most significant
terms. Using (3.2a—c) in (3.5) along with the potential flow variables (3.1a—c), to a leading
order, we obtain the following for the non-dimensional correction velocity component
along the circumferential direction 12:; =ly/(Ux9):

i ot} gy
P = —2y*cos d)a—y* +2 sinqbw + 2ity, cos ¢. (3.7

With only the leading-order terms retained, the boundary conditions (2.2b) and (2.3a—c)
reduce to
812;;
wi=0atp =0, u,—>0 asy"— oo, —— =4sing aty*=0. (3.8a—c)
[ ¢ ay*
Note that the condition (3.8a) follows from the symmetry of the flow.
920 A44-7


https://doi.org/10.1017/jfm.2021.446

https://doi.org/10.1017/jfm.2021.446 Published online by Cambridge University Press

A. Kumar, NM.A. Rehman, P. Giri and R.K. Shukla

Boundary layer equations do not posses a characteristic scale and admit a dimension
reduction through a similarity transformation. In typical planar and axisymmetric flows,
the reduction in dimension facilitates simplification of the original partial differential
equation and the associated boundary conditions into an ordinary differential equation
and corresponding boundary conditions. A similarity transformation was also employed
by Moore (1963) in his analysis of an axisymmetric boundary layer formed over a
shear-free sphere. Given its wide-ranging success in a variety of flows lacking an inherent
characteristic scale, it is natural to seek a similarity solution of the boundary layer equation
for our present cylindrical set-up.

An analysis of the boundary layer equation (3.7) allows us to establish that a dimensional
reduction of (3.7) is indeed possible, albeit for a slightly modified form of boundary
condition (3.8¢). Specifically, we show existence of a family of similarity solutions

2n+2
(sin ?>
. 2

iy =————t—— /ﬂexp _—,72 sin?"t?2 (g) do, (3.9)
. Jmsing  Jo 2 cos? (E) 2
2

where 1 = v/2y* cos(¢/2) and n = 0, 1,2, ... is a non-negative integer (see Appendix A
for details). Each ﬁ;n satisfies (3.7), (3.8a,b) and the boundary condition

o} o\ 17!
L =f(g) = [mn(E)} at y*=0. (3.10)

Unfortunately, none of these unique solutions i, .n can individually be made to satisfy the
boundary condition (3.8¢). This is in striking contrast to the case of flow past a shear-free
sphere wherein a single similarity transformation can be used to reduce the parabolic
boundary layer equation and determine its closed-form solution (Moore 1963; Leal 2007).

The hindrance posed by the incompatibility between the derived similarity solutions and
the boundary condition (3.8¢) can be overcome by exploiting the linearity of the governing
equation (3.7). Next, as shown in Appendix A, using the relationship

4sing = iW” (sin —>2n+1 , where wy =8 and w,, = 81_[ (2l 3) forn > 0,
2

(3.11)
the final solution to (3.7) and (3.8a—c) can be expressed as an infinite superposition of
self-similar terms (itj; = ZZ‘;O wnﬁ:‘; ) as follows:

ﬁ;’;:;—; tan (%) /On exp ﬁ sin’ (%) \/1 — sin? (%) sin® <§> da.

(3.12)

The above solution is in the form of superposition of infinitely many self-similar terms

as opposed to the more commonly encountered solution consisting of a single self-similar
term (as in the case of a shear-free sphere Moore 1963).

Vorticity produced at the shear-free cylinder’s surface is convected and diffused

throughout the boundary layer region. An estimate of this vorticity wp; can be obtained
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from the solution (3.12) as follows:

N wpl a dug  Up 10u, 3’2:;
= =—|\—+———-F)=- o]0
= U/a)  Us ( o T T a0 ayr TO®
32 m _ 2
~ —,/ —sin (?> / n exp —Ua tan? (g) 1 — sin? (g) sin? (2) do.
T 2)Jo 2 cos? <§> 2 2 2
(3.13)

Here the superscript “*’ is used to denote non-dimensional vorticity.

3.2. Rear stagnation region analysis

The boundary layer analysis (BLA) of the previous subsection was based on the
assumption of wall-normal gradients being significantly larger than the streamwise
gradients. The surface-normal flow gradients diminish progressively with a gradual
increase in the thickness of the boundary layer along the periphery of the cylinder. In the
vicinity of the rear stagnation point ((y, ¢) = (0, 7)), as the flow undergoes a sharp turn,
the reduction in flow gradients in the surface-normal direction is so significant that they
become comparable to those in the circumferential direction. Thus, in the neighbourhood
of the rear stagnation point, the boundary layer assumptions do not hold and, hence, the
analysis of the previous section becomes unreliable. To complete the description of the
flow over the entire shear-free cylinder boundary, we next analyse the flow in the vicinity
of the rear stagnation region without invoking boundary layer assumptions.

The flow in the neighbourhood of the rear stagnation region involves a viscous boundary
layer that effuses out into an inviscid flow (see figure 1 and the forthcoming analysis). This
specific flow scenario corresponds closely to the one concerned with flow near a stagnation
point on a rigid boundary (Harper 1963). In particular, close to the rear stagnation point
we expect dominance of the convective terms over the diffusive terms and an appreciable
variation in vorticity but not the velocity. To analyse the flow in the stagnation region, we
adopt the (y, 0) coordinates (y as defined in § 3.1) so that the origin of the coordinate
system coincides with the rear stagnation point. Our analysis closely follows the work of
Harper (1963), in particular, (18) on page 148 of this cited work. Specifically, a scaling
analysis of the most significant terms allows identification of two distinct regions with
contrasting scenarios. The first region in which the convective terms dominate the viscous
terms is centred around the rear stagnation point and extends to a distance of O(1) into the
boundary layer. The boundary layer assumptions themselves however are valid only beyond
a certain distance from the rear stagnation point. This distance scales with the Reynolds
number as O(Re~!/*). Therefore, there exists a region of dimension ORe V" « 0 «
O(1) over which the boundary layer assumptions are valid and the flow itself is inviscid.

We next develop a theoretical model for analysis of flow in the neighbourhood of the
rear stagnation region. As shown below, the analysis independently provides justification
for the aforementioned scaling arguments. In the vicinity of the stagnation region, i.e.
towards the final stage of the boundary layer, vorticity is given by

DL

o
32 T _n2 SiIl2 <§)
lim wj=—,/ —/ n exp da, wheren=—. (3.14)
p—n T Jo 2 cos? (%) cos (%) V28
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In this final stage of the boundary layer, the velocity variations are small. Consequently, in
an overlap region within which the solutions from the BLA and the stagnation region

analysis are both valid and should match, the distortion in the streamfunction v is
negligible compared with the contribution to the streamfunction from the potential flow
. This region is off-axis and is located away from the singular rear stagnation point at
6 = 0. In this region, the net streamfunction ¥ which is the sum of the above two, assumes
the asymptotic form ¥ = ¢ + ¥ ~ ¥ ~ 2Useayd (¥ = Usoay(2 + y)sinf/(1 +y) =
2Uxayb fory <« 1 and 6 < 1). Using this asymptotic form, n can be rewritten as

2/2Uxas 22
where 7 = 1/(Uxad) is the non-dimensional streamfunction near the rear stagnation
point. Combining expressions (3.15) and (3.14) we obtain an expression for vorticity in
the final stage of the boundary layer. Since the rear stagnation region is governed by

inviscid dynamics, vorticity remains constant along streamlines. We therefore arrive at
the following expression for vorticity in the stagnation region:

) B 2 sin® (%)
x____“ * s
i gm ), e 16052 (2 | s (2)

(3.15)

do. (3.16)

Here o} is the non-dimensional vorticity in the stagnation region (o} = wsa/Ux).
The resultant vorticity from the end of the boundary layer region is simply transported
along the streamlines into the rear stagnation region. In the overlap region the distortion in

the streamfunction ¥ = O(Re™!) is insignificant since the potential flow streamfunction
V¥ = O(Re'/?). The potential flow streamfunction ¥ remains O(Re~/?) in the stagnation
region. Next, consider a potential flow streamline that is located O(§) distance away
from the cylinder’s surface in the boundary layer region. In the rear stagnation region

this streamline moves to O(8!/?) distance from the cylinder’s surface and maintains the
0(8'/?%) distance from the line of symmetry near the stagnation point. The flow at the
rear stagnation point corresponds closely to the flow in a right-angled corner. For such a
stagnation point flow, both the directions y and 6 must be equally important or, in other
words, y ~ 6. Furthermore, the flow itself must turn around the corner so that {» ~ yf.
Next, noting that vorticity is produced solely from the distortion in the streamfunction,
we deduce that 1/~f ~ O(Re_l/ 2) in the rear stagnation region. Moreover, y, 0 ~ 812 or,

equivalently, the size of the stagnation region is O(Re~!/%), in accordance with our
assertion in the preceding paragraphs.

In view of the above arguments, to analyse the rear stagnation point flow, we next
introduce an appropriately rescaled coordinate system (y5, 6;), where yi = y/81/% and
0 =0 /812, In our present planar set-up, an absence of vortex stretching mechanisms
suggests that the vorticity level in the stagnation zone matches that in the boundary layer
region. Thus, @} ~ O(1), which can be inferred from (3.16) as well. For a non-dimensional
vorticity that scales as O(1), the associated non-dimensional velocity corrections to the
inviscid flow must necessarily scale as the characteristic non-dimensional length scale, or
equivalently O(Re~1/%).

An inspection of the expression (3.1a,b) reveals that in the rear stagnation region, the
potential velocity components themselves scale as O(Re™!/#). This would imply that both
the correction and the potential flow components exhibit similar scalings and are therefore
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comparable in magnitude. Expressing vorticity as the curl of the velocity vector and
retaining only the significant terms as determined from the appropriate scales in the rear
stagnation region, we deduce that
o o’
9 S R
—0 Y = (3.17)
ay 00!

where ﬁ;(s) = i1p/(Uso$'/?) and Ijt;(s) = i1,/(Uso8'/?) are the non-dimensional correction
velocity components in the circumferential and radial directions, respectively. The

correction velocity components can be expressed in terms of the distortion to the
streamfunction as follows:

L
Y<s)_39;<’ O ™ ay;k‘

(3.18a,b)

Using (3.16) and (3.18a,b) in the relationship (3.17), we obtain the following governing
equation for the correction velocity induced distortion in the streamfunction:

- 3 o L
Syr Yy :_w*:i /n(lz*_l_&*)exp — (g2 | sin (2)
o> 062 ERVE 16 cos? (E) cos (g)

2 2

do. (3.19)

Here 1/7;" = ¥/(Usoad) and V¥ = ¥/ (Usad) = 2y 0} are the non-dimensional distortion
and potential flow streamfunctions in the rear stagnation region, respectively. The
correction flow becomes unidirectional in the final stage of the boundary layer and towards
the beginning of the wake. These facts combined with the no-through-flow condition at the
cylinder surface and the symmetry condition along the rear axis of symmetry (6 = 0), give
rise to the following boundary conditions on the distortion streamfunction &A*

AU* Y™
w&‘ — 0 as y;lf N OO, wS
dy* : 00*

N

UF=0at y¥, =0, — 0 asf — oo. (3.20a—c)
We note here that owing to the relationship (3.16), the above homogeneous boundary
condition on the distortion streamfunction enforces the shear-free condition as well (to a
leading order, the homogeneous boundary condition for surface vorticity and the shear-free
constraint at the cylinder’s boundary are equivalent).

Equation (3.19) is an elliptic partial integro-differential equation that involves a
non-local source term. The nonlinearity of (3.19) makes its analytical tractability
extremely challenging, if not impossible. This complication arises principally because
the perturbations to the potential flow turn out to be comparable to the flow itself
in the rear stagnation region. A similar nonlinearity was encountered in the planar
analysis of two-dimensional stagnation point flow (Harper 1963). We note here that in an
axisymmetric configuration, a reduction in the magnitude of vorticity due to contraction
of vortex lines in the stagnation region ensures that perturbations remain insignificant in
comparison with the base potential flow (Harper & Moore 1968). This insignificance of the
perturbations facilitates full analytical resolution of the axisymmetric flow in the vicinity
of the rear stagnation region of a shear-free spherical surface (Moore 1963).

To make further progress, we solve (3.19) subject to boundary conditions (3.20a—c)
numerically using standard approximation techniques. Note that the vorticity field from
the boundary layer solution (3.13) is regular and bounded (|wj;| < 4) and, hence, the
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Figure 2. The scaled correction in the tangential surface velocity (ﬁ;’; = /Re/2(up — u1y)/Ux) along the

shear-free cylinder surface at Reynolds numbers 102, 10%, 10* and 10°. Predictions from the boundary layer
analysis (BLA) and the rear stagnation region analysis (RSRA) are indicated using solid black and solid
coloured lines, respectively. Dotted coloured lines represent results from direct numerical simulations (DNS).

right-hand side of (3.19) and the corresponding integral solution are both regular. This
regularity enables discretization of (3.19) using standard approximation techniques. Our
numerical implementation is detailed in Appendix B. Our analysis of the rear stagnation
and the boundary layer regions provides a complete description of the flow along the
periphery and in the immediate neighbourhood of the shear-free cylinder. Figure 2
depicts the scaled tangential velocity correction ﬁj; = «/Re/2(u1y/Uso) along the surface
of the cylinder predicted from our analysis of the present and preceding subsections at
Re = 102, 103, 10* and 10°. Coloured solid lines in figure 2 illustrate the trends for the
rear stagnation region obtained from the numerical solution of (3.19) and (3.20a—c). The
numerical solution is only valid in the neighbourhood of the rear stagnation point. Hence,
the coloured solid lines extend only over a limited range of ¢ representing a portion
of the rearward cylinder surface. The scaled tangential velocity correction increases in
magnitude and subsequently decreases after attaining a maxima as one traverses from the
rear stagnation point to the forward stagnation point along the cylinder surface. This broad
trend is observed at all the four Reynolds numbers, with both the magnitude of the peak
and the spread in 11;'; strongly dependent on the Reynolds number. We note here that this
apparent dependence on Re is entirely due to the disparity between normalization scales
employed in figure 2 and the relevant characteristic scales in the stagnation region (§ vs
/8 for the velocity scale for instance).

Solid black lines in figure 2 depict the scaled tangential velocity correction deduced
from the BLA (i.e. from (3.12)). Owing to the boundary layer specific characteristic
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scale based normalization employed in figure 2, IZ; given by (3.12) is independent of the
Reynolds number and so are the solid black lines depicted in each of the four frames of
figure 2. The scaled correction ﬁjz grows monotonically with ¢. The growth is particularly
pronounced over the rearward cylinder surface (¢ > m/2). In particular, it;; becomes
unbounded in the vicinity of the rear stagnation point. This unphysical divergence of ﬁ;‘; as

¢ — w is a direct consequence of the breakdown of the assumptions inherent in the BLA.

To determine ﬁ;’; over the entire cylinder periphery, we must employ complementary
boundary layer and stagnation region analyses over their respective domains of validity.
Furthermore, a matching procedure must be invoked over the overlap region O(Re™ /%) «
6 < O(1) to obtain a uniformly valid solution itZ; over the entire range 0 < ¢ < m. The
dependence of ft;; on ¢, as illustrated in figure 2, suggests that such a matching is indeed
possible, albeit at sufficiently high Re, which is when our asymptotic analyses of boundary
layer and stagnation regions are strictly valid (i.e. in the limit Re — 00).

Our theoretical results can be directly compared with the predictions from detailed
simulations. To this end, we perform direct numerical simulations (DNS) of a
two-dimensional unsteady incompressible flow past a shear-free circular cylinder using a
well-established technique in polar cylindrical coordinates (see Shukla & Zhong (2005)
and Shukla, Tatineni & Zhong (2007) for details and verification tests). In brief, our
simulation methodology relies on a combination of tenth-order compact finite difference
and Fourier-spectral schemes (in » and 6 coordinates, respectively) and a second-order
semi-implicit projection scheme (Hugues & Randriamampianina 1998) for spatiotemporal
discretization. In all our runs we employ spatiotemporal resolutions necessary to resolve
the thin boundary layers and enforce the Courant—Friedrichs—Lewy convective stability
criterion. We also perform long-time simulations on successively refined meshes to ensure
mesh independence of the computed solution.

The predictions from our DNS runs are depicted in figure 2 alongside results from
the asymptotic BLA and the rear stagnation region analysis (RSRA). The comparison is
quite encouraging and more so at high Reynolds numbers. Specifically, over the windward
section of the cylinder’s boundary, discernible deviations between the DNS results and
BLA are evidenced at Re = 10?. The deviations reduce progressively with an increase in
the Reynolds number. In particular, at the highest Re = 10°, the predictions from BLA
agree remarkably well with the DNS results all the way up to the location at which a
maximum in the magnitude of it;; is encountered. We observe trends similar to those

noted for the BLA in the rear stagnation region as well. Appreciable deviations are
evidenced between the predictions from RSRA and the DNS results at Reynolds numbers
of 10? and 10°. The deviations reduce considerably at Re = 10* and are only marginal at
the highest Reynolds number of Re = 10° investigated in our work. Overall, at a given
Re, the discrepancy between DNS and RSRA is discernibly more pronounced than the
discrepancy between DNS and BLA. This increased discrepancy is attributable to the more
stringent restrictions on the Reynolds numbers that are necessary in RSRA (Re™!/? « 1
for the BLA vs Re~ /4 « 1 in the case of RSRA).

We note here that viscous terms do become important in the immediate vicinity of the
rear stagnation point. The presence of such a viscous sublayer region in general stagnation
point flows was mentioned in Harper (1963). The scale of this relatively thin region is
O(Re™3/%), a fact that can be readily established by appealing to the vorticity transport
equation with consideration of viscous diffusion. The scale of this region implies that its
contribution to the leading-order terms of interest in this work is insignificant.
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3.3. Analysis of the wake region

To complete our description of the vortical regions of the flow field, we next develop
an asymptotic analysis of the narrow downstream wake region into which the vorticity
generated at the shear-free cylindrical surface is eventually convected (see figure 1). We
adopt a Cartesian coordinate system (x, z) where both the scaled coordinates x and z are
normalized with respect to the cylinder’s radius a. The origin of the coordinate system
coincides with the rear stagnation point with the x-axis pointing along the streamwise
direction.

As argued in the earlier subsection, an absence of a vortex stretching mechanism in the
present planar configuration implies that the non-dimensional vorticity (w* = aw/Uxo)
scales as O(1) in the boundary layer and stagnation regions, and crucially, in the initial
stages of the wake region as well. The wake thickness is the appropriate length scale for
characterization of the wake region. Denoting the wake thickness normalized with the
cylinder radius by §,, and making use of the non-dimensional vorticity scale of O(1), we
deduce that the correction velocity in the streamwise direction i, should scale as O(3,,).
Applying the divergence-free condition on the correction velocity field, we obtain i, ~

O(SVZV) as the characteristic scale for the component of the correction velocity in the z
direction.

In the wake region the inviscid base flow velocity components deduced from the
potential flow theory can be shown to scale as u, ~ O(1) and u; ~ O(5,,), respectively.
Balancing out the convective and the diffusive terms in the wake, in a way similar to our
analysis of the boundary layer region, we obtain §,, ~ §. Without loss of generality, we
set 8, = §. Using the characteristic scales described above, we next define appropriately
normalized spatial coordinates and the base potential flow and correction velocity
components as follows:

Uy

. _, U _ u - - u
e
8 Uxo Uxod Uxod Uxod

With the above definitions in place, the equation that governs the distribution of
non-dimensional vorticity o}, = w,a/Us in the wake region assumes the following

linearized form:

(3.21a—e)

_, 0¥ _, dw* 92w
u;ko wa + ufo Bz: = az*;. (3.22)

Here we have only retained the leading-order terms, and, ﬁ;o and 12;0 denote the
zeroth-order terms in an expansion of i} and u} about z* = 0, respectively. Imposition
of symmetry of the flow field about z* = 0 and the irrotationality of the far-field flow
leads to the boundary conditions

wp=0atz*=0, o] — 0asz* — oo. (3.23a.,b)

Moreover, we require the solution w], of (3.22) subject to boundary conditions (3.23a,b) to
be such that it results in a drag-producing far wake with a constant momentum deficit. The
general solution of (3.22) and (3.23a,b) that satisfies the aforementioned criterion assumes
the form

;2
/lngn €Xp <_7n>
=2

Cl)w=

1
(@)
, Where ¢, = x+D 73 (3.24)

! 1
" <x+1+m+cn) \/§<x+l+?+Cn>
X
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Like the solution (3.12) of the boundary layer (3.7), the above solution is in the form
of superposition of a family of infinite self-similar wake solutions each with strength A,
and centred around the coordinates (—(c, + 1), 0). We require the yet to be determined
constants A, and ¢, in the above expression (3.24) to be such that the asymptotic forms
of wj, and wj; match in the rear stagnation region. Note that since the flow in the rear
stagnation region is symmetric in y and 6, the vorticity in the beginning of the wake region
must match the one associated with the final stage of the boundary layer. The transition of
the flow from the stagnation region to the wake region is thus, to leading order, an inversion
of the flow coming from the boundary layer into the stagnation region. Therefore, the
distortion in the streamfunction becomes smaller at the right side of the stagnation region
(beginning of the wake region). Consequently, the vorticity in the beginning of the wake
region is of a form given by the expression (3.14). Matching the general solution of the
vorticity in the wake region given by (3.24) and the vorticity distribution given by (3.14)

allows us to determine the final form of w;;,
T Wrpme: . !
3 2{,(exp —7 4 —k V4 l—m
*
wh=— / - / dx, where ¢, =
-2

1 1 /2"
x+ 1+ —K V2 (x+1+—— —«
+1 x

X +1
(3.25)
At a location far downstream, i.e. when x > 1, (3.25) assumes the asymptotic form
2 * *2
w;, —> —% exp (_Zél_x) for x — oo. (3.26)

The above asymptotic expression is precisely in the form of the well-known self-similar
solution for the defect velocity in the laminar wake of a planar body with a given
drag coefficient (Schlichting & Gersten 2003). A comparison with the solution for the
defect velocity from Schlichting & Gersten (2003) reveals that sufficiently far away from
the cylinder surface, the wake solution (3.25) exhibits an asymptotic decay rate that
corresponds to a drag coefficient of 167/Re. As shown in the forthcoming section, to
a leading order, the drag coefficient associated with the flow past a shear-free circular
cylinder matches the aforementioned value of 167/Re exactly. Thus, our combined
asymptotic analysis of the boundary layer, rear stagnation and the wake regions is
self-consistent in that the drag predicted from the analysis, as derived in the forthcoming
section, equals the one deduced from the far-field wake signature.

4. Viscous dissipation and drag coefficient

The viscous corrections to the inviscid base state induce a streamwise asymmetry in
the otherwise symmetric stress field. The viscous correction-induced circumferential
asymmetry in the surface stress gives rise to a non-vanishing drag force. We next attempt to
quantify the finite drag force and in the process resolve D’ Alembert’s paradox specifically
for the configuration being investigated.

An expression for the net drag force can be derived by summing up the componentwise
contributions from the pressure and viscous stresses along the x direction. Given the
asymptotic form of the solution, such an expression would be tantamount to summing
up the contributions from the zeroth-order inviscid base flow and the first-order viscous
correction to it. Owing to the symmetry of the inviscid base flow, the contributions to the
drag from the zeroth-order terms in the asymptotic expansion for pressure and viscous
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stresses must necessarily sum up to zero, thus leading to D’Alembert’s paradox. An
expression for the first-order term in the asymptotic expansion of the drag can be readily
determined from the solutions derived in the preceding section. Alternatively, to ensure
consistency with the first-order correction term in the wake solution, we may intuitively
assert that the first-order term in the asymptotic expansion of the drag coefficient must
necessarily equal 161/Re.

Since we have determined the correctional flow field only to a leading first order, the
aforementioned direct evaluation method can not be used to determine any subsequent
higher-order terms in the asymptotic expansion of the drag coefficient (Kang & Leal
1988). Moreover, a direct evaluation of the drag coefficient relies explicitly on the pressure
distribution over the surface of the cylinder. Determination of the first-order term in the
asymptotic expansion of a pressure field is complicated by the inclusion of first-order
effects in the surface vorticity.

Notwithstanding these complications, an improved estimate of the drag coefficient
without any explicit involvement of surface pressure distribution can nonetheless be
deduced by appealing to the overall mechanical energy balance in the flow. Specifically, in
any generic drag-producing, thrust generating or self-propelling configuration with finite
tangential surface motion, the net energy dissipation rate must match the sum of the rates at
which work must be done to counteract the drag force and sustain the tangential boundary
motion (Arakeri & Shukla 2013). Thus, one may express the non-dimensional total viscous
dissipation as a power loss coefficient, which for a shear-free cylinder with vanishing
tangential surface stress must equal the drag coefficient (Shukla & Arakeri 2013), i.e.

R
pU3.a

Cpr

27
/ &, dR2 =Cp — 13 / T9(a, O)ug(a,d)dd = Cp, 4.1)
2 ono 0
where @, = (7 : Vu)/u is the dissipation function with §2 denoting the entire flow
domain excluding the cylinder’s interior. Furthermore, using 7 : Vu = w(w+V-u-
Vu)) the drag coefficient can be conveniently expressed in terms of the total vorticity and
the tangential surface velocity as (Lamb 1932; Shukla & Arakeri 2013)

21
Cp=CpL= “3 2 / ul(a, 0)do + / w?dR ). (4.2)
pUZa 0 2

A direct substitution of the irrotational potential flow solution (i (a, 0) = —2Ux sin 6
and w = 0) into the relationship (4.2) yields Cpy = 167/Re for the power loss coefficient
(Shukla & Arakeri 2013). Thus, the power loss coefficient deduced from the zeroth-order
term in the asymptotic expansion of the flow solution precisely equals the drag coefficient
estimated by retaining the zeroth and first-order terms in the asymptotic expansion of the
flow solution. Hence,

16
D = Cpp = R_:, (4.3)

where the superscript ‘(1)’ signifies the order to which the terms in the asymptotic
expansion of the drag coefficient are retained. Note that in the case of a shear-free sphere,
a similar observation leads to Levich’s celebrated result Cl()l) = 48/Re for drag on a
spherical bubble (Levich 1949). In essence, each term in the asymptotic expansion of the
power loss coefficient matches a subsequent higher-order term in the asymptotic expansion
of the drag coefficient. Hence, an improved estimate for the drag coefficient can simply be
determined through a direct substitution of the potential flow solution and the first-order
correctional terms in the relationship (4.2).
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We begin by estimating the contribution from the tangential surface velocity (first term
that appears in the parenthesis on the right-hand side of (4.2)). To a leading order,

2n 21 21
Zf ug(a, 0)do ~ 2/ ug(a, 0)do + 4/ ug(a, gy (a, ) do. “4.4)
0 0 0

The first term on the right-hand side of the above expression (4.4) corresponds to the
inviscid potential flow and, therefore, follows from the analysis in the preceding paragraph.
The integrand in the second term on the right-hand side of (4.4) is non-singular. A
numerical evaluation of the second term on the right-hand side of (4.4) yields

2 2 16 6.20
el / Bia, 0)do ~ —— (1 - . (4.5)
pU3.a Jo Re VRe

Next we consider the contribution from the total vorticity. Owing to the symmetry of
the flow, the integral term on the extreme right of (4.2) can be recast as

2
" / g = 2 / ©*d, (4.6)
pUa Jo pUZa Jg,

where §2,,, with the subscript ‘u’ representing upper, denotes the region (r,0) : 0 <6 <
T, a < r < oo. Substitution of a uniformly valid vorticity field over the entire domain £2,,
would yield an estimate for the integral (4.6). For the present set-up, such an evaluation
of (4.6) would amount to summing up individual contributions from the vorticity
distributions over the boundary layer, rear stagnation and wake regions. The contributions
from the boundary layer and the wake regions can be deduced through a direct substitution
of the respective vorticity distributions (3.13) and (3.25) into the integrand of (4.6). As
detailed in § 3.2, owing to the nonlinearity of (3.19), the vorticity distribution in the
stagnation region is determined numerically and, therefore, the contribution to (4.6) from
the rear stagnation region must be computed via numerical quadrature.

A direct quadrature-based numerical computation of the contribution to (4.6) from
the rear stagnation region is however problematic due to a logarithmic singularity in
Y. Specifically, the singularity in wy leads to a numerical prediction that diverges with
mesh refinement. The singularity is generic in that it exists in planar stagnation point
flows (Harper 1963) and its full resolution for the present specific configuration would
presumably require accounting for the presence of a viscous layer adjacent to the shear-free
cylindrical surface. For an estimation of the contribution to (4.6) from wj, it suffices
to address the aforementioned lack of convergence through a singularity subtraction
technique that regularizes the integrand.

To regularize the integrand in (4.6) in the rear stagnation region, we devise a
desingularization technique wherein we split (4.6) as follows:

2 2 2
U’: f 0?2 = U—‘; / 0l d2 + U’; / <w§— lim w§,> Q2. @7
P aJg, pPUSA J2 ' pUa s -

[o¢] u

1 1I

Here §2; denotes the upper half of the stagnation region. Our approach of constructing
uniformly valid asymptotic expansions ensures that in the vicinity of the rear stagnation
point, the form of singularity in the boundary layer and wake vorticity distributions
matches that of the rear stagnation region vorticity distribution. Our desingularization
technique exploits this similarity in the nature of the singularity to effectively eliminate
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it. Specifically, the integrand of (II) is free of the singularity and, therefore, amenable
to accurate numerical evaluation using standard quadrature rules. The first integral (I)
in the above expression (4.7) is evaluated over the entire upper domain by making use
of the analytical distributions (3.13) and (3.25) for vorticity in the boundary layer and
the wake regions, respectively. Furthermore, in evaluation of (I) over the portion of 2,
that coincides with the rear stagnation region, we employ extensions of the boundary
layer/wake region vorticity (wp; or wyy) into the rear stagnation region and not the actual
vorticity in the rear stagnation region (wy) itself.

The first integral (I) involves two regions, each with distinct solutions; one from the
boundary layer region given by (3.13) and the other given by (3.25) associated with the
wake region. We therefore rearrange (4.6) as follows:

21 5 21 21 2
IoU3 P wbl,w d2 = m o “)bl dse2 + IOU3 P o Cl)W ds2. (48)
o] o0 bl ]

To make further progress a partitioning of the domain £2,, into the boundary layer and
wake regions §2;; and £2,, is necessary. Since the solutions in the boundary layer and wake
regions assume similar asymptotic forms in the rear stagnation region, it can be reasonably
asserted that the curve C dividing the two regions passes through the rear stagnation point.
Importantly, as established below, so long as the dividing curve C originates from the rear
stagnation point, the leading-order terms in (I) (that we are interested in) remain insensitive
to the specifics of C.

In the asymptotic limit Re — oo, the vorticity field undergoes a sharp decay away from
the relatively thin boundary layer, rear stagnation and wake regions. The integrands in (4.8)
are therefore finite only over these extremely thin regions with finite vorticity. We therefore
expect the dependence of (4.8) on the specifics of the dividing curve C to remain localized
to the immediate neighbourhood of the rear stagnation point. Consequently, we may limit
our specification of the curve C to a small neighbourhood of the origin (8, y) = (0, 0). The
left out portion despite being significantly larger has no consequence on the evaluation
of (4.8). Hence, it suffices to take & ~ Ay’ to be the asymptotic form that any general
parametric representation of C would assume in the extreme vicinity of the rear stagnation
point. An equivalent representation in the wake coordinates reads as z ~ Ax” and since
the wake solution holds only downstream of the rear stagnation point, one may impose
constraints A > 0 and b > 1/2.

We substitute the asymptotic form of C in (4.8), while simultaneously substituting for
the boundary layer and wake solutions (3.13) and (3.25), respectively. After some rather
lengthy manipulations that are described in full detail in Appendix C, we eventually obtain

2w L9yl
2
wp; ,, d§2 ~ / /
pU3 a /szu blow 63/2 0=0

63.68 +73.56b — 23.69In(A5%) 16055 + 150.67b + 23.69 In(A/8)
-~ (b + 1)Re32 (b + 1)Re3/2

216.02 + 11.85In Re
= Re3/2

Axb
*2 kS *2 3 _%
ldyd9+/ *Owdzdx

, 4.9)

where only the leading-order terms have been retained. Note that the above result is
independent of the constants A and b and, therefore, the shape of the dividing curve C, as
asserted previously. This independence is not surprising since in our estimation of (4.8),
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we essentially construct a single uniformly valid vorticity field from the boundary layer and
the wake region solutions. The independence is consistent with the general expectation
from the procedure of obtaining solutions using matched asymptotic expansions (Van
Dyke 1975). Specifically, the leading-order term associated with any quantity derivable
from the matched asymptotic expansion is independent of the way in which solutions in
distinct regions that share common regions of validity are combined to form a composite
solution.

Next we evaluate the integral (II). Recasting (II) in terms of the non-dimensional
quantities we obtain

2 a3 [ [
U‘; / (wf, - lim w,%,> e = R_i/_z / <wjf2 - (}in})a)ﬁ) dy* dey.
pPUSa Joy - € 03=0 Jy;=0 -

(4.10)
Numerical evaluation of the above integral yields
2 545
L / W — lim 0 ) d2 ~ 2o 4.11)
pUa Jgo, 0—0 Re3/2

Combining the relationships (4.5), (4.9) and (4.11) we arrive at the following expression
for the drag coefficient:

Cy) =

167 0.24InRe — 1.79
—(1+ . (4.12)

Re v/ Re

Here the superscript ‘(2)’ indicates the order to which the terms in the asymptotic
expansion are retained. For comparison purposes, we define a scaled correction term Cp
by eliminating the contribution from the first-order term in the asymptotic expansion of
the drag coefficient Cg) (or, equivalently, the power loss coefficient associated with the
inviscid potential flow) and subsequently normalizing with respect to Re /2, i.e.

Cp = Re¥*(Cp — C)). (4.13)

The scaled correction term Cp quantifies the contributions to the drag coefficient from the
second and any higher-order terms in the asymptotic expansion of the viscous corrections
to the potential flow velocity field. Combining (4.12) and (4.13) we deduce that

CY = 11.851nRe — 90.17 (4.14)

for the scaled correction corresponding to the second-order estimate of the drag coefficient
(4.12).

Our asymptotic estimates can be directly compared with the predictions from
high-resolution DNS. Figure 3 depicts a comparison of the theoretical result (4.12) for
the drag coefficient with the predictions from DNS over more than three decades of
variation in the Reynolds number. The theoretical result (4.12) is in excellent agreement
with the DNS predictions, the agreement being near perfect over the range Re £, 500. With
a progressive increase in the Reynolds number, the O(Re—3/2) term in (4.12) diminishes
at a rate that is higher than the leading-order O(Re~!) term. The influence of inclusion of
the O(Re™3/?) term in the theoretical estimate for drag coefficient is therefore expected
to be most prominent over the low Reynolds numbers range. This is clearly evident
from the trends depicted in figure 3. Specifically, compared with (4.3), the asymptotic
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Figure 3. Drag coefficient Cp as a function of the Reynolds number. Dashed lines labelled Cg) and solid lines

labelled Cg) represent theoretical estimates given by (4.3) and (4.12), respectively. Open circles labelled CgNS

indicate results obtained from DNS.

result (4.12) for Cg) is in appreciably better agreement with the DNS predictions over
the range Re < 100. Beyond Re ~ 500, the asymptotic estimates (4.12) and (4.3) are
indistinguishable and crucially, in remarkable agreement with the DNS predictions.

To assess the significance of the higher-order O(Re~>/?) term in the theoretical estimate
(4.12), we compare the scaled correction term (4.13) deduced from the analysis with
the one obtained from DNS results. Figure 4 illustrates this comparison over the full
range encompassing over three orders of magnitude variation in the Reynolds number.

By definition, C‘(Dl) = 0 irrespective of Re, as shown using blue dotted lines in figure 4.
A comparison between the scaled correction given by (4.14) with the one computed
from DNS indicates significant deviation over the low-Reynolds-number range Re < 1000.
For Re Z 2000, the assumptions inherent in our asymptotic analysis (Re™'? « 1 and
Re~ /% « 1) are met and the scaled correction 65)2) exhibits remarkable agreement with
the predictions from DNS. Importantly, except over a small range of Reynolds number
centred around Re ~ 2000, compared with C (1), 61(32) is consistently in better agreement
with the scaled correction CgNS estimated from the detailed simulations. Thus, the
inclusion of O(Re™3/?) term improves the asymptotic analysis based prediction of the
drag coefficient across the entire range of Reynolds number.

The scaled correction 6'1()2) is unusual in that it explicitly depends on a logarithmic term
in the Reynolds number. This peculiar dependence is specific to the case of a shear-free
circular cylinder and is not observed in the case of a shear-free sphere (Moore 1963). The
dependence leads to an inversion in the sign of the scaled correction C‘g) at a critical
Reynolds number Re. ~ 2017. The O(Re3/?) term thus reduces the drag coefficient
over the range Re < Re., while increasing it for Re > Re.. The foregoing observation is
supported by the DNS results shown in figure 4, with the simulations indicating a higher
critical Reynolds number of about 2340 for an inversion in the sign of the contribution
from the higher-order terms.
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Figure 4. The scaled correction to the drag coefficient Cp as a function of the Reynolds number. Dashed lines
labelled ég) and solid lines labelled C’g) represent scaled corrections associated with the theoretical estimates
(4.3) and (4.12), respectively. Open circles labelled ﬁ‘gNS indicate scaled correction for the drag coefficient
computed from DNS. The vertical dash—dotted line indicates the critical Reynolds number Re. below and
above which 6g> < 0 (shown as the light grey shaded region) and Cg) > 0 (shown as the light yellow shaded
region), respectively.

The aforementioned inversion in the sign of high-order contributions has
important energetic implications. Specifically, our results indicate that over the
low-Reynolds-number range Re < Re., the net frictional loss associated with the
irrotational potential flow overwhelms the net loss associated with flow past a shear-free
circular cylinder. For Re > Re., the net frictional loss associated with the irrotational
potential flow is marginally lower than the loss associated with the shear-free cylinder
boundary, with the difference between the two diminishing progressively with the
Reynolds number. In light of the previous findings of Shukla & Arakeri (2013), we
therefore conclude that the tangential surface velocities corresponding to the viscous
potential flow and a shear-free condition minimize frictional loss associated with flow
past an impermeable circular cylinder at large (Re > Re.) and small (Re < Re.) Reynolds
numbers, respectively. In stark contrast, Moore’s asymptotic analysis (Moore 1963) for an
axisymmetric spherical configuration suggests that the net power loss associated with the
potential flow overwhelms the loss associated with a shear-free boundary, irrespective of
the Reynolds number.

Our approach of finding the net dissipation may seem overly complicated, especially
in view of the comparatively simpler analysis involved in the estimation of drag on a
shear-free sphere (Moore 1963). The apparent complication however is merely due to the
disparity in the contribution from the rear stagnation region in the planar and axisymmetric
configurations. In an axisymmetric spherical set-up, the O(Re~'1/%) contribution to the

dissipation from the rear stagnation region is dwarfed by the O(Re™3/?) contribution
from the wake and boundary layer regions. A neglect of the contribution from the rear
stagnation region and a utilization of the boundary layer and wake region solutions over
the entire flow domain are both warranted in an analysis of the O(Re=3/%) term in the
asymptotic expansion of the drag coefficient. Such a simplification is not possible for a
planar cylindrical configuration as all the three wake, boundary layer and rear stagnation
regions contribute to an equal order to the net frictional loss. In our analysis of the
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contribution from the rear stagnation region, an additional complication arises from the
nonlinear coupling between the correctional and inviscid base state flow variables, with
the equality in their order of magnitudes eliminating the possibility of a linearization based
simplification.

5. Summary

To conclude, we developed an asymptotic theory for the high-Reynolds-number flow
past a shear-free circular cylinder. The simplest predictive theory for this flow,
namely the classical irrotational potential flow theory, suffers from D’Alembert’s
paradox as it predicts a fore-aft symmetric stress field for which the hydrodynamic
resistance experienced by the shear-free cylinder must necessarily vanish. Attributing
this paradoxical conclusion to a violation of the perfect slip boundary condition on the
shear-free cylinder surface, we introduced viscous correctional terms to the irrotational
potential flow that account for both the finite vorticity production over the shear-free
cylinder surface and its highly efficient convection into the wake region. We combined
interdependent perturbation expansion based analysis in each of the distinct boundary
layer, rear stagnation and wake regions over which vorticity is first produced and
subsequently convected downstream.

We demonstrated that a neglect of the relatively insignificant streamwise gradients in
a thin region surrounding the cylinder surface leads to a linear boundary layer equation
for the most significant leading-order term in the perturbation expansion of the viscous
correction to the inviscid base flow. Using a similarity-transformation-induced dimension
reduction, we derived a single-parameter-dependent family of distinct solutions to the
characteristic-scale-deficient boundary layer equation. Quite atypically however, none of
these solutions were entirely compatible with all the necessary boundary conditions.
Exploiting the linearity of the boundary layer equation, we developed an unconventional
all-boundary-condition-compatible solution that instead of a single self-similar term
consisted of a weighted superposition of countably infinite members from the family of
self-similar solutions.

The solution to the boundary layer equation grows unbounded in the vicinity of the
rear stagnation region. We attributed this unphysical behaviour to a breakdown of the
principal assumption of streamwise gradients being negligibly small compared with the
surface-normal gradients. Through a careful re-examination of the governing equations we
arrived at the characteristic scales appropriate for the rear stagnation region. We showed
that in an O(Re~!/#) sized region around the rear stagnation point, the non-dimensional
velocity fields for both the inviscid base state and the first-order term in the correctional
perturbation expansion are of comparable O(Re™'/4) magnitude and crucially, are both
governed by inviscid dynamics. We noted that the foregoing observation on the magnitude
of base state and first-order correctional terms contrasted sharply with Moore’s analysis
on axisymmetric flow past a shear-free sphere (Moore 1965), but, was consistent with
the analysis of Harper (1963) for planar stagnation point flows. We derived an elliptic
partial integro-differential equation with a non-local source term for the correctional
velocity induced distortion in the streamfunction associated with the inviscid rotational
flow over the rear stagnation region. Numerical solution of the analytically intractable
nonlinear partial integro-differential equation allowed us to determine well-behaved,
bounded correctional fields that, in an overlap region, were consistent with the boundary
layer solution. Comparisons with DNS showed our theoretical predictions of the first-order
correctional term in the tangential surface velocity to be in excellent agreement with
the high-resolution computations, the agreement being particularly outstanding at a
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high Reynolds number of 10°, which is when the critical assumptions Re~!/? « 1 and
Re~!/* « 1 associated with the boundary layer and rear stagnation analyses are both
satisfied.

Our analysis of the wake region centred around simplifying assumptions similar to those
associated with our boundary layer analysis. We showed that the high-Reynolds-number
vorticity transport through the narrow wake region is essentially governed by a linear
parabolic advection—diffusion equation. We derived an explicit closed-form solution
that, like the boundary layer solution, consisted of a weighted superposition of infinite
self-similar wake profiles originating at distinct locations along the axis of symmetry. We
demonstrated that sufficiently far downstream our infinite-term wake solution desirably
simplified to the well-known asymptotic form for a planar wake associated with a
two-dimensional body, the drag coefficient for which precisely equals the leading-order
estimate of 16/Re for a shear-free circular cylinder.

Utilizing the equivalence between the energy dissipation rate and the power expended in
overcoming the drag force, we derived explicit expressions for the first- and second-order
terms in the asymptotic expansion of the drag coefficient. Our theoretical estimate of
the drag coefficient was in agreement with the predictions from an exhaustive set of
DNS spanning over three decades of order of magnitude variation in the Reynolds
number. Importantly, we demonstrated that the second-order term’s atypical logarithmic
dependence on the Reynolds number, predicted from our theoretical analysis, was in
remarkable agreement with the results from high Reynolds number (Re £ 2000) DNS.
The unusual logarithmic dependence led to identification of a critical Reynolds number
only below which the energy dissipation rate (power loss coefficient) for the irrotational
potential flow exceeds the dissipation rate for flow past a shear-free cylinder.

To the best of our knowledge, our asymptotic analysis provides the first
theoretical prediction and quantitative assessment of the finite-viscosity effects in the
high-Reynolds-number flow past a shear-free circular cylinder. The viscosity-induced
modifications to the inviscid base flow predicted from our analysis are far less pronounced
than for flow past a no-slip cylindrical surface. Nonetheless, the implications of inclusion
of finite-viscosity effects in our theoretical analysis are quite significant. Our results and
analysis pave a way towards theoretical investigations on the spatiotemporal stability of
perturbation-sensitive flow features such as boundary layers and wakes. An understanding
of the susceptibility of these instability-prone flow features to external perturbations and
an assessment of their potential to destabilize the free-shear-enabling mechanism itself
(as in the case of superhydrophobic surfaces for instance) will be crucial in technological
applications that rely on sustained slip over prolonged periods. Our analysis could form
the basis of theoretical investigations of flows over asymmetric shear-free boundaries
with non-constant curvature. The curvature-driven increase in vorticity production
could enhance the Reynolds-number-dependent contrast in viscous correctional term’s
contribution to the net dissipation in such flows. This would bear important implications
with regard to the optimality of a perfect slip condition in minimizing dissipation
associated with flows past streamlined and bluff bodies.

Acknowledgements. The authors acknowledge support received from the NVIDIA Corporation (hardware
donation program) and Supercomputing Education and Research Center-Indian Institute of Science (runtime
on Cray XC40).

Declaration of interest. The authors report no conflict of interest.

Funding. R.K.S. acknowledges support received from the Department of Science and Technology (DSTO
1329).

920 A44-23


https://doi.org/10.1017/jfm.2021.446

https://doi.org/10.1017/jfm.2021.446 Published online by Cambridge University Press

A. Kumar, NM.A. Rehman, P. Giri and R.K. Shukla

Author ORCIDs.
Anuj Kumar https://orcid.org/0000-0002-9203-9177;

Ratnesh K. Shukla https://orcid.org/0000-0001-9169-2070.

Appendix A. Solution of the governing equation for ﬁ;;

Here we outline our procedure of determining the non-dimensional correction velocity
component along the circumferential direction. The governing boundary layer equation
(3.7) admits a similarity solution. To show this, we set 12(’; = H(¢)F(n), where n =
y*/g(¢). Substitution of the above form in (3.7) yields
F' +2nF ( g*cos ¢ +gd—g sing | — 2F [ g*cos ¢ + g° sin¢ld—H =0. (AD
d¢ H d¢ ’
Self-similarity is achieved when the terms inside the brackets are constants independent
of ¢. Without loss of generality, we set

28 cosd+ 208 singp = 1. 2% cos b + 247 sin o (A2a,b)

cos —sing =1, cos sing—— = «, ,
8 8 o 8 8 H d¢ o a
where « is a constant. The only solution of (A2) that is also a solution of (3.7) and
simultaneously satisfies the boundary condition (3.8a) is

B (sin §>Of

, A3a,b
sin ¢ (A3ab)

1
8(@) = — % H(¢) =

2 hd
\/_cos2

where B is a constant and « > 1. The above functional forms of g(¢) and H(¢) yield

817!;; ¢ a—1

= V2BF (0) (sin —) . aty* =0. (Ad)

y 2
Clearly the above expression cannot be matched with the boundary condition (3.8¢) for
any choice of parameter S.
The linearity of the governing equation (3.7) can be exploited to make further progress.

To this end, we set @« =2n+2,Vn >0, n € Z and B = «/§/F;l(0) so that the boundary
condition (A4) assumes the form

on* 2n+1
¢ = [ sin ? , at y>k =0. (AS)
ay* 2
For the above choice of parameters, (A1) simplifies as
F) +nF, — (2n+2)F, = 0, (A6)

where a subscript 7 is used to denote the n-specific solution. Likewise it;; n = Hu(@)F,(n)
and the boundary condition (3.8b) transforms into

F,(n) > 0 asn— oo. (A7)
The solution of (A6) that satisfies the boundary condition (A7) is readily found,

T o1 n2 uin (@
Fn(n):[) exp | ————— | sin™"" (—) de, Vn>—landneZ.

V2w 2 cos? (E) 2
2
(AB)
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To establish that (A8) is indeed a solution of (A1), we first consider the specific case of
n=-—1,

( ) T o1 n2 4
F_1(n :/ exp| ———5 | do
0 2w 2 cos? (%)

202 (0‘)
0o 2 b1d —s“tan” | —
= / ex ( 5 > / 5 2 do | ds
= pl—— exp
n 2 0 /27 cos? <%) 2
o

00 S2 stan (5) - n
= /n exp (—E> erf T ds = \/gerfc (E) . (A9)

a=0

which indeed is the solution of (A6) for n = —1. The sequence of steps listed in (A9) may
in fact be considered a simple derivation of the well-known Craig’s formula (Craig 1991),
the first expression on the right-hand side of (A9) being another form of the Gaussian
distribution function.

Next we show that the following relationship holds between F,41(n) and F,(n):

Foi1(n) = /n : exp _,,—2 sin? 4 (E) do
! 0 2w 2 cos? (%) 2
2

o0 T
Y R . e
n 0 /27 cos? <§> 2 cos? (5) 2

T

o0
= / — erfc La sin?"t3 (O—l)
n «/Ecos <5) 2

0
2 3 (7
nt / erfc n & sin?"*+2 (E) cos (E) da ¢ dn
2 0 2 cos (—) 2 2
2
R Tl ’7% . on2 (@
:(2n+3)/ / / exp | ———=—— | sin”"*" (— dap dnpdng
n o Jm 0 V2m 20052<%) 2)
o o
—ened [ [ R dman. (A10)
n Jn

Consequently,

o0

Fi () = —(2n+3)f Fu(dz and Fl  (n) = Qn+3)F,(n).  (Allab)
n
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Integrating the expression (A6) twice we obtain

o0 (0,0) (0,0
Fn(n) — n/ Fn(ny)dn; — / (2n + 4 Fy(n2) dnadnyp = 0. (A12)
n n ni

Using relationships (A10), (A1l) and (A12), one finds that if (A8) is the solution of (A6)
for some integer n then the result holds for n 4 1 as well. The proof therefore follows from
induction.

We next determine a solution to (3.7) that satisfies all the three boundary conditions
(3.8a—c). We begin with an evaluation of F,(0):

T _ 2
F;(O):/ e | —— sin2"+2(3) de| . (A13)
0 /27 cos? (§> 2 cos? (5)
n=0

Since the above integrand is singular at n = 0, we first simplify (A13) using integration by
parts and subsequently apply the limit = O to the resulting well-behaved integrand, i.e.

2 1 [-
F(0)= — n / erfc % sin®" (g) cos (ﬁ) do
2 0 ﬁcos (—) 2 2
2 )7:0
2 1 2 1
S (el N (Al4)
2 2

here B(x, y) denotes the beta function.
Next, recasting the right-hand side of the boundary condition (3.8¢) using (3.11) and
superimposing the similarity solutions it;;n using the weights in (3.11), we obtain the

solution of the scaled azimuthal correction velocity component (Zt:;) as

iy = ) Wity =) WaHn(@) ()

n=0 n=0

where 1 = +/2y* cos(¢/2).

Appendix B. Numerical solution of the non-dimensional distortion flow
streamfunction (3.19)

For computational convenience, we first apply the following transformation to the
governing equation (3.19) for the non-dimensional distortion flow streamfunction ;"

o =0, T=(07—-y?)2 (Bla,b)
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Rewritten in (o, T) coordinates, (3.19) assumes the form

- - - - .2 (¢
Fur Y\ 1 [T Yi+20 — (¥ 420)% | S (5) o (B2
902 " o2 | T ity @i 2 (¢ oy o (B2
0 16 cos <E> cos (§>
while the boundary conditions (3.20a—c) transform as follows:
. Y GHVN
¥*=0ato =0, %20 as o — 00, %:0 att =0 and ast — oo.
5 0 0
o T

(B3a—d)
The boundary conditions in (B3) implying impermeability, uniformity of the
streamfunction outside the thin stagnation layer, symmetry of the flow about the line
07 = y{ and unidirectionality of the flow towards the end stage of the boundary layer,
respectively.

To solve (B2), we employ an iterative process. We begin with a uniform initial guess
state corresponding to 1%* = 0 everywhere. Subsequently, in each iteration we use the
present known 1/75* to compute the right-hand side of (B2). With this known right-hand
side we solve the Poisson equation for 1};“ along with boundary conditions (B3). We repeat
this iterative process until convergence is achieved (the maximum pointwise difference in
¥ between successive iterations is less than 10710),

To discretize the Poisson equation Jf;" we employ standard second-order central finite
differences on exponentially stretched grids along both o and 7 directions. Exponential
stretching enables solution adaptivity so that the resulting spatial resolution is the highest
in the regions associated with large vorticity gradients. To solve for the vector of unknowns
consisting of discrete pointwise lﬁs*, we employ a specialized Gaussian elimination method
that exploits the sparsity of the system to reduce the overall computational expense.

To determine the tangential surface velocity at the shear-free cylindrical boundary, we
evaluate the relationship

. oy

MQ(S) = ay* ’ (B4)

o=0

using a sixth-order one-sided finite difference approximation for the first derivative. The

vorticity in the stagnation region is conveniently computed from the converged 1/~/S* via the
following transformed variant of the relationship (3.19):

2 T (&*+20)2 Sil’l2 (g)
¥_ = 7 % — WYy 2
“ ﬁ/o Wst20) exp 16 cos? (%) cos (%)

Likewise, in (o, t) coordinates, the integral in the expression (4.10) assumes the
following form:

o) 00 00 00 (a)*Z _ w*2|9_)0)
(02 — w2 |9—0) dy* doF =2 / / S bl dodr. (B6)
/9;*:0 /y§‘=0 ’ PHOTRITs o=0Jr=0 2(c2+12)1/2

da. (BS5)

To evaluate this integral numerically, we apply a two-dimensional generalization of the
Simpson’s quadrature rule.
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Appendix C. Derivation of the estimate (4.9)

To establish the result (4.9), we first consider evaluation of the leading-order term in the
integral
sf As" /8
(A, n, 57, 8, M(5), N(5)) = / s*M(s) 7 exp(—s>*N%(s)) dt ds, (Cl)
s=0 =0
in the limit of § — 0T, where n > 0,4 > 0, N(s) > 0, Vs € [0, s¢]. Subsequently, we
show that (4.9) is a special case of the general integral (C1).
We denote the limiting expressions

dM (s) , N (s)
M(s) — My, — My, N(s) — Np, a dd— —>NO ass — 0, (C2)
s

where My, No, M, and N, are all bounded. Performing the integration with respect to 7 in
(C1) yields

S AM(s) [—2s"+1 (—s2"+2A2N2 (s)) NG <s"+1AN(s) )}
I= f exp + erf ds.
o 4sN2(s) b 52 AN(s) b)
(C3)

We split the above integral into two parts with limits of integration in the first and second
parts ranging from s = 0 to s = € and s = € to s = sy, respectively. We set € such that
§1/01) « ¢ and € « 1. This choice ensures that the integrand of the first part can
be simplified by using the limit € — 0, while the integrand in the second part can be
Simplification of the first part proceeds as follows:
/-e AM(s) [—2S”+1 < 2n+2A2N2(s)>
I = exp
0
€ AM. n+1 2n+2 n+l
= f g L exp —A? N0 + ferf ANO ds
0 4sN; ) 82 ANy )
6n+1
+0 (e In |: 5 :|)

simplified by taking the limit "' /8 — oo.
n+1 AN
erf u ) ds
4sN2(s) b) b)

_ n+1 M ANge"™t1/s i
Yo f(ANoe >+ /Mo 3/ ) e, (C4)
T DN ) 4(n+ 1)N; §
From (A9) we have the following relation:
1 T 2
erf(¢) =1 — —f exp | — o | de. (CS5)
TJo cos? >

Using this relation in (C4) and performing an integration with respect to &, we obtain
ANge"t1/s

™ 6n+1 1 b 2
L ~ \/——03 —erf (ANO ) + [ In& + —f E; : o | do ;
4(n+ DN 8 21 Jo cos? —

£=0
(Co)
where E; denotes the exponential integral function. Using E;(x) ~ —y —Inx as x — 0,
where y = 0.577 is the Euler’s constant (Abramowitz & Stegun 1968), we simplify the
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limits in (C6) and obtain

M n+1 2AN, n+1
VMo <—erf (AN()6 ) + |:Z + In <L)

L~
4(n+ DN 8 2 5
1 b A2N2€2n+2
+— | E|—2—45|da|]. (C7)
27 Jo 82 cos? —

Using the fact that el 8, erf(x) ~ 1 — exp(—xz)/ﬁx and E;(x) ~ exp(—x)/x as
x — 00, we get the leading-order terms in (C7) as follows:

M 2AN, n+1 ex _A2N2572€2n+2
11=&(—1+Z+ln(0—6))+0< il 0 )

4(n+ DN, 2 f) s—lentl

6n+1
+0(eln( 5 )) (C8)

Next we simplify the second part I,

s _ o+l _2n+2 42872 n+1
12:/‘f AM(s) ( 2s exp( s ACN (s))+ JT erf(s AN(s))) ds.

4sN2(s) ) 82 AN(s) b
(C9)
Using s"t1/8 > 1, we expand the integrand in (C9) as follows:
SfAM n+1 2n+2
12=/ Z(S) ( VT8 exp( AN (5) )) ds
¢ 4sN-(s) \AN(s) )
st M n+1 —AZNZ(S_Z 2n+2 sy M
:/ Mds-{-o e lexp( 08 "€ %/ Mds. (C10)
¢ 4sN3(s) 1) s—e 4sN3(s)

Next we apply a singularity subtraction technique to regularize the integrand in (C10) as
follows:

0 4sN3 (s) 4s \ N3(s) NS sN;

Here 59 < sy is an O(1) limit that can be set more or less arbitrarily. Since the integrand
in the second part remains bounded in the limit s — 0, the leading-order terms in I, are
readily found, i.e.

12=/Sf VM) /SOLE(M(S) _Aﬁ> as + Mo, (S_°>
K 0

—_— n
L AsN3(s) 4 \NG) N aNg o \e

Lo <€n+l exp(_A2N33—2€2n+2)

5 ) + O(e). (C12)
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Adding the results (C7) and (C12), we deduce the leading-order terms in (C1) as follows:

K «/_M(S) ﬁ M(s) My
I~ ds + —— — — | ds
/s 4sN3(s) () ,/0 45 \ N3 (s) Ng

0
M, 2ANps™T!
& Y _ 1+1n e ) (C13)
4(n+ DNG \ 2 8

Thus, our analysis of the leading-order terms separates out the §-dependence of the integral
I. The remaining integrals in (C13) involve non-singular integrands and are therefore
amenable to accurate approximation using standard quadrature rules.

Next we show that the integral (4.9) is indeed a special case of the general form (C1)
and can therefore be estimated in a manner similar to the one outlined in the foregoing
analysis. Expressed in the 6 coordinate, the square of vorticity from the boundary layer
region assumes the following form:

-2 [ [ ot Qo 2 )

x tan’ (%) tan’ (%) \/1 — sin? (%) cos? (%)
\/1 — sin? (%) cos? <§) doq dos. (C14)

From the above relationship, we can recast the boundary layer contribution to the
vorticity-squared integral in (4.9) as follows:

T p(1/8) @O/
/ / w;? dy* do
6=0

/ / tan” () tan® (57) 10/AY2, 16, 7.6, M(6). N(©)) dty dar. (C15)
Here
2 0
sin” (5 ; o -
-2 t)[ar e )
0
sm(E) . :
and N(@O) = + (C16)
COSz< ) cosz< )
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Likewise, the wake contribution to the vorticity-squared integral in (4.9) can be expressed
in the general form (C1), i.e.

0o pAxb/s
/ / w’? dz* dx
x=0 Jz7*=

2/2 /2 [i_ 2 [a_ .2
= — 4 — k74— k51(A, b, 00,8, M(x), N(x)) dk dk>, (C17)
N 1 2

where
1 2
<1_< +1>2>
X
M(x) = ) 32 ) 32
22 (x+ 1+ —— —« x+ 14+ —— =i
x+1 x+1
1
(1_ 1>2> 1 1
and N(x) = (; * + : . (CI18)
* x+1+ -k x+1+ — K2
x+1 x+1

Making use of the foregoing analysis in the derivation of the leading-order terms and
in the quadrature-based numerical approximation of the remaining regularized integrals in
(C15) and (C17), we readily establish the estimate given by (4.9).

REFERENCES

ABRAMOWITZ, M. & STEGUN, 1.A. 1968 Handbook of Mathematical Functions: With Formulas, Graphs,
and Mathematical Tables. Dover.

ARAKERI, J.H. & SHUKLA, R.K. 2013 A unified view of energetic efficiency in active drag reduction, thrust
generation and self-propulsion through a loss coefficient with some applications. J. Fluid Struct. 41, 22-32.

BATCHELOR, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.

BOCQUET, L. & LAUGA, E. 2011 A smooth future? Nat. Mater. 10, 334-337.

CRAIG, J.W. 1991 A new, simple and exact result for calculating the probability of error for two-dimensional
signal constellations. In Military Communications Conference, 1991. MILCOM’91, Conference Record,
Military Communications in a Changing World, pp. 571-575. IEEE.

HAASE, S.A., CHAPMAN, S.J., TSAL P.A., LOHSE, D. & LAMMERTINK, R.G.H. 2015 The Graetz—Nusselt
problem extended to continuum flows with finite slip. J. Fluid Mech. 764, R3.

HAASE, S.A. & LAMMERTINK, R.G.H. 2016 Heat and mass transfer over slippery, superhydrophobic
surfaces. Phys. Fluids 28, 042002.

HARPER, J.F. 1963 On boundary layers in two-dimensional flow with vorticity. J. Fluid Mech. 17 (1), 141-153.

HARPER, J.F. 1972 The motion of bubbles and drops through liquids. Adv. Appl. Mech. 12, 59-129.

HARPER, J.F. & MOORE, D.W. 1968 The motion of a spherical liquid drop at high Reynolds number. J. Fluid
Mech. 32 (2), 367-391.

HINCH, E.J. 1991 Perturbation Methods. Cambridge University Press.

HUGUES, S. & RANDRIAMAMPIANINA, A. 1998 An improved projection scheme applied to pseudospectral
methods for the incompressible Navier—Stokes equations. Intl J. Numer. Meth. Fluids 28 (3), 501-521.
JOSEPH, D.D., FUNADA, T. & WANG, J. 2007 Potential Flows of Viscous and Viscoelastic Fluids. Cambridge

University Press.

KANG, I.S. & LEAL, L.G. 1988 The drag coefficient for a spherical bubble in a uniform streaming flow. Phys.
Fluids 31 (2), 233-237.

KARATAY, E., HAASE, A.S., VISSER, C.W., SUN, C., LOHSE, D., TsAl, P.A. & LAMMERTINK, R.G.H.
2013 Control of slippage with tunable bubble mattresses. Proc. Natl Acad. Sci. 110 (21), 8422-8426.

VON KARMAN, T. 1911 Uber den mechanismus des widerstandes, den ein bewegter korper in einer fliissigkeit
erfihrt. Nachr. Ges. Wiss. Gottingen, Math.-Phys. Kl. 1911, 509-517.

920 A44-31


https://doi.org/10.1017/jfm.2021.446

https://doi.org/10.1017/jfm.2021.446 Published online by Cambridge University Press

A. Kumar, NM.A. Rehman, P. Giri and R.K. Shukla

LAMB, H. 1932 Hydrodynamics. Cambridge University Press.

LEAL, L.G. 1989 Vorticity transport and wake structure for bluff bodies at finite Reynolds number. Phys.
Fluids 1 (1), 124-131.

LEAL, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes.
Cambridge University Press.

LEGENDRE, D., LAUGA, E. & MAGNAUDET, J. 2009 Influence of slip on the dynamics of two-dimensional
wakes. J. Fluid Mech. 633, 437-447.

LEVICH, V.G. 1949 The motion of bubbles at high Reynolds numbers. Zh. Eksp. Teor. Fiz. 19 (18), 436f.

L1, D., LL, S., XUE, Y., YANG, Y., Su, W., XIA, Z., SHI, Y., LIN, H. & DUAN, H. 2014 The effect of slip
distribution on flow past a circular cylinder. J. Fluid Struct. 51, 211-224.

MAGNAUDET, J. & EAMES, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows.
Annu. Rev. Fluid Mech. 32, 659-708.

MICHAELIDES, E.E. 2003 Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops—The
Freeman scholar lecture. Trans. ASME J. Fluids Engng 125, 209-238.

MOORE, D.W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16 (2), 161-176.

MOORE, D.W. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech.
23 (4), 749-766.

MURALIDHAR, P., FERRER, N., DANIELLO, R. & ROTHSTEIN, J.P. 2011 Influence of slip on the flow past
superhydrophobic circular cylinders. J. Fluid Mech. 680, 459-476.

Ou, J., PEROT, B. & ROTHSTEIN, J.P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic
surfaces. Phys. Fluids 16 (12), 4635-4643.

REHMAN, N.M.A., KUMAR, A. & SHUKLA, R.K 2017 Influence of hydrodynamic slip on convective
transport in flow past a circular cylinder. Theor. Comput. Fluid Dyn. 31, 251-280.

ROTHSTEIN, J.P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89—1009.

SCHLICHTING, H. & GERSTEN, K. 2003 Boundary Layer Theory. Springer.

SEO, I.W. & SoONG, C.G. 2012 Numerical simulation of laminar flow past a circular cylinder with slip
conditions. Intl J. Numer. Meth. Fluids 68 (12), 1538—1560.

SHUKLA, R.K. & ARAKERI, J.H. 2013 Minimum power consumption for drag reduction on a circular cylinder
by tangential surface motion. J. Fluid Mech. 715, 597-641.

SHUKLA, R.K., TATINENI, M. & ZHONG, X. 2007 Very high-order compact finite difference schemes on
non-uniform grids for incompressible Navier—Stokes equations. J. Comput. Phys. 224 (2), 1064—1094.
SHUKLA, R.K & ZHONG, X. 2005 Derivation of high-order compact finite difference schemes for

non-uniform grid using polynomial interpolation. J. Comput. Phys. 204 (2), 404—429.

SOORAJ, P., RAMAGYA, M.S., KHAN, M.H., SHARMA, A. & AGRAWAL, A. 2020 Effect of
superhydrophobicity on the flow past a circular cylinder in various flow regimes. J. Fluid Mech. 897,
A21.

STROUHAL, V. 1878 Ueber eine besondere art der tonerregung. Ann. Phys. Chem. (New series) 5, 216-251.

VAN DYKE, M. 1975 Perturbation Methods in Fluid Mechanics. The Parabolic Press.

WILLIAMSON, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477-539.

XIONG, Y.L. & YANG, D. 2017 Influence of slip on the three-dimensional instability of flow past an elongated
superhydrophobic bluff body. J. Fluid Mech. 814, 69-94.

You, D. & MoIN, P. 2007 Effects of hydrophobic surfaces on the drag and lift of a circular cylinder. Phys.
Fluids 19 (8), 081701.

920 A44-32


https://doi.org/10.1017/jfm.2021.446

	1 Introduction
	2 The flow configuration
	3 Asymptotic analysis
	3.1 Boundary layer analysis
	3.2 Rear stagnation region analysis
	3.3 Analysis of the wake region

	4 Viscous dissipation and drag coefficient
	5 Summary
	Appendix A. Solution of the governing equation for
	Appendix B. Numerical solution of the non-dimensional distortion flowstreamfunction ([eqn23]3.19)
	Appendix C. Derivation of the estimate (4.9)
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


