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Period relations for Rankin—Selberg convolutions for
GL(n) X GL(n — 1)

Jian-Shu Li, Dongwen Liu and Binyong Sun

ABSTRACT

We formulate and prove the archimedean period relations for Rankin—Selberg convo-
lutions for GL(n) x GL(n —1). As a consequence, we prove the period relations for
critical values of the Rankin-Selberg L-functions for GL(n) x GL(n — 1) over arbitrary
number fields.
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1. Introduction

The cases of GL(n) x GL(n—1) and GL(n) x GL(n) are fundamental in the general
Rankin—Selberg theory, and many problems for general Rankin—Selberg convolutions are reduced
to these two cases. The goal of this article is to give an unconditional proof of the period rela-
tions for critical values of Rankin-Selberg L-functions for GL(n) x GL(n — 1) over arbitrary
number fields, which is a long-standing problem and has been studied by many authors (see
§ 1.2 for some relevant works). In the framework of Langlands program, it is compatible with
the celebrated conjecture of Deligne [Del79] on the rationality of critical values of L-functions
attached to pure motives. More general conjectures concerning period relations for critical values
of Rankin-Selberg L-functions are formulated by Blasius in [Bla97].

1.1 Whittaker periods
Let k be a number field, and write A for the adele ring of k. Denote by k, the completion of k
at a place v. Write

koo =k @R =[] ke = kegC= ][] C.

v|oo LEEK

where & is the set of field embeddings ¢ : k — C.

Let II be an irreducible subrepresentation of A*°(GL,(k)\GL,(A)) (n>1). Here
A (GLy,(k)\GL,(A)) denotes the space of all smooth automorphic forms on GL,,(k)\GLy(A),
which is a smooth representation of GL,(A) (see [LS19, §3.2] and [GZ24]). Assume that II is
cuspidal or (more generally) tamely isobaric as defined in (63). It should be mentioned that
allowing II to be isobaric is an old idea going back to Schmidt, Mahnkopf, and Grobner (see
[Sch93, Mah05, Grol8]). Suppose that II is regular algebraic in the sense of Clozel (see [Clo90]).
By [Clo90, §3], up to isomorphism there is a unique irreducible algebraic representation Fj,
of GL,(k ®g C), say of highest weight = {u‘},cs, € (Z")%, such that the total continuous
cohomology

H (GLn (koo)®; FyY @ o) # {0} (1)
Here Il := @U‘OOHU is the infinite part of II, a superscript ‘¥’ over a representation indicates
the contragradient representation, and a superscript ‘0’ over a Lie group indicates the identity
connected component of the Lie group. Moreover, p is pure in the sense that there exists w, € Z

such that
[ Ay = o gy g = e =y py = wy
for all v € &. Here we write p* = (p, ..., uh), and 7 is the composition of
k L) C complex conjugation C.

The representation F), is called the coefficient system of II.

Let Iy := @, foollv be the finite part of II. The rationality field Q(II) of II is the fixed field
of the group of field automorphisms o € Aut(C) such that ?(II;) = II;. This is a number field
contained in C. By [Clo90, Theorem 3.13] and [Grol8, Lemma 1.2], for every o € Aut(C), there
exists a unique irreducible subrepresentation °II of A*°(GL, (k)\GL,(A)) that is tamely isobaric
and regular algebraic, and whose finite part (?II); is isomorphic to “(Ilf). See §6.2 for more
details.
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The cohomology space in (1) is naturally a representation of the group
710(GLp (Koo)) := GLyp (Koo ) /GLy (koo ).
By using the determinant homomorphism, the latter group is identified with
mo(kl) = ki / (k)" = {£1)%,
where 85 denotes the set of real places of k, which is identified with a subset of &. The group

—

of characters of m(kX) is denoted by my(k3), which is obviously identified with the group of
quadratic characters of kX .
For every archimedean local field K, put

2
{”J . KR
by =4 L4
n,K «-— B 1)
=1 ygec
2
Write
bn,oo = Zbﬂ,kv‘
v]oo

Let er., denote the central character of F) IY ® Il. Note that err_ is a quadratic character of
kX, and is trivial when n is even. By [Clo90, Lemma 3.14],

H. (GLn (koo)’; FYY @ Iloo) = {0}, if i < bp o,
and as a representation of 7y(GLy,(ks)),
—— ¢, if n is even;
HY > (GLa (k) FY @ M) D 2)
€M, 5 if n is odd.

We are particularly interested in the bottom degree cohomology space (2).

—

For every € € m(kX) that occurs in the bottom degree cohomology space (2), by comparing
the Betti and de Rham cohomologies of the (tower of) locally symmetric spaces attached to
GL,(A), Raghuram and Shahidi define a nonzero complex number, to be called the Whittaker
period for IT and ¢ (see [RS08b, Definition/Proposition 3.3]). The basic idea of this period con-
struction goes back to Hida, Harder, Mahnkopf, and Schmidt. These Whittaker periods play an
important role in the arithmetic study of special values of Rankin—Selberg L-functions. However,
the definition of Whittaker period in [RS08b] is not canonical since it depends on an arbitrarily
fixed generator of the e-eigenspace of (2). In §6, based on the non-vanishing hypothesis that is
proved in [Sunl7], we will canonically define Raghuram—Shahidi’s Whittaker period by fixing a
canonical generator of the concerning e-eigenspace.

—

With a slight variation, we define the Whittaker period Q.(II) for every e € my(k3) that
occurs in

H (o) == H™ (GLy (k)% F) @ Tog) ® Opocs

where )5npo is a certain one-dimensional complex vector space defined by orientations (see (58)),
which is naturally a representation of my(kX ) that is isomorphic to sgng.f_l) (=272 Here SN
is the quadratic character of kXX that is nontrivial on kX for every real place v of k. Note that
the isomorphism class of the representation H((“II)s) of mo(kX) is independent of o € Aut(C)

(see Remark 6.3).
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In fact, by fixing a generator of a certain one-dimensional Q(II)-vector space, we will
simultaneously define a family

{Q€ (H/)}H’E{ oIl:ocAut(C)}

of Whittaker periods, which are nonzero complex numbers. Moreover, the family is unique up
to scalar multiplication by Q(II)* in the following sense (see Lemma 6.6): suppose that another
generator yields another family {QL(II') }yeqom:seaut(c)y of Whittaker periods. Then for all
I11,1Io € {°II : 0 € Aut(C)} and all o € Aut(C) such that “II; = Iy,

” (QQ(H1)> _ OL(Ihy)
Q:(I) ) Qe(T2)

In particular, like Deligne’s periods for pure motives, the Whittaker period Q.(II) is uniquely
defined up to scalar multiplication by Q(II)*. See §6.3 for details. When n = 1, the Whittaker
period Q. (II) € Q(II)*.

Remark 1.1. By comparing Deligne’s conjecture and the global period relation (Theorem 1.2
of this article), Hara and Namikawa [HN24, Theorem 1.1] supply a conjectural description of
our Whittaker period Q.(II) in terms of Deligne’s periods and Yoshida’s fundamental periods
(see [Yos01]). They also partially prove Theorem 1.2 in [HN24, Theorem 6.11] under the assump-
tion that [HN24, Conjecture 6.8] holds true. We remark that the archimedean period relation
(Theorem 3.2) that is proved in this article implies their Conjecture 6.8.

1.2 Period relations

Suppose that n > 2 and Il is cuspidal. Let ¥ be an irreducible subrepresentation of
A®(GLy,—1(k)\GL,,—1(A)) that is tamely isobaric and regular algebraic. Assume that the coef-
ficient systems F), and F, of II and X, respectively, are balanced, that is, there is an integer j
such that

Homgy,, , (keoc)(F) © F), @eg,det?) # {0}.

We call such an integers j a balanced place (for F,, and F,). These balanced places j are in
bijection with the critical places % + 7 of II x 3 (see §7.2). As before, F,, has highest weight
v={v'}ee € (Z" 18 and ' = (V4,...,V,_4).

Let % + 7 be a critical place of II x 3. Put

Q= OO DD U g TIS =0tD) (. /),

Let x : k*\A* — C* be a finite-order Hecke character. We are concerned with the rationality
of the critical value L(% + 7,11 x ¥ x x), when both the critical place % + 7 and the finite-order
Hecke character y vary. Here L(s,II x ¥ X x) denotes the completed Rankin—Selberg L-function.
Define the composition field

QL %, x) == QIQ(X)Q(x) c C.

Similar to Il,, we have the archimedean parts Y., and y~ of ¥ and Yy, respectively.
The main result of this article is the following global period relation.

THEOREM 1.2. Let the notation and assumptions be as above. Then
L(3+ 4,1 x L x y)
QHJ’J ) g(XE) ’ g(X)n(n_l)/Q ’ an (H) : an—l(z)

€ Q(H7Z7X)7 (3)
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where xx is the central character of ¥, ‘G’ indicates the Gauss sum (see (81) and (82)), and
€n,En—1 are the quadratic characters of k3, given by

(es. - sgnE 2N es - sgnllTPTIEY e s even;
(5n7 6n—l) = '
(5Hoc -sgn&"fl)(nﬂ)m, €T, -sgn&"fl)(nﬂ)ﬂﬂ 'Xoo), if n is odd.

Moreover, the quotient (3) is Aut(C)-equivariant in the sense that
L(3+j,Ix 3 xx)
0<QWJ +G(xs) - GOOm=D/2 - Q, (1) - Q€n1(2)>
- L(%—I—j,"Hx"Zx"x)
Q- Gles) - GO (1) - Qe ()
for every o € Aut(C).

(4)

The proof of Theorem 1.2 crucially depends on three local results that are responsible for
the occurrence of the denominator in (3). More precisely:

— the definition of the canonical Whittaker periods €, (II) and €., ,(X) relies on the non-
vanishing hypothesis that was proposed by Kazhdan and Mazur in 1970s and proved by Sun
in 2017 [Sunl7];

— the appearance of the term G(xx)-G(x)""D/2 is a consequence of the non-archimedean
period relation (Proposition 5.1), which is essentially due to Harder [Har83, §III] for n = 2
and Mahnkopf [Mah05, §3.4] and Raghuram [Ragl0, §3.3] in general;

— the explicit calculation of €,,; is a consequence of the archimedean period relation
(Theorem 3.2); the key contribution of this article is a proof of the archimedean period rela-
tion, based on the preparatory work in [LLSS23]; the proof is much more involved than that
of the non-archimedean period relation.

2

In what follows we comment on some previous works concerning Theorem 1.2. The first
result was obtained by Shimura in 1959 [Shi59, §9]. He proved that for certain nonzero complex
numbers {1}

L(k,A)

—_ forall k=1,2,...,11.
@ri)k Q1) €eQ forallk=1,2,..., (5)

Here A is Ramanujan’s cusp form of weight 12 and level 1 given by
[e.e]

Az)=q Q=g =) r(n)g" (q:=e7),

n n=1

=1
and the (incomplete) L-function L(s, A) is given by

oo
L(s,A) = Z TSZ) (when the real part of s is sufficiently large).
n=1
When n =2, k=Q, x and ¥ are trivial, and II is the automorphic representation associated
with A, Theorem 1.2 is a reformulation of the relation (5).

After the aforementioned pioneering work of Shimura, a series of results towards Theorem 1.2
for n = 2 were obtained by Manin [Man72, Man73, Man76], Shimura [Shi76, Shi77, Shi78], and
Harder [Har83]. Theorem 1.2 for n =2 was finally proved in full generality by Hida in 1994
[Hid94, Theorem IJ.
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For general n, the representation-theoretic problems behind Theorem 1.2 are much more
difficult than the case of n = 2. The non-archimedean period relation is responsible for the ratio-
nality of L(% + 7,II x ¥ x x) when the finite-order Hecke character x varies, and the archimedean
period relation is responsible for the rationality of L(% + 7,11 x ¥ x x) when the critical place
% + j varies. The non-archimedean period relation is much easier to prove than the archimedean
period relation. Partly because of this reason, more complete results on the rationality of
L(% + 7,11 x ¥ x x) have been obtained for fixed j and varying ¥, in a series of works including
[Sch93, KMS00, Mah05, KS13, Ragl0, Ragl6, GH16, Grol8]. See also the survey paper [HL17]
for more relevant works.

However, it is also crucial to understand the rationality of L(% + 7,11 x ¥ x x) when x is fixed
and j varies, as in Shimura’s result (5). For example, as explained in the introduction of [HN21],
this is essentially important for the Kummer congruence (also called Manin congruence) in the
construction of p-adic Rankin—Selberg L-functions (see [Jan24]). Only some partial or conditional
results (for varying j) have been obtained in this direction (see [Jan19, HR20, GL21, HN21,
Rag22]).

We have some more specific comments that compare Theorem 1.2 with the existing results
in the literature.

— The number field k is assumed to be Q in [KMS00, KS13, Mah05, Ragl0]. It is assumed
to be imaginary quadratic or CM in [GH16, Grol8, GL21], with extra assumptions on II
and Y. In [GL21, Theorem A] the rationality for varying j is obtained under the hypotheses
that certain central L-values are non-vanishing, which themselves remain a variety of difficult
open problems.

— Under a hypothesis that is more or less equivalent to the archimedean period relation, a
less precise version of Theorem 1.2 is proved in [Jan19] for general k. For n = 3, k = Q and
X = 1, based on the explicit calculation of certain Rankin—Selberg zeta integrals in [HIM22],
Theorem 1.2 is proved in [HN21].

— Roughly speaking, Theorem 1.2 asserts that the transcendency of the critical L-values is
captured by the Whittaker periods. Harder and Raghuram prove in [HR20, Theorem 7.21] that
the transcendency of the ratio of two successive critical L-values is captured by the ‘relative
period’ (which is in fact the ratio of two Whittaker periods). They use Langlands—Shahidi
method, and their result is proved for more general Rankin—Selberg L-functions and for k
totally real. This is extended to the case that k is totally imaginary in [Rag22]. The results in
the case of GL(n) x GL(n — 1) are immediate consequences of Theorem 1.2.

— We say that II is of symplectic type if the L-function L(s,II, A> ®7) has a pole at s =1
for some character n of k*\A*. When this is the case, a rationality result for the standard
automorphic L-function L(s,II ® x) similar to (3) is proved by Jiang et al. in [JST19]. The
reciprocity law, namely (4), is not proved in [JST19] for those L-functions.

In this article, we complete the story by giving an unconditional proof of Theorem 1.2, which
is over arbitrary number fields. As we mentioned earlier, the key ingredient is the archimedean
period relation whose proof is very much involved.

Last but not least, it is clear that the period relations (Theorem 1.2) have further applications
towards the arithmetic study of other L-functions and Deligne’s conjecture (see [Mah05, RS08a,
Ragl0, Ragl6, Che22b, Che23, Che22a, HN24]), and they are also indispensable for the study of
p-adic L-functions (see [Man73, Man76, Sch88, Sch93, Sch01, KMS00] and [Jan11, Jan15, Jan16,
Jan19, Jan24]). In an ongoing work, the main results of this article and [LLSS23] will be used to
construct nearly ordinary Rankin—Selberg p-adic L-functions under a general framework.
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The article is organized as follows. In § 2 we translate general cohomological representations to
the cohomological representation with trivial coefficient system. This is the main idea used in the
proof of the archimedean period relations (Theorem 3.2), which is formulated in § 3 and proved in
§ 4. To this end, we recall the main result of [LLSS23] and use it to compare the Rankin—Selberg
integrals with the integrals over a certain open orbit. In § 5 we reformulate the non-archimedean
period relations (Proposition 5.1) and provide a proof of it for completeness. In § 6 we define the
Whittaker periods of irreducible smooth automorphic representations that are tamely isobaric
and regular algebraic, and study their properties under Galois twist. We formulate the global
modular symbols and modular symbols at infinity, and explain their relationship in §7, which
amounts to the unfolding of global Rankin—-Selberg integrals as in [JS81b]. Finally, the global
period relation Theorem 1.2 is proved in § 7 based on the results established in earlier sections.

2. Cohomological representations and their translations

In this section we introduce some generalities for cohomological representations, and give an
explicit construction of the translation from the cohomological representations with trivial
coefficient system to general ones.

2.1 Cohomological representations
Let K be an archimedean local field. Thus, it is a topological field that is topologically isomorphic
to R or C. Its complexification

KerC=]]C,
LEEK

where &g denotes the set of all continuous field embeddings ¢ : K — C. Note that &g consists of
the inclusion map, and ¢ consists of the identity map and the complex conjugation.
Fix an integer n > 1, and fix a weight
po=(pr = ps = 2 py) €2

for every « € Ex. Write p1 := {u'},eg,, and denote by F), the irreducible algebraic representation
of GL,(K®g C) = [],cg, GLn(C) of highest weight u. Recall that all algebraic representations
of algebraic groups are assumed to be finite-dimensional.
We say that u is pure if
[+ iy =y g = =y, p
for every ¢« € £k, where r denotes the composition of ¢ with the complex conjugation. We suppose

that u is pure. Denote by Q(u) the set of isomorphism classes of irreducible Casselman—Wallach
representations 1, of GL,(K) such that:

— m, is generic, and essentially unitarizable in the sense that 7, ® x’ is unitarizable for some
character x’ of GL,(K); and
— the total continuous cohomology

H5 (GLy(K)% Y @ my) # {0}

We remark that no such 7, exists when p is not pure (see [Clo90, Lemma 4.9]).
By [Clo90, § 3],

2, if K=Z R and n is odd;

1, otherwise.

#(2p) = {
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Write sgngx : K* — C* for the quadratic character that is nontrivial if and only if K 2 R, and
define the sign character

sgn := sghgx o det

of a general linear group GL,(K). Then in the first case of (6) the two members of 2(u) are
twists of each other by the sign character, and in the second case of (6) the only representation
in Q(p) is isomorphic to its own twist by the sign character. Recall that by [Clo90, Lemma 3.14],

H. (GLn(K)% FY @ m,) = {0}, if i < by,

and

by, o | 1xkx ®sgngx, if K= R and n is even,
Hct’K(GLn(K)();F;Y ® ) = { « Bh

Emp otherwise,

as representations of mo(K*), where 1gx denotes the trivial character of K*, and e, denotes
the central character of F,Y ® 7. Here and henceforth we make the identification

7m0(GL,(K)) = mo(K*)  (m indicates the set of connected components)

through the determinant map GL,(K) — K*. Note that e, is equal to either 1gx or sgnyx for
K =2 R and n odd, and is trivial otherwise.

For every commutative ring R, let B, (R) be the subgroup of GL,(R) consisting of all the
upper triangular matrices, and let N,,(R) be the subgroup of matrices in B,,(R) whose diagonal
entries are 1. Likewise let B,,(R) be the subgroup of GL,,(R) consisting of all the lower triangular
matrices, and let N,,(R) be the subgroup of matrices in B, (R) whose diagonal entries are 1. Let
T, (R) be the subgroup of diagonal matrices in GLy,(R).

Note that the invariant spaces (F},)N»&®xC) and (FY )Nn(E®RC) are one-dimensional. We shall

Nn(K®2C) and a generator vy € (F, V)Nn(K®:C) guch that their pairing

(Oprv) = 1. (7)

To be more concrete, by the Borel-Weil-Bott theorem [Bot57] we can realize F), as the algebraic
induction

fix a generator v, € (F},)

__al GLn(K® C)

which consists of all algebraic functions f : GL, (K ®g C) — C such that
f(bg) = xu(b)f(g) forallbe B, (K®gC) and g € GL,(K ®g C).

Here x,, = ®,ce, X+ denotes the algebraic character of _Tn(K ®r C) corresponding to the weight
€ (Z™)%, to be viewed as an algebraic character of B, (K ®g C) as usual. Then we realize v,
as the N, (K ®@g C)-invariant algebraic function f in F, such that

f(1,) =1 (1, denotes the identity element of GL, (K ®r C)).
Similarly, we realize F) l)’ as the algebraic induction

vV _ al GLn(K® (C)
E) = “¢In dB (K@Rg) X—p

and realize v/ as the N,,(K @g C)-invariant algebraic function f¥ in F}/ such that f¥(1,) = 1.
The invariant pairing (, ) : ), X F, l — C is determined by the equality (7). Note that as a linear
functional on F/ ;Y , v, equals the evaluation map at 1,. Similarly, UX equals the evaluation map
at 1, as a linear functional on F},.
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Fix a unitary character
wR ‘R — CX, T 627ri:c’ (9)

which induces a unitary character

Yk : K— C*, !E'—>¢R<Zb(fﬁ)>~ (10)

LEEK
This further induces a unitary character

n—1
Yk No(K) = C*,  [25)1<ijgn = T,Z)K((—l)n : Z zi,z’+1>~ (11)
i=1

By abuse of notation, we will still use 1, x to denote the space C carrying the representation
of Ny (K) corresponding to the character ), k. Similar notation will be freely used for other
characters. Let 7, € (u). Recall that the space Homy, (k) (7, ¥n k) is one-dimensional. Fix a
generator

)‘H S HomNn(K) (71'“, ¢n,K), (12)
to be called the Whittaker functional on 7.

Write 0, x for the zero element of (Z”)EK. Then Fp, , is the trivial representation. Specifying
the above argument to the case when y = 0,, k, we take a representation m, , € €2(0,,x), together
with the Whittaker functional Ao, ,, € Homy,, (&) (70, 5, ¥nx) \ {0}

Throughout this article, we assume that the representation g, , € €(0,,x) is chosen such
that m, , and F;Y ® 7, have the same central character, to be denoted by &, k.

2.2 Explicit translations
We will prove the following result in this subsection.

PROPOSITION 2.1. There is a unique element j, € Homgy,, (k) (”On,KaF;Y ® m,) such that the

following diagram commutes.

Jn
Mo, —2 FY @,

)‘On,K l J{UM@A”

C: C

Moreover, j,, induces a linear isomorphism
gu + Het (GLn(K) s mo,, ) = Hy (GLa(K)'s F) @ )
of representations of wy(K*) for each i € Z.

It is known from the Vogan—Zuckerman theory of cohomological representations (see
Proposition 1.2 and §5 of [VZ84]) that

dim Homgr,,, (k) (7r0n7K,FMv ®@m,) = 1. (13)

We first recall the realization of 7, and introduce a certain principal series representation I, of
GL,(K). Define a character

(n+1)/2—i

Pn = |k (|- |x denotes the normalized absolute value)
of T,,(K). For ¢ € &, define the half-integers
1
ﬂg::uﬁ—ir%—i, i=1,...,n. (14)
Then {(faf, fi5, ..., fil,) }.egy is the infinitesimal character of the algebraic representation F),.
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For K= R, a,b€ C with a —b € Z\ {0}, denote by D, the essentially square-integrable
irreducible Casselman—Wallach representation of GLs(K) with infinitesimal character (a,b). Note
that such a representation is unique up to isomorphism. In this article we use the notation & to
denote the completed projective tensor product of locally convex topological vector spaces (see
[Tre67, Definition 43.5]).

If n is even, then

= Indg:&g@ (Dt i, ® -+ @)Dﬁi/z’ﬁé/ul) (normalized smooth induction),

where P, is the lower triangular parabolic subgroup of type (2,...,2). More pre-

cisely, the above normalized smooth induction consists of all smooth maps f:GL,(K)—
D,]LP%@ e @ng such that

n/2’ﬂ:7,/2+1

f(Bg) = 65 (B) - (5- (f(9))) for all p € P,y and g € GL, (K), (15)

where 05, denotes the modular character of Py,. Thereafter Ind always denotes the normalized
smooth induction which is similarly defined as above.

If n is odd, then

~ GLn (K) S8 P
Ty = Indf’n(]K) (Dﬂivf%® R ®D‘azn—1)/2’ﬂfn+3)/2 X () ( +1)/25n,]K),

where P,, is the lower triangular parabolic subgroup of type (2,...,2,1), and we recall that
EnK = lgx or sgngx is the common central character of Fl @ my, and mo,, -

For K = C, we have that

GLn(K)

> Bl & .. fiy 711
B (K) (17 @ - @ S,

7, = Ind

where for a,b € C with a — b € Z, 1% denotes the character
LK = X,z u(2) 0 (u(2)(2))°.

In both the real and complex cases, we define the principal series representation
GLn (K
Iy = IndBn(Hé) "X+ o+ (Eniz 0 det)),
so that I, and 7, have the same central character.

LEMMA 2.2. The principal series representation I, has a unique irreducible quotient as well
as a unique generic irreducible subquotient. Moreover, the irreducible quotient is generic and
isomorphic to m,.

Proof. By [Jac09, Lemma 2.5], [X has a unique irreducible subrepresentation, which is also the
unique generic irreducible subquotient. This implies the first statement of the lemma.

For K 2 R, by the well-known realization of essentially square-integrable representations of
GL2(R) as quotients of principal series representations, 7, is a quotient of

Indg 57 (w(xy - pn) - (Enx  det))

for a certain w € W,,. Here W), is the subgroup of permutation matrices in GL,(Z) which is
identified with the Weyl group and acts on T, (K) by conjugation, and thus it acts on the set
of characters of T, (K). The above representation and I,, have the same irreducible constituents.
Hence, 7, is isomorphic to the unique generic irreducible subquotient of I,,, which is in fact a
quotient as we mentioned at the beginning of the proof.

For K 2 C, the lemma follows easily from [JL70, Theorem 6.2] (for the case of GLy(C)) and
parabolic induction in stages. O
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The group N, (K) is equipped with the Haar measure
du:= [ duig, w=1[w;licij<n € Na(K), (16)
1<i<j<n
where du; ; is the self-dual Haar measure on K with respect to ¢x. By [Wal92, Theorem 15.4.1],
dim HOHan(K)(IM, wn,K) =1 (17)

and there is a unique /\L € Homy,, (k) (I, ¥n k) such that

Xo(f) = / o T (18)

for all f € I, such that f|x, k) € S(Nn(K)). Here and henceforth, for a Nash manifold X, denote
by S(X) the space of Schwartz functions on X (see [DC91, AGOS]).
As usual, an element u ® f € F #V ® I, is identified with the function

GL,(K) = F/, g+ f(9)-u.

Then F,/ ® I,, is identified with the space of F}/-valued smooth functions ¢ on GL,(K) satisfying
that

o(bx) = (((EmK o det) - Xu)(b)) ~p(x), forall b€ B,(K), » € GL,(K),
on which GL,(K) acts by
(9.0)(z) := g.(p(xg)), where g, z € GL,(K).
Define a GL,,(K)-homomorphism

. \
byt IOn,]K - FH ® IN”

fo= (g fl9)- (g7 v))-
LEMMA 2.3. The map 1, satisfies that
(v @ N,) 01y = )\{)R’K. (20)

Proof. Recall that v, € F), is N,(K®g C)-invariant, and <UH’U/\1/> =1. For fe€ Iy, x with
fIN, k) € S(N,(K)), we have that

(19)

(0 ® X,) 01, (f) = / (O 1 F) () P ()

n(K)

— / F ()P () du
n(K)

= )‘i)n,K(f)'
This proves (20), in view of [Wal92, Theorem 15.4.1]. O

By Lemma 2.2 and (17), there is a unique p,, € Homgqr,, (k) (I, 74) such that
Auopy = /\;L. (21)
Let J, := Ker(p,), which is the largest subrepresentation of I,, such that
Dim J,, < Dim I,,.

Here and below, Dim indicates the Gelfand—Kirillov dimension of a Casselman—Wallach
representation of GL,(K). Likewise, we have Jo, , := Ker(po, ) C lo,, -
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LEMMA 2.4. It holds that
1u(Jo, ) C F,Y ® Ju-
Proof. 1t suffices to show that
1u(Fu @ Jo, x) C Iy,

where 7, € Homgy,, k) (Fy ® lo,, , I,,) is the linear map induced by ¢,,. This follows from the fact
that (see [Vog78, Lemma 2.2|)
Dim (F, ® Jo,, ) = Dim J, . O

By Lemma 2.4, there is a unique j, € Homgp,, (k)(70, %, ) uv ® m,) such that the following
diagram commutes.

id®p
Elol, — Flom,
ZHT T]u (id indicates the identity map) (22)
PO, x
IOn,]K TrOn,K

By (20) and (21),
(Up ® Aw) © g OP0x = (Up ® Ap) o (idFHV ® pu) © 1
= (v, ® )‘L) Oy
= )\6an
= A0,x © D0, 5
which implies that

(U ® Ap) 0 g = /\On,K-

This proves the existence part of Proposition 2.1. The uniqueness follows from (13). The last
statement of the proposition follows from [VZ84, §5].

3. Archimedean period relations

In this section we explain the statement of the archimedean period relation (Theorem 3.2), whose
proof will be given in the next section.

3.1 Some cohomology spaces
For simplicity, write

by,
H, := Hp ™ (GLA(K)"; Fuv ® ),

which is of dimension 1 or 2. As in Proposition 2.1, we have a linear isomorphism
]/Jf . HOn,K - H.U‘

of representations of my(K*).
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Fix a maximal compact subgroup

O(n), if K=R;
K,k := 23
K {U(n), if K2 C (23)

of GL,,(K). The determinant homomorphism yields identifications
Wo(GLn(K)) = WO(Kn,K) = Wo(KX).
We use the corresponding lowercase Gothic letter to denote the Lie algebra of a Lie group.
For example, the Lie algebra of K, x will be denoted by ¢, x. Put
n(n+1)

dn,K = anrl,K + bn,K = dlmR(g[n(K)/En,K) = 2 ’
n?, ifK~C.

if K= R;

Define a one-dimensional real vector space

wnk(R) := A%E (gL, (K) /€ x)-
Put
wpK = wpK(R) ®r C,

which is naturally a representation of 7(K*) that is isomorphic to sgn%;l. Here and henceforth,
we also view 1gx and sgngx as representations of mo(K*). Then there is an identification

dn
Het" (GLA(K)% wy k) = g (24)
of representations of 7o (K*).

Write w and w . for the two connected components of wy, x(R) \ {0}, which are viewed as
left invariant orientations on GLy(K)/K]) x. The complex orientation space of wy, k (R) is defined
to be the one-dimensional space

C-wpdC w g
{a(wIK—Fw;K) caeC}

n—1

Then mo(K*) = mo(Knx) acts on O,x by sgng,, through the right translation on
GL,(K)/K S’K. We identify w;  ® Op, x with the space of invariant measures on GL;,(K)/ K 2,11( in
the obvious way. Here and as usual, a superscript * over a vector space indicates the dual space.
Denote by 9, x the one-dimensional space of invariant measures on GL,,(K). By push-forward
of measures through the map GL,(K) — GL,(K)/K 27K, we have an identification

OpK = (25)

*
gﬁan =Wy K X Dn,K-

In view of this and (24), we have that
dn *
Hct 7K(GLH(K)O; n,K) ® DH,K =C.

3.2 Archimedean modular symbols and archimedean period relations

Now we assume that n > 2. Let v € (Z"1)® be a highest weight and assume that it is pure.
Then, as before, we have representations F, and m, of GL,,_1(K ®r C) and GL,,_1(K), respec-
tively, an element v, € F},, an element vy € F)Y, and a Whittaker functional \, on m,. The
representation 7o, _, , is determined by m, as before, and we have a linear isomorphism

Jv - Honfl,]K - HV

of representations of 7y (K*).

1883

https://doi.org/10.1112/S0010437X24007280 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007280

J.-S. L1, D. Liu AND B. SuN
As usual, we have an embedding

0 1

where R is an arbitrary commutative ring. We also view GL,,_1(R) as a subgroup of GL,(R) X
GL,,—1(R) via the diagonal embedding

4 GLy 1(R) — GL.(R), g¢— [9 0] , (26)

0 1

For all k,l € N, denote by R¥*! the set of k x [ matrices with entries in R.
Recall the pure weight p € (Z")f% from §2.1. Put £ := (p,v). Write Fy := F,, ® F,,. Assume
that € is balanced in the sense that there is an integer j such that

GLy_1(R) — GLo(R) x GLo_1(R), g+ ( [9 0] , g). (27)

Homgy,, | (kexc)(Fe, @egedet’) # 0. (28)
For each k € N, write
0 0 1
e 1
wy = 0 0 € GLi(Z).
1 0 --- 0

Following [LLSS23], define a series {z € GLi(Z)}ren of matrices inductively by
zp := & (the unique element of GLy(Z)), =z :=[1],
and

. —1 t t
2 = [wkl 0} [zk—Q 0} [zklwklzkl k-1 for all k£ > 2. (29)

0 1 0 12 0 1|’
Here, and as usual, a left superscript ¢ over a matrix indicates the transpose, 15 stands for the
2 x 2 identity matrix, and ep_; := [0,...,0,1] € Z**-1),
Let j € Z be as in (28). The following proposition follows from the fact that
(]_Bn(C) X ]_Bn_l((C)) (2n, 2n—1) - GLp—1(C)
is Zariski open in GL,(C) x GL,—1(C) (see [LLSS23, Lemma 1.1]).

ProPOSITION 3.1. There is a unique element

(bg,j S HomGLnfl(K(@RC) (Ff\/’ ®L€S}Kdetj)
such that
ei((2 ' vy) © (2,2.0))) = 1.
Fix a quadratic character yg of K*. Define characters

ke =xk | e x = xx - sgnl, (t€C), (30)

and, more generally,
Xty = x| fk - send
of the group K*. When no confusion arises, for every commutative ring R, every character

of R* is identified with a character of GL,_;(R) via the pullback through the determinant
homomorphism. In particular, X]&é)t is also viewed as a character of GL,_1(K).
Put

Mg 1= TQTy.
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We have the normalized Rankin-Selberg integral (see [Jac09])

Z2(, s, xx) € Homgr,, k) (e @ Mp_1x, Xk,—s+1/2)
= Homgr,, ) (e, X, —s+1/2 @ M1 ),
such that

1
L(s,m, x m,)

. g O . . /
/Nn—l(K)\GLn_l(K)/\“QO 1] f>)‘v(9 )

xx(det g) - |det |3 "/* dm(g) (31)

for all f e m,, f'em, meM, 1k, and s € C with the real part Re(s) sufficiently large (it
extends to all s € C by holomorphic continuation). Here and henceforth, m is the quotient
measure on N, _;(K)\GL,_1(K) induced by m. Recall that a Haar measure on N,,_;(K) has
been fixed as in (16).

Put

Ze(f@ ffeom, s, xk) =

H ) = H(GLa1 (K) X)),

Let ¢¢ ; be as in Proposition 3.1. Then we have a GL,,_;(K)-equivariant continuous linear map
b @ L, 5+ xx) : FY @ me = (®uegpdet’) ® (xr,—j @ M k)
= X]g) ® My, k- (32)
By restriction of cohomology, this induces a linear map
Pe g - Hy @Hy @ Hx]g) ®RDp-1K
= Hg ™ (GLu(K)° x QL1 (K) FY @ 7 © X)) © O
= HG ™ (QLaoa (K) D) @ Dnor e = C.

We call this map the archimedean modular symbol, which is nonzero by the non-vanishing
hypothesis that is proved in [Sunl7].

Specifying the above argument to the case when & = & := (0, k,0,—1 k) and j = 0, we get
a linear map (with yx replaced by xﬁé))

p&mxg),o : Hon,K ®HOn—1,K ® Hxé(ﬂ ®Dn—17K — C. (33)
The archimedean period relation is the following theorem.

THEOREM 3.2. Let the notation and assumptions be as above. Let

v = ;7 (n(n—1)/2)[K:R] ey ey (34)
where
n—1 )
CL — H((_l)ni)(”—z)zbesKﬂi’
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n—1
Cy = H((—l)ni)(n_l)ZLegK i and
=1
Epp 1= H (—1)Zeeexitih),
i>k,i+k<n

Then the following diagram commutes.

Q05 96X
HM®HV®HX(J') ®Dn71,K —= 2 C
K
J#@]u@id@)idT H

Peon? 0

Ho, « ®Ho,_,x ® Hx]g) RDp1g —— C

Remark 3.3. The Rankin—Selberg integrals for minimal K-type vectors of principal series rep-
resentations of GL,(K) x GL,_1(K) have been explicitly calculated by Ishii and Miyazaki
in [IM22]. The Rankin—Selberg integrals for minimal K-type vectors of irreducible generalized
principal series representations of GL3(K) x GLy(K) have been calculated explicitly by Hirano
et al. in [HIM22]. It should be also possible to prove Theorem 3.2 when n < 3 or K 2 C, by using
these results and the method in [Sunl7].

4. Proof of archimedean period relations

In this section we prove the archimedean period relations (Theorem 3.2). Retain the notation of
the last section.
Put

Je = Ju ® Jv € Homgy,, (k) xGL, 1 (k) (T, F @ me). (35)
We will prove the following result, which implies Theorem 3.2 by specifying s to %
THEOREM 4.1. The diagram

Q) ;P QL (547 xK) X(j)

F @me = (F) @ m,)0(F) @m,) Kils® M1k

dl H

_ ~ o\ OXK (4) *
Teo = T0, x @0, 1 x - XK,%,S ® mn—l,K

/

commutes for all s € C, where @), ,

is given by (34) as in Theorem 3.2.
Here ¢¢ j ® ZZ(+, s + j, xx) is defined in the way similar to (32).
4.1 Reduction to principal series representations

Recall that in §2.2 we have defined a principal series representation I, with a Whittaker
functional )\; € Homy, (k) (1, ¥nx), and a unique p, € Homgy,, (k) (£, 7,) such that

Apopu=A,.
We have also defined ¢, € Homgy,,, (k)(lo,, x> F) ® I,,) such that
(0 ® N) 0 0 = X0,
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and that the diagram (22) commutes. We have similar data for v. Put
I = IN@JZ,, De = Pu Dy, e =1, Q1.
Define the normalized Rankin—Selberg integral

1
7o (-
L(s,mu x ) (5, xK)

Zg( 8, xx) =
€ HomGLnfl(]K) (Ig ® mn—l,K7 XK,—S—H/Z)
as the composition

I& &® mn_l,K — T ® mn—l,K 7 XK,—s+1/2"

Then
1

L(s,m, x m,)

: P O]. )X f
/Nn_l(]K)\GLn_l(K) “([0 1| f)Mle-F)

- xx(det g) - |det g[5 /* dim(g),

Ze(fof @m, s xx) =

for f eI, f' €1I,, meM,_1k, and s € C with Re(s) sufficiently large.

In view of all the above, by the multiplicity one theorem [AG09, SZ12], there exists a unique

entire function =, j(s) such that the following diagram commutes for all s € C.

. Z<> . " .
d’&,J@ g( s+J X]K) (])

Fé\/ ®I§ XK,%—S ®9ﬁ;§_1’K
\id@pg \
¢§,j®zg(',5+j7XK) .

e ng ®7T§ X]&é)l_ ®m271K
Zpni (5) 270 ’
a1V

Je zg,(: sxi) .
Ig, X]g’)%,s @M, 1 x Epori (5)
P . \
N 22 (oxd) |
T 0 (9) I
%o Xgi1_s @1k

’2

In the rest of this section we compute the function =, , ;(s) and show that it is a nonzero
constant whose inverse is equal to Q,/u,z/,j given by (34). The main ingredient of the computation

is [LLSS23].

4.2 Integral over the open orbit

For the convenience of the reader, we describe the main result of [LLSS23]. Write KX for the set

of all (unitary or not) characters of K*. Let o = (01,...,0n) € (]K\X)”, viewed as a character of

B, (K) as usual, and let

GLn(K
I(p) :== IndBn(Hé) )Q
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be the corresponding principal series representation of GL,(K). Similarly let o =

(0f,..., 0, 1) € (H@)”_l and let I(¢') be the corresponding principal series representation of
GL;,—1(K). We have a meromorphic family of unnormalized Rankin—Selberg integrals

Z(-,s, xx) € Homgr,, ) (1(0)®1(0") @ My_1x, XK, —s+1/2)
such that

Z(f @ f'@m,s, xk)

0 s— _
-/ (o )t xelaeng) - aengli 2 amo
Npy— 1 (K)\GLn1 (K)

for all f € I(o), f' € I(¢d'), m € M, _1x, and s € C with Re(s) sufficiently large, where )}, €
HOH;JN”(K) (1(0), ¥nx) and X, € Homy, _, ) (L(¢'), ¥n—1,x) are defined in the way similar to (18).
et

2= (zn, 2n—1) € GL,(Z) x GL,,—1(Z), (37)

where z, € GL,(Z) is defined inductively in (29). The right action of GL,_1(K) on the flag
variety (B, (K) x B;,,_1(K))\(GL,(K) x GL,,_1(K)) has a unique open orbit

((Bn(K) x Bp-1(K))z) - GL,—1(K). (38)
Note that

= GLn(K)xGLp—1(K
[(0)®1(¢) = Indg o5 Wow o
Following [LLSS23], we first formally define

A(+,s,xx) € Homgr,, ) (1(0)®1(0") ® Mp_1k, Xik,—s5+1/2)

as the integral over the above open orbit, that is,

Al @ m, s, xK)
0 s—
= [ o(a g ] ors) xetdeta) et gli amio) (39)
GLp—1(K)
for ¢ € I(0)®I(¢') and m € M,,_1 .
Define
sen(o, ¢, xx) =[] (@i~ oh - xx)(=1),

i>k,i+k<n

and a meromorphic function

Yy (5,00 xx) = T (s 06 - X ),
* ith<n

where 1/)]%") is the additive character K — C*, x — ¢x((—1)"x),

L(1—s,w™)

V(vaﬂ/}]g(n)) = E(Sawv ]E{n)) ' L(S w)

is the local gamma factor of a character w € ]K\X, and s(s,w,wg)) is the local epsilon factor,
defined following [Tat79, Jac79, Kud03|. For convenience also define

E¢(n) (87 o, le XK) = H 5(87 i - Q;c * XK, w]%n))
“ i+k<n
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Finally, define a meromorphic function
L o (8,00, xx) = sgn(e, ¢/, xx) - v, (s, 0, 0, Xx)-
w]K ’Lp]K

For a character w € H@, denote by ex(w) the real number such that

jw| = |- 2,

Consider the complex manifold
M = C x (K¥)" x (KX)*
and its nonempty open subset

ex(0;) + ex(0;.) + Re(s) < 1 whenever i + k < n,
O N |

ex(0i) + ex(o},) + Re(s) > 0 whenever i + k > n

THEOREM 4.2. [LLSS23, Theorem 1.6(b)] Assume that (s,o,¢") € Q. Then the integral (39)
converges absolutely, and

A(QS ®@m,s, X]K) = F¢H(<n>(83 0, Qla X]K) : Z(¢ ®@m, s, XK) (40)

We remark that the right-hand side of (40) is holomorphic as a function of the variable
s€Q,y ={s€C: (s,00) € Q} (see [LLSS23, Remark 1.7]).
Let (I(0)®I(0"))* C I(0)®I(¢') be the subspace of ¢ € I(9)®I(¢') such that

Alz-GL,_ (k) € S(2 - GLy—1(K)).

Then for every p € (H@)”, o e (H@)"‘l and ¢ € (I(0)®I(¢'))¥, the integral (39) converges
absolutely and is an entire function of s € C. We deduce the following consequence of
Theorem 4.2.

COROLLARY 4.3. For every o € (]I@)”, o € (K\x )"~ and ¢ € (I(0)®I(¢'))*, the equality (40)
holds as entire functions of s € C.

Proof. Let C be the connected component of (H@)” containing o, and let C' be the connected
component of (K*)"~! containing o/. Write Ky := K,k x K,_1 k. Define

f(b-k) = (e® d)(b) - f(K), }

Cee (Kx) = {f € CP(ER) | for all b € Ky N (By(K) x Bu_1(K)), k € Kx

which only depends on C and C’, not on the particular choices of ¢ and ¢'.
Consider the natural map

K — (Bp(K) x Bn1(K))\(GLy(K) x GLp—1(K)),
which is surjective by the Iwasawa decomposition. Let KHﬁ( C Kk be the preimage of the open

orbit (38) under the above map. Fix f € Cg%/(Kk) such that f|.: € S(K&). Then there is a
’ K

unique
Po0' = Pfo0 € (I(AQ)@I(QI))ti
such that
Po,o |k = -
Let M° :=C x C x C’, which is a connected component of M. When (g, o) varies in C x (',
the integral A(¢, o ® m, s, xk) is clearly holomorphic on M°. By [Jac09, § 8.1], we also have that

Fw]gl) (S’ 0, Q,7 XK) : Z(¢Q,Q’ ®@m, s, XK)

1889

https://doi.org/10.1112/S0010437X24007280 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007280

J.-S. L1, D. Liu AND B. SuN

is meromorphic on M°. Since the equality
A(¢Q,Q/ ®@m, s, XK) = Fd’é{l) (37 0, Qla XK) : Z((bg,g’ K m,s, XK)

holds on 2N M?°, which is nonempty and open, it holds over all M° by the uniqueness of

meromorphic continuation. The corollary then follows by noting that every ¢ € (I(0)®I(¢'))*

equals ¢y, for some f € C2% (Kk) such that f|, .+ € S(K%). O
’ K

4.3 A commutative diagram
We now specify the above discussion to the principal series representations I, and I,. Define

ot =(of,...,0n) € (H@)”, where

: (n+1)/2—i LoRX s
of ==enxkl| Iy HL“ZGKX, i=1,...,n,
LEEK

so that I, = I(o") in the above notation. Likewise we define ¢ = (o¥,...,0,_;) € (]K\x )1 so
that I, = I(0”), and put It= (IH@A@L,)ﬁ. Similar to e, , one defines €,_1x as the common
central character of FY ® m, and mo,,_, .

The integral (39) defines a nonzero linear functional

Ae(+, s, xx) € Homgr,, (k) (Igﬁa XK,—s+1/2 ® m:;—l,K)'
By Corollary 4.3,

Af(? S, X]K) = ng‘)(sa Qua an XK) ' Zf(a S, XK)
= F,(Z)H((n>(8’ Qua an XK) ' L(Sv Ty X 7r1/) : Zz('7 S, X]K) (41)
holds on Ig ® My, -1 k- Recall that 1 =12, ®1, € Homgy,, k) (Le, ng ® Ig). It is clear that
w(If) C FY @ IL.

PROPOSITION 4.4. The following diagram commutes.

d’ ,®A ('75+j7X ) ] *
FY @I S ol ey
dl |
¢ Agy (3x¢7) () .
Ifo - X]K 1—5 ® mnflzK

Proof. Recall from Proposition 3.1 that ¢¢ ; € HomGLn_l(H@RC)(FgV , ®Lengetj ) and

d)g,j(z*l.vg) =1,
where v 1= v @ v,/. For ¢ € Ig, and g € GLp—1(K) C GL,(K) x GL,—1(K) (see (27) for the
inclusion), we have that

e, (1(0)(29)) = dej (B(z9) - (g7 27 ) (see (19))
(29) - ¢ei(g 27 wy)
(29) - (Rregedet™)(g).

¢(z9)
¢(z9)

1890

https://doi.org/10.1112/S0010437X24007280 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007280

PERIOD RELATIONS FOR RANKIN-SELBERG CONVOLUTIONS FOR GL(n) x GL(n — 1)

Assume that ¢ € Igo. By (39), we have that
(b @ Ae( s+ 4 xx)) (e(¢) @ m)

= /GL ( )5155,3‘(%5(@5)(29)) . X]K(det g) . |detg|§<+j_1/2 dm(g)
- / qb(Zg) . (®L€£Kdet_j)(g) . X]K(det g) ) |detg|§<+j_1/2 dm(g)
GLy—1(K)

= / $(z9) - X\ (det g) - |det g|5 /> dm(g)
GLy_1(K)

= Mgy (p @ m,s,x7),
where m € 9,,_1 k. This proves the proposition. ]
COROLLARY 4.5. Let the notation be as above. Then
F%((n)(erj, 0", 0", Xk) L(s + j, 7, X 7,)

Zuvi(s) - - =1 42
s 7]( ) Fw(n)(sy Qon,K7 Qon,l,K’Xﬁé)) L(S77T0n,]K X 7T0n_17K) ( )
K
as meromorphic functions of the variable s € C.
Proof. This follows from (36), (41) and Proposition 4.4. O

4.4 Archimedean local factors

To finish the proof, it remains to evaluate the function =, , ;(s)~! given by (42) and show
that it is equal to the constant €, ,; given by (34) as in Theorem 3.2. To this end, we first
recall some standard facts about archimedean local L-factors and epsilon factors that we need,

following [Kna94]. Let
7=5/?2T(s/2), if KR,
I'k(s) =
2(2m)~°T'(s), fK=C,

where I'(s) is the standard gamma function. Recall the Legendre duplication formula
Lc(s) =Tr(s)Ir(s+1). (43)

Recall the additive character ¢ that is defined in (10) by using ¢g.
If K =2 R, then the following hold true.

— For all t € C and § € {0, 1},
L(s, |- lic sgng) = Tr(s +t +9),
and
(s, - liesenee, vi”) = (=1,
— For all a,b € C with a —b € Z\ {0}, and ¢, J as above,
L(s, Dap % | - |k sgnd«) = T'c (s +t + max{a,b}).
Here and henceforth, for any o/, € C with o/ — V' € Z,
max{a’,b'} := {a’, ifa’ 6> 0;

b, otherwise.
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— For all a,b,d’,b' € C with a — b,a’ — V' € Z\ {0},
L(s,Dgp X Do ) =TI'c (s + max{a +a’,b+ b’}) T'c (s + max{a +,b+ a’}).
If K= C, then for all a,b € C with a — b € Z,
L(s,"?") = T'c(s + max{a, b})
and
(s, 02 ) = (=)L
By the well-known branching rule for GL,,(C), we have that j € Z is a balanced place for £
if and only if

gy ZVL Ty 2V 2 2y ) 2

for every ¢ € Ek. Equivalently, by [Ragl6, Corollary 2.35], j € Z is a balanced place for ¢ if and
only if

where

m,,,, = max{—p,_; —v; 1 <i<n—1,1€ &},
1

e L L.
my,,, = min{—py, 1 ; — vy

1V <i<n—1,L€5K}.

Recall the half-integers /i (i = 1,...,n) given by (14). The following result can be easily checked
by using the above result (see the proof of [Ragl6, Lemma 2.24]).

LEMMA 4.6. Assume that £ = (p,v) is balanced. Then
i + P = Finga—i — Un—i
is positive if i + k < n, and is negative otherwise, for every 1 € k.
Now we establish the following result, which thereby finishes the proof of Theorem 4.1.

PROPOSITION 4.7. The function Z,,, j(s)~! given by (42) is equal to the constant Q,,; given
by (34).

Proof. We use the notation of Theorem 3.2. It is clear that

sgn(o", 0", xx) _ (_DZLesK(HHVHJ‘) _ (_1)j(n2(n—1)/2)[KrR]
sgn(QO"’Kvgon‘vi,X]%)) i>k,itk<n

CEpu-

To evaluate the contribution from the local gamma and L-factors, we consider the real and
complex cases separately.
(i) Assume that K = R. Then & = {¢}. Using Lemma 4.6, it is easy to check that

L(S,Tru X 771/) = H F(C(S +ﬂi + ﬁlbc)
i+k<n

For a character w € KX, write §(w) € {0,1} such that w(—1) = (=1)°“). Then

e(s,w,07) = ((—1)"1)°), (44)
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and it is clear that
J+ w4+ v — (o ofxk) + 5(@?”’]1(@2”_1’“{)(]%)) € 27. (45)
We have that

L1 —s, (o) eixx) ™) _ Tr(l —s— fif — 7 + (e} of xx))
L(s, o} 0¥ xx) Tr(s + @t + o) + 60 oY xk))

It follows from (43) that

< 10 L(1 - s, (Q?QZXK)_1)> -L(s,m, X ™)

itien (s doixx)

= [ (Cr(s+ i+t +1—6(tofxx)) - Tr(l — s — it — 7 + 6(cl'0fxx))).  (46)
i+k<n
By (44), (45), (46) and the formula

Tr(s+0) -Tr(2—s—10) =i" -Tr(s) - Tr(2—3s), (€27,

we find that
’y%((n)(erj, o', 0", xx) L(s+ j,m, x m,)

71/)(70 (87 QOTL’K7 Qonil’Ka Xlgg)) L(S’ TrOTL,K X TrOn—l,]K)
K

: (n) ,
( 8(3 + 7, 00" XKk, wK ) . ij+“§+l’fg5(Q“QVXH<)+5(QO"’KQO'”UKX]E(”))

ithn VE(S, QO”’KQO”’LKX]%)V‘/’I%))

= T (=pmyrw

i+k<n

— (—1)in D2 (=2 S,

(ii) Assume that K = C. Then X]%) is trivial, which will be omitted from the notation for
convenience. Using Lemma 4.6 again, we find that

L(s,my X m,) = H Le(s + 5 + y,).
i+k<n,EEk
We have that
L(1—s,(0fep)"") _ Te(l — s —mineg, {1 + 74 })
L(Sv QgQZ) FC(S + maXLG&K{/]g + leg})

It follows that

< H L(1 — s, (Qf@%)_l)> L(s,mu x )

L(s, o' o%)

i+k<n
- 11 (F(c <s + min{! + ﬁ,;}) Tc <1 ~ s — min{f + 17,;})). (47)
. LE€EK LEEK
i+k<n

Using (47) and the formula
Te(s+0)-Te(l—s—10) = (=1)"-T¢g(s) - Ic(l—s), (eZ,
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we find that
’Ywﬂ({n)(s"i_.jv qugy> ' L(S'i‘jﬂﬂt XWV)

’Y%({n)(sa QOMK? QOTL*LK) L(877T0n,]K X TrOn—l,K)

=TI (es+3. el of, ) - (—1ymimesluitvidy, (48)
i+k<n

We have the local epsilon factor
(s + jy oty wll") = (1)) mesee b4 ominee -+,
Hence, (48) is equal to
H ((=1)m)FHHitvic = (—1)dn*(n=1) . gin(n=1) ey
i+k<n, 1€Ek

This finishes the proof of the proposition. ]

5. Non-archimedean period relations
In this section, let K be a non-archimedean local field of characteristic zero. Fix a nontrivial
unitary character ¢g : K — C*, and define the character ¢, x of N,,(K) as in (11) (n > 1).

5.1 Preliminaries
Denote Indgi&gg) n k the smooth induction which consists of all functions f : GL,(K) — C such
that:

— f is right invariant under some open compact subgroup of GL;,(K);
— f(ug) = Ynx(u)f(g) for all u € N,,(K) and g € GL,(K).

This is a smooth representation of GL,,(K) under the right translation.
Let p be the residue characteristic of K, and iy« C C* be the subgroup of pth power roots
of unity. Recall the cyclotomic character

Aut(Q(up=)/Q) = Zyy, 01— top
defined by requiring that
o(¢) = ¢lor for all ¢ € ppeo. (49)

Write o +— ¢,k for the composition

o—top

Aut(C/Q) S, Aut(Q(u)/Q) T2 7X C KX,
Following [Har83, pp. 79-80] and [Mah05, p. 594], define

tnox = diag(t, ... 15k, 1) € GL,(K), (50)
and define an action of Aut(C) on Indgi&gg)d}nig by
fg) = o (f(tnox - 9), (51)

where o € Aut(C), f € Indgi&é]f)zbn,u@ and g € GL,(K).
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Let IIx be a generic irreducible smooth representations of GL,(K), with a fixed Whittaker
functional

)\K (S HomNn(]K) (HKu ¢n,K) \ {0}

Using Ak, we realize IIg as a subrepresentation of Indgizlﬂgf)wmng by

g — Indgi&gg)1/}n7ﬂg, u— (9 Ax(g.u)). (52)

Put

T := o(llg) C Indg:&g@?ﬁn,ﬂ@

which is also a generic irreducible smooth representations of GL,(K) with a fixed Whittaker
functional (the evaluation map at the identity matrix).

Let xg : K* — C* be a character. Let ¢(xx) and ¢(¢x) be the conductors of xx and ¥k,
which are ideal and fractional ideal of Ok, respectively. Here Ok denotes the ring of integers
of K. Fix yg € K* such that

c(Yx) = yk - ¢(XK)-

The local Gauss sum is defined by

G(xx) = Gl o) = [ xele) ™+ vclyer) o (5)

where dz is the normalized Haar measure so that O has total volume 1. Note that G(yx) =1
when ¢(xx) = ¢(¥r) = Ok. For every o € Aut(C), it is easily checked that ¢(?xx) = ¢(xk), and

G(xK, Vx,yk) = “xx(tox) - G(° XK, VK, YK)- (54)

5.2 Non-archimedean period relation
Suppose that n > 2, and Yk is a generic irreducible smooth representation of GL,_;(K) with a
fixed Whittaker functional

Ak € HomNn_l(K)(ZK, Y1) \ {0}

As before, we use A\ to realize Yk as a subrepresentation of IndgLf;(lﬂg)@bn_l,K, and we have a

subrepresentation Xk C IDdCN;:j;(lﬂgé)wn_LK for every o € Aut(C).

As in the archimedean case, denote by 9,1 x the one-dimensional space of invariant mea-
sures on GL,_1(K). Fix the Haar measure on N,,_1(K) to be the product of self-dual Haar
measures on K with respect to ¢k, as in (16). Then each m € 9,1 k induces a quotient measure
m on anl(K)\GLnfl(K)

Let xx, denote the central character of k. For every o € Aut(C), it is clear that 7 (xx,) =
Xosy- Similar to (54), we also have that

g(XEKa ¢K7 y]k) = UXK(to,K) . g(X"EKv 1/}K7 y]/K)7 (55)

where yj, € K* satisfies that ¢(¢Yr) = yg - ¢(xsx)-

We call an invariant measure m on GL,,_1(K) rational if m(K) € Q for every open compact
subgroup K of GL,_;(K). All rational measures on GL,_;(K) form a rational structure of
M,,—1 k. By using this rational structure, we get a o-linear isomorphism o : M,,_1 x — M1 k.
By taking the tensor product of the above o-linear isomorphism with the o-linear isomorphisms
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as defined in (51), we get a o-linear isomorphism
o g ®Xg @ XK s—1/2 @ Mu—1x — 1k @ 73k @ 7(XK,s—1/2) @ M1k, (56)

where s € C.
Similar to (31), we have the normalized Rankin—Selberg integrals

7°(-, s,xk) € Homgr,, ) (Hx ® ¥k ® xg,s—1/2 @ My—1x,C)

and

Z°(-,s,7xx) € Homgy,, k) (“Ilx ® "Xk @ (“XK)s—1/2 @ Mn_1x, C),

where (7XK)s—1/2 == XK - |- |§<_1/2, which equals 7 (xg s—1/2) when s € 3 +Z.

Following the idea of Harder [Har83, §III] (for m =2), Mahnkopf [Mah05, §3.4] and
Raghuram [Ragl0, §3.3], we formulate the non-archimedean period relation as in the following
proposition.

PROPOSITION 5.1. For all sg € 1 +Z and o € Aut(C), the following diagram commutes.

n(n—1)
G(xok VKoUK ) G(XK-VK,UK) ™ 2 -Z°(+,80,XK)
1 ®9ﬁnfl,K X =

IIg ® Yk ® XK,So—Q

"l l"

n(n—1)

G(xo sy Yroy) G (Oxxvroyx) — 2 Z°(+,80,7 XK)

Mg Vg ®@ (UXK)SO_% Q@ My_1 K
Proof. Note that
L(S,H]K X ZK X XK) — P(q1/2_s)_1

for a polynomial P(X) € C[X]. For o € Aut(C), denote by “P(X) € C[X] the polynomial
obtained by applying o to the coefficients of the polynomial P(X). Following the proof of [C1090,
Lemma 4.6], and by noting that the local Rankin—Selberg L-function does not depend on 9k, it
is easy to show that

L(s,“Tg x “Xx x “xx) = " P(q"/*7*)~".

Specifying s to sg € % + Z, we obtain that
L(S(), UHK X JEK X JXK) = J(L(So,HK X EK X XK)) (57)

For f eIk, f' € ¥g, m € M,,_1k, and 59 € % + Z large enough, by (51) and (57) we have
that

ZO(Uf & Uf/ & Uma 50, UXK))
1
L(So,UHK X I¥Kg X UXK)

o 0 o o S0— o
/ f([g 1]) 1'(9) - “xw(det g) - |det gl /% d7m(g)
Np—1(K)\GL,—1(K)
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: J (UE))
= n,o,K
a(L(so, Ik x g X XK)) JN,_1(K\GL,_1 (K) 0 1

o (' (tnr0x - 9)) - “xx(det g) - |det g2~/ d7m(g)

N T
L(s0,Ig X ¥k X XK) JN,,_1 (K)\GLy_1(K) 0 1

' (bp10k - 9)xr(det g) - |det g0/ dm(g))

= x5 (tox) - “xXx (tox)" V2 0(2°(f @ f @ m, s0, XK))-

By [JPSS83, Theorem 2.7] the map s+— Z°(f® f'®@m,s,xk) is an element of the ring
C[q*~'/2,¢'/?>75]. Therefore, the above equality holds for all sy € %—l—Z. Hence, by (54)
and (55), the diagram in the proposition is commutative. O

6. Whittaker periods

Let k be a number field with adele ring A as in the introduction. In this section we define the
Whittaker periods for irreducible subrepresentations II of A*(GL,(k)\GL,(A)) which will be
assumed to be tamely isobaric (see (63)) and regular algebraic.

6.1 Canonical generators of the cohomology spaces
Put K, = Hv‘oo Kpx, (n>1), where K, is the standard maximal compact subgroup of
GL, (ky) as in (23) for an archimedean place v of k. Define a one-dimensional real vector space

Wn,oo(R) 1= Ao (90, (koo ) /En,00),
where

dn,oo = Z dn,kv = dlmR(g[n(koo)/Enpo)

v]oo
Put
Wn,oo 1= Wn,oo(R) ®r C.

Similar to (25) in the archimedean case, denote by 9, » the complex orientation space of wy, o,
and put

5571,00 = Dn—l,oo @ Dl,oo @ DO,oo- (58)

By convention, we set 550700 = 90,00 := C. For any m > 0, we identify O, o0 ® O 00 With C in
the obvious way. Then we have that

511,00 & 5571—1,00 = Dn—l,oo- (59)

Let p = {pi*}iee, € (Z™)% be a highest weight that is pure as in the introduction. For every
archimedean place v of k, view &, as a subset of £ in the obvious way, and set

po = {1 Yeg,, € (2% (60)
Put
Q1) = {BojooT © Ty € Upia)}
and

Hy = @ H(mp),

TuEQ(p)
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where
H(mu) o= o= (RX\GLy (ko) FY © 7)) © Oy oo

Here b, o0 = Zv| oo Dnk, is as in the introduction, and Ri is identified with a central subgroup
of GL,, (ks ) via the diagonal embedding.

Recall from the introduction that F), is an irreducible algebraic representation of
GL,(k ®g C) of highest weight p. It has a decomposition

F, = ®v\ooF,uu-

For every archimedean place v of k, we have fixed a generator v,, € (F, Hv)Nn(k”@’RC). This yields
a generator

Uy 1= Quy, € (Fu)N"(k(@@C)'

We remark that the representation F), is unique up to isomorphism, and the pair (Fj,v,) is
more rigid in the sense that it is unique up to a unique isomorphism. Also recall from (12)
the Whittaker functional A,, on m,, € Q(u,). By tensor product, this induces the Whittaker
functional A\, on every m, € Q(u).

Let ¢ € mo(k&). Denote the e-isotypic component of H,, by H,[e] (similar notation will be
used without further explanation). Then H,[e] is one-dimensional. In what follows, we will define
a canonical generator r, . of H,[e|, which is determined by the pairs (F},,v,) and (m,, \,). Here
we suppose that 7, is the unique representation in Q(u) such that H(w,)[e] # {0}.

We first consider the case that = 0, o, the zero weight. For n = 1, we naturally identify
Ho, o [€] with C, and put ko, . := 1 under this identification.

For n > 2, fix

M0 00 = ®v|007r0n7kv € QO0p,00) and mo,_, = @)Ulooﬂ-on—l,kv € Q(0p-1,00)5
with fixed Whittaker functionals
A0y 0o € Homy, (1.0 (70,1 o0 » Pn00) \ {0}
and
A0p100 € HomNn71(koo)(7T0n—1,oo’ Yn—1.00) \ {0}.

Denote by 9,1 « the one-dimensional space of invariant measures on GL;,—1 (ko). Similar
to the local case at each archimedean place, we have an identification

My—1,00 = Whn—1.00 @ On—1,00
by push-forward of measures. Similar to (31), we have the normalized Rankin—Selberg integral
Z°(-5) € Homar, , (ew) (M0, @70,y .. ® [det]; " @ My 00, C).
In view of (59), we define a map Po o to be the composition of
Poo,0 = H(mo, o) © H(mo,_s )
= Hey ™ (GLo-1(keo) 30, 70,1 1) © D10
— Hey ™ (GL-1 (Koo)' My o) ® D10 = €,

where the first arrow is the restriction of cohomology composed with the cup product, and the
last arrow is the map induced by the linear functional

or, 1y. P~ *
Z ('? 5) * Tron,oo@ﬂ—onfl,oo - mnfl,oo'
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By the non-vanishing hypothesis that is proved in [Sun17], these modular symbols for all g, . €

—

Q(On,00) and mo,,_, .. € Q(0n—1,00) give the following non-degenerate pairings for all € € mo(kdo),
still denoted by

73OO,O : Hon,oo [6] X Honfl,oo {6] - C
We inductively define ry,, ., e by requiring that

Poojo(lionYW@ K/On—l,ooya) =1.
In general, we define
Kpe = Ju(“On,oo,s),
where
Ju s Moy o0 €] = Hule]

is the isomorphism induced by the local ones in Proposition 2.1.

6.2 Some actions of Aut(C)
Recall the additive character ¢ from (9). Denote by Ag the adele ring of Q. Fix a nontrivial
additive character of k\A as the composition of

Try g > YR ~x
¢:k\A—>@\AQ—>Q\AQ/Z:R/Z—>C , (61)

where Try g is the trace map, and Z is the profinite completion of Z. Write ¥ = ®,1,, where
¥, is a character of k, for each place v of k. By using 1), we define the character 1,, of N,,(A)
as in (11) (n > 1). Then we have a decomposition 1, = 1y, § ® ¥y o0, Where 1y, r and 1y, o are
characters of Ny, (Af) and Ny, (ks ), respectively. Here A ¢ denotes the finite adele ring of k so that
A=A xke.

For every o € Aut(C), put

tn,o = (tn,a,kv)vfoo € GLn(Af) (See (50))7

GLn(Af
Nn(Af)

f(9) == (f(tno-9)), (62)
where f € Indgi&(f{)@bn,f and g € GL,(Ay).

Let II; be a generic irreducible smooth representation of GL,(Ay), with a fixed Whittaker
functional

and define an action of Aut(C) on Ind )1/17% ¢ (the smooth induction) by

)\f e HomNn(Af)(Hf,¢n,f) \ {0}.

As before, we use Ay to realize Iy as a subrepresentation of Indﬁi&i}%f )Q,Z)n, > namely the Whittaker

model of IT¢. The rationality field of II;, denoted by Q(II¢), is the fixed field of the group of
field automorphisms o € Aut(C) such that 71y := o(Ily) = Il;.
Let II be an irreducible subrepresentation of A*(GL,, (k)\GL,(A)). If IT is cuspidal, then the

exponent of Il is defined to be the real number ex(II) such that IT ® \det\&ex(n) is unitarizable,
where |- |4 is the normalized absolute value on A.

We say that II is tamely isobaric if
I Indp Y (&5 &1L) - (cf. (15)), (63)

for a standard parabolic subgroup P of GL, with Levi subgroup Mp = GL,, x --- x GL,,,
and irreducible cuspidal subrepresentations II; of A*(GL,,(k)\GLy,(A)), i = 1,...,r, that have
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the same exponent. Here &; denotes the completed inductive tensor product (see [Tre67,
Definition 43.5]). We can view the right-hand side of (63) as a space of smooth automorphic
forms by using the Eisenstein series (see [Lan79, Proposition 2] and [GL21, §1.4.3] for more
details).

Suppose that II; and Il are the finite and infinite part of II, respectively, so that II =
Iy ® Il. Now we assume that II is tamely isobaric and regular algebraic (in the sense of [Clo90]
such that (1) holds). By the proof of [Grol8, Lemma 1.2] (see also [GL21, §1.4.3]), for every o €
Aut(C), °II; := o(Ily) given by (62) is the finite part of a unique irreducible subrepresentation
711 of A (GL,,(k)\GL,(A)). Moreover, °II is also tamely isobaric and regular algebraic.

Remark 6.1. More precisely, the above assertion holds when II is cuspidal and regular algebraic
by [Clo90, Theorem 3.13]. In general, if II is tamely isobaric as in (63) and is regular algebraic,
then

1@ &% = (ILh®; - - &) ® pp
is a regular algebraic irreducible cuspidal subrepresentation of A% (Mp(k)\Mp(A)), where pp :=
(5]13/ ? is the square root of the modular character dp of P(A). Then we have that

o1 1CLn(A) fom & A o -
I Indf ™ (O218 - B7F,) © ppl.

Recall that the rationality field of II is defined to be Q(II) := Q(ILf). Let Aut(C/Q(II)) act
on II; by (62). Tt is known that Q(TI) is a number field and (IT;)A"(C/QD) ig a4 Q(IT)-rational
structure of IIy (see [RS08b, Lemma 3.2]).

As in the introduction, suppose that F, is an irreducible algebraic representation of
GLy,(k ®g C) whose highest weight p = {u‘},ce, € (Z™) is pure of weight w, € Z so that

Al == b+ ph = w,  for all L € &.
Similar to the local case (8), we realize F), as the algebraic induction

GL, (k®Q(C)

_al
F,= aglndl—gn(k%c) Xps

and realize v, € F), as the N, (k ®g C)-invariant function that has value 1 at the identity matrix.
Then the generator vy € (F)Y)N(®20) is identified with the evaluation map at the identity
matrix. Similarly, F IY is realized as the algebraic induction

GLn(k(X)Q(C)
B (k®gC) X—#

vV _ al
F, ="%Ind
For every o € Aut(C), write
—1o
p=An" e
As a consequence of the purity lemma [Clo90, Lemma 4.9], 1 necessarily satisfies the condition
that (see [Grol8, Lemma 1.3])

p% = for all o € Aut(C) and ¢ € &.

Therefore, “u is also pure of weight w,. The rationality field Q(F),) is defined to be the fixed
field of the group of field automorphisms o € Aut(C) such that “u = p.
Let Aut(C) act on the space of algebraic functions on GL,(k ®g C) by

("f)(z) = o(f(07"2)) (z € GLa(k ®g C)), (64)
where Aut(C) acts on GL,,(k ®qg C) through its action on the second factor of k ®g C. Then
o(F,) = Fs and o(F)) = Fy,.
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Define
For every open compact subgroup Ky of GL,(Ay), the finite-dimensional representation F;Y

defines a sheaf on X,,/Ky, which is still denoted by F). Let H’m(X, /Ky, F)/) be the sheaf
cohomology group, and define

Homoe (X, FY) 2= HOmoo (X, FY) @ Do
= lim HP"> (X, / K g, ) @ O oo, (66)
Ky

where Ky runs over the directed system of open compact subgroups of GL,(A¢).

Note that ©,, o has a natural Q-structure. For every o € Aut(C), the map (64) induces a
o-linear map

ot M (X FY) — HOme (X, ). (67)
Put
GLy(A)" := QL (Ay) x mo(kX).

Then both the domain and codomain of the map (67) are naturally smooth representations of
GL,,(A)?, and the map (67) is GL, (A)*-equivariant.

6.3 Definition of the Whittaker periods

As above, II is an irreducible subrepresentation of A% (GLy,(k)\GL,(A)) which is assumed to
be tamely isobaric and regular algebraic. Fix the Haar measure on N,,(A) to be the product of
self-dual Haar measures on A with respect to ¢, as in (16). Then we have a nonzero continuous
linear functional

A€ HomNn(A)(Ha PYn), @ o(u) - Pn(u) du. (68)
N (k)\N7 (A)

By the uniqueness of Whittaker models, we have a factorization
A=A; @ Ao, (69)
where
Ay € Homy, (a,)(Iy, ¥ 5)
as before, and
Ao € Homy, (1) (T, ¥n,00)-

More generally, for every o € Aut(C), let “\ € Homy, (a)(°11, ¢) be the Whittaker functional
defined by the integrals as in (68). Similar to (69), we also have factorizations

M="T; Ty and A=\ © .

Recall that ?II; := o(II¢) is realized as a space of Whittaker functions so that Ay is realized as
the evaluation map at the identity matrix.

Suppose that F), is the coefficient system of II as in the introduction. Then Fb, is the
coefficient system of “II (cf. [Clo90, Theorem 3.13] and [Grol8, Corollary 1.4]) so that

H( Ta) := H> (RX\G Ly (koo ); FY, ® 1) ® Oy o0 # {0}
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Consequently, Q(F),) C Q(II). Put
H(7I) = Hep ™ (RE\GLa (koo) s ), @ 7I1) © Oy
Then we have the canonical isomorphism
tean Iy @ H(°Il) — H(°II).

Following [C1090, Lemma 3.15] and [Grol8, Proposition 1.6], we have a GL,,(A)%equivariant
embedding

ur 1y @ H(Iloo) = H(TT) — HPm= (X, FY). (70)

Let € € mo(kd) be the character ey, - sgné.’}‘”(”‘”” when n is odd, and be arbitrary when n

is even. Then we have a GL,,(A)%equivariant linear embedding
ure 1y @ H(Iloo)[€] = H(IT)[e] — HP™> (X, FY).
PROPOSITION 6.2. Let the notation and assumptions be as above. Then
dimgy,, (s (H(ID)[e], K™= (X, F))) = 1,
and for every o € Aut(C) the map (67) induces the following commutative diagram.

H(I)[e] —2s Hbnoo (X, EY)

Ul la
Lo'l'[,e

HETDfE] 2250 b (X, Fy))

Moreover, under the action given by the left vertical arrow of the above diagram,
(H(ID) [])AH(C/QUD) js 4 Q(II)-rational structure of H(II)[e].

Proof. The commutative diagram follows from [GL21, Propositions 1.19 and 1.21], and the fact
that the map (67) commutes with the actions of mo (k%) = mo(Kp,o0). The last assertion is implied
by Drinfeld-Manin principle (see [Clo90, Proposition 3.16]) and [Clo90, Lemma 3.2.1]. O

Remark 6.3. It follows from Proposition 6.2 that for every o € Aut(C), the central character
of Fz, ® (“I)e equals that of F/ @ Iy. Consequently, (°II)s is uniquely determined by o
and Il,. Specifying to the case that n = 1, we know that the infinite part of 7 x equals that of y,
for every finite-order Hecke character x : k*\A* — C*.

We equip H(IT)[e] with the action of Aut(C/Q(II)) given by Proposition 6.2. Write
I =TIy ® e = H(IT)[¢],

—

where € € mo(k) is identified with C as a vector space. We equip II* with the action of
Aut(C/Q(IT)) given by its action on II; as in (62) and its natural action on C.

LEMMA 6.4. There exists a generator
wips € Homgy,, () (I, H(TT)[e])

that is Aut(C/Q(II))-equivariant. Moreover, such a generator is unique up to multiplication by
scalar in Q(IT)*.
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Proof. Recall that (I19)A(C/QUD) i a4 Q(II)-rational structure of II% (see [RS08b, Lemma 3.2]),
and (H(IT)[e])Aut(C/QID) ig o Q(II)-rational structure of H(IT)[e] (Proposition 6.2). Let Q denote
the field of algebraic numbers in C. By the multiplicity one property of new vectors, the
Q-rational structure of II is unique up to homotheties (see the proof of [Clo90, Theorem 3.13],

and [Wal85, Chapter I]). It follows that IT and H(II)[¢] are isomorphic over Q. Since (I1#)Au(C/Q@)
is irreducible (as a smooth representation of GLj, (A)? over Q), Aut(Q/Q(II)) acts continuously
on the one-dimensional Q-vector space (with the discrete topology)

Homgy,, (44 ((Hﬂ)Aut(C/@)7 (H(II) [6])Aut(((3/@))_

This implies the existence of wp by [Spr98, Proposition 11.1.6]. The uniqueness is obvious. [
Fix wip as in Lemma 6.4. For o € Aut(C), put
SRS § | F®e.

The o-linear isomorphisms o : II* — °II% and

o:HI)[e] — H(°I)[e] (see Proposition 6.2)
induce a o-linear isomorphism

o HomGLn(A)h(Hu>H(H)[E]) - HomGLn(A)ﬂ(UHhaH(aH) [€])-

Using this isomorphism, we define

werts 7= o (o) € Home, (s (*TF, H(TTT) ).
Unraveling definitions, we have the following commutative diagram.

", H(ID)[e]

al l” (71)
oI T H(OTT) ]

Recall form §6.1 that the pairs (F,,v,) and (Ils, As) determine a generator k,. of
H(Il)[e] = Hule]. More generally, for every o € Aut(C), the pairs (Foy,vey,) and (“Ils, “Aso)
determine a generator ko, . of H(%Ily)[e] = Hoyle].

DEFINITION 6.5. For every o € Aut(C), the Whittaker period Q. (?II) € C* is the unique scalar
such that the following diagram commutes.

id@."ﬁoﬁ’g

My e ——— Iy @ H(Ilx)[e]
QE(GH)J/ chan (72)

Mye —, H( T [e]

Up to scalar multiplication by Q(II)*, the Whittaker periods defined above are independent
of the choice of the generator wy;. More precisely, we have the following lemma.

LEMMA 6.6. Let c € Q(IT)* so that wyy, = ¢~ wyp € HomGLn(A)u(Hh, ‘H(II)[e]) is another genera-

tor that is Aut(C/Q(II))-equivariant, which defines a corresponding family of Whittaker periods
{QL(7TD) } e aut(c)- Then for all o € Aut(C),

(D) D _ o

Q. (1) Q.(°T1)
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Proof. This is an easy consequence of the commutative diagrams (71) and (72). O
For every o € Aut(C), we define a o-linear map
0 - H(lloo)[e] — H(“Tloo )[] (73)
such that
0(Kpe) = Kope-
PROPOSITION 6.7. For all 0 € Aut(C), the diagram

My @ M) e gy me]

ol l" (74)

7 71'Lcan
Ty @ H( Tl [e] 2, (o) [e]

commutes, where the left vertical arrow is the o-linear map induced by the map o : Il — 1l
and the map (73).

Proof. This follows easily from (71) and (72). O

7. Modular symbols and proof of Theorem 1.2

7.1 Rankin—Selberg integrals
In this subsection, let II be an irreducible cuspidal subrepresentation of 4> (GL,,(k)\GL,(A))
(n>2), and let ¥ be an irreducible tamely isobaric subrepresentation of A*°(GL,_1(k)\
GL,—1(4)).

As in (68), we have Whittaker functionals

A € Homy,, (a)(IL,¢,) and N e Homy, _,(a)(3, ¥n-1)
defined by integrals, and as in (69), we have decompositions
A=Xf®@ A and X = /f®)\'oo,
with
A € HomNn(Af)(Hf,@bn,f), Ao € Homyy, ko) (Hoos Pnoo), T =11p @ I,
and
Ny € Homy, ap) (B, ¥n-1.p); Ao € Homy, (k) (Boor Yn-1,00); X = Xf @ B
Let x : k*\A* — C* be a Hecke character. Similar to (30), for each ¢t € C define a character
xe = x| [ s AX - ©X (75)
As usual, write
X = QuXo = Xf ®Xoo and Xt = Xft & Xoo,t-

Denote by 9,1 and 9,,_1 s the one-dimensional spaces of invariant measures on GL;,_1(A)
and GL,_1(Ay), respectively, so that

9nn—l = 9ﬁnfl,f & SD/tn—l,oo-
Similar to (31), we have the finite part of the normalized Rankin—Selberg integral
Z°(-, s, x¢) € Homgr,,_,a,)(f @ Xf ® Xf,5-1/2 @ My—1,7, C),
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and the normalized Rankin—Selberg integral at infinity
Z°(+, 8, Xoo) € Homgr,, (ko) (Moo ®Bso ® Xoos—1/2 @ Mu—1,00, C).
Define the global Rankin—Selberg period integral
Z(-,8,x) : IOL @ X512 @ My — C
by

0 s— _
Upweelom):= /GL (K)\GLn_1(A) SO( [g 1] ) -¢'(9) - x(g) - |det g[ Y2 am(g),
n—1 n—1

where p € I, ¢’ € &2, m € M,,_1 and m is the quotient measure of m. Here
RY = (MWw®Tw) ® (I @ Xf).

The following proposition reformulates the Euler factorization of Rankin—Selberg period
integrals established in [JS81b, p. 796, (7)].

ProrosiTION 7.1. For I, 3, x as above, and all s € C, the following diagram commutes.

ZO( ° 787XOC)®ZO( : 7S7Xf)

(Moo®300 ® Xog 51 @ Mn—1,00) @ (f @ Ty @ xp5_1 @ Myy—1,7) C

:l L(s,HxExx)l

o~ Z "9y
8T ® X1 @ My 26, C

7.2 Modular symbols and modular symbols at infinity
From now on, further assume that Il and ¥ are regular algebraic with balanced coefficient systems
F,, and F,, respectively, and assume that x has finite order.

Similar to (66) we have the following space given by sheaf cohomology with compact support:

HE™ (X, FY) 1= HE™ (X, FY) © Do

= lim He"™ (X /K, FY) © O oo, (76)
Ky

where Ky runs over the directed system of open compact subgroups of GL,(Ay). This is also a
smooth representation of GL,(A)? and we have a natural GL, (A)f-equivariant linear map

Lo HO (X, FY ) — HPe (X, FY).
Since II is cuspidal, there is a natural embedding
oy s H(ID) — H > (X, F;/)

such that ¢, o vy = v (see [Clo90, Lemma 3.15]).
Put

X1 = GLy_1(k)\GLy—1(A) /KO .
The embedding ¢ : GL,,—1(A) — GL,(A) given by (26) induces a proper map, still denoted by

1 anl - Xn»

which induces a map

0 H (X, FY ) = H (X, FY).
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The natural map g : /\Nf'n,l — X,,_1 induces a map
O HO1e (X, ) — HOm1e (X, FY).

Since £ := (u,v) is assumed to be balanced, by [Ragl6, Theorem 2.21] (see also [KS13,
Theorem 2.3] and [GH16, Lemma 4.7]) we have that

{j €Z : jis balanced for £} = {j € Z : % + j is a critical place of IT x ¥ }.

Recall that a half-integer % + 7 is a critical place of IT x ¥ if it is a pole of neither L(s, IToo X o)
nor L(1 — s, ITY, x ¥Y).
Let j be a balanced place for £. Define an algebraic character

0j 1= ®L€gkdetj
of GL,,—1(k ®g C). Put
H(x;) == HY (RF\GL—1(koo); 6/ ® xj) (see (75) for the definition of x;).
Then we have a natural injective map
) = B 1,5)).
With the notation as before, we have the generators
U/\; — ®Legkv,\fb c (FMv)Nn(k®Q<C) and  v) = ®,ce v € (F,/V)N"(k‘@@c).
Put F¢ := F, ® F}, and v := v; ® v,/. Recall from (37) the element
z = (2n, 2n-1) € GLy(Z) x GL,—1(Z) C GL, (k) x GLj,—1(k).
By Proposition 3.1, we have a unique element
¢¢j € Homar, ey (e ® 05, C)

such that ¢ ; (z.vg/ ® 1) = 1. Then ¢ ; induces a linear map

dnf o [ v dnf 0o [
Gej He" (X, FY) @ HO(X1,6)) — HE" 2 (X1, C).
Put
M,y = Mo1,f @ Do t,o0.

Note that X,_; /K¢ is an orientable manifold when Ky is a sufficiently small open compact
subgroup of GL,,_1(Af), and pairing with the fundamental class yields a linear map

/N L H& (B, C) @ — C.
anl

See [Mah05, §5.1] for more explanations.
In view of (59), define the modular symbol P; to be the composition of

Pj: HAD @ H(E) @ H(xj) @ My—1,5

®rs®;id
w} H oo (Xna F,L\L/) ® an—l,oo(Xnil, F;/) ® HO(anl, 5;/) ® mn—l,f

*® *® *®ld oo ~ ~ ~
T S M (X, Y ) @ MO (X, FY) @ HO(Xo1,6)) @ My

1906

https://doi.org/10.1112/S0010437X24007280 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007280

PERIOD RELATIONS FOR RANKIN-SELBERG CONVOLUTIONS FOR GL(n) x GL(n — 1)

id dn—1.00 7 %>
&) H. L, (anl,Ffv X 5;/) (029 anl,oo &® mn_Lf

¢ 7®d -1 .00 ~
S T (X, ©) @

fi}nfl

(77)
Recall that we have the normalized Rankin—Selberg integral at infinity
Z°(+, 8, Xoo) € Homgr,, (ko) Mso®T00 ® Xoo,5-1/2 @ Mn—1,00, C)
= Homer,, (o) (Moo @200 @ Xoo,s—1/2: M1 00);
where, as before, x stands for the dual space. Put
H(Xoo,j) : = H (RE\GLn-1(koo)®; 6} ® Xoo,j)
= Ho(RI\GLn—1(koo); Xoo - s80%),

where sgn . is given as in the introduction.
Analogous to the archimedean modular symbol defined in § 3.2, we define the modular symbol
at infinity, which is denoted by Py ;, to be the composition of

7)oo,j : H(Hoo) b2y H(Eoo) b2y H(Xoo,j)
— B (G (koo); (Mo B0 © Yooy) ® (FY ©6Y)) @ D100
— He ™™ (GLn1(koo) s 051 00) ® D100 = C,

where the first arrow is the restriction of cohomology composed with the cup product, and the
last arrow is the map induced by the linear functional

Z°( 3 + 4. Xoo) ® et (Moo®Fo0 ® Xooyy) ® (F @ 67) — My .

PROPOSITION 7.2. (Cf. [Mah05, (5.3)] and [Jan19, §4.6]) Let the notation and assumptions be
as above. Then the diagram

ZO( . 7%+j7xf)®7joo,j

Hr @@ xf; @ My—1,5 ® H(lleo) @ H(Zoo) ® H(Xoo,5) C
Lcanl L(%""ijXEXX)J(
’P.
H(T) @ H(Z) @ H(x;) @ M1 s —

commutes, where the left vertical arrow tc,, is the natural isomorphism.

Proof. Define qn o0 := (g, (koo)/(R @ £y 00)) ®r C. We have a map

(/\bn,ooqmoo)* ® (/\bnfl,ooqnil’oo)* N w:;—l,oo — /\dn—l,oo ((g[n—l(koo)/enfLoo) R (C)*

induced by restriction. By the identification of continuous cohomology and relative Lie algebra
cohomology [HM62, Theorem 6.1], as well as the explicit determination of the relative Lie algebra
cohomology [Wal88, Proposition 9.4.3], we have that

)K

0 ~
H(Moo) = (A" n,00)" @ T @ FY) "™ @ O o

and

)

H(Eoo) = (A 221 00)* ® oo ® FY) 71 © D, oo
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By definition of Py ;, the top horizontal arrow of the diagram is identified with the composition of

)

I @S @ X7 @M1 @ (A Gno)” @ Too @ FY) ™% @ Dy

)

® ((/\bn_l’ooqn—l,oo>* ® Yoo @ FI>/ R 55%—1,00 ® 6;/ ® Xoo,j

restriction

I @55 @ xsj @ Mp1,f Owh_1 0o @ Mee®T00 ® FY ® Ono100 @ 6 @ Xoo,j
=y @S @ x5 @ Mu—1,5) © (Moe®To ® Xoo,j @ Mn—1,00) @ (F @ 67)
- C,

where the last map is given by

Z°(, 5 + 3. xf) ®Z°(, 5 + 5, Xoo) @ g 5.

Using fast decreasing differential forms as in [Bor81, §5.6], the bottom arrow of the diagram is
identified with the composition of

)

((/\bn,oo qn7oo)* ® I ® F})/ ) ﬁn’oo

K9 =
® (A" gp1,00) @ L@ F)) "1 @ D100 ® 0 @ X; @ M1y

restriction *

Wh 100 ONRE @ F @ On_1,00 ® 0 @ xj @ M1y
= (IR ® x; ® My_1) ® (FY ®6))

Z(,541,x)®¢, ; C
PRIt N o}

The proposition then follows from Proposition 7.1. O

7.3 Two commutative diagrams
For every o € Aut(C), we note that the infinite part of (“x); coincides with xo j. Denote the
corresponding modular symbol at infinity by

a’PooLj : H(U]:[oo) ® H(Uzoo) ® H(XOO,]) — (C,
and introduce the normalized modular symbol at infinity

TPSj =, “Peoj, where Q) ;= H Q (78)

g |RZN
v]oo

In particular, we have the normalized modular symbol at infinity

Pgo,j = Q, POO,_]

g
As in (73), we have a o-linear isomorphism
0:H(lly) — H(Il)

such that

—

0(Kpe) = kope for all e € mp(kZ) that occur in H(I1y).
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We have a similar o-linear isomorphism
0:HXxw) = H( ),
as well as a o-linear isomorphism
0 : H(Xoo,j) = H(Xoo,5)
such that o(1) = 1. By tensor product, we get a o-linear isomorphism
0t H(lloo) @ H(Xoo) ® H(Xoo,j) = H(“Hoo) @ H(Eoo) ® H(Xoo,5)-

PROPOSITION 7.3. For all o € Aut(C), the following diagram commutes.

o

Poo,j
H(Hoo) ® H(Eoo) ® H(Xoo,j) —

al la (79)

o ple}

PO
H(UHOO) ® H(Uzoo) ® H(Xoo,j) R C

Proof. Let Iy, ., = ®v|OOH0n,kU and Yo, _, = ®U|m20n_l’kv be the cohomological representa-
tions (as in § 2) of GLj, (ko) and GL,,—; (ko) that have trivial coefficient systems and respectively
have the same central characters as that of F) ® Il and F)/ ® Yo

Applying Theorem 3.2 for all v|oco, we obtain the following commutative diagram.

Q1,5 Poo,j

H(Too) ® H(Zoo) @ H(xooy)  —22% C
JM®Ju®idT H (80)
H(llo, ) @ H(So, 1) @ Hxwy)  —  C
This easily implies the proposition. ]
Pick an element y = (yu)yto0 € A; such that
(V) = Yo - ¢(xo) for all v{oo.
Define the Gauss sum
G(x) =G0 v, y) = [[ 90xw: ¥os ), (81)

vfoo

where G(Xu, ¥u, Yv) is the local Gauss sum given by (53). Similarly, pick an element y' = (y;,)vto0 €
A? such that

C(wv) = yqu . C(sz) for all v 1’ 0,

and define the Gauss sum

g(XZ) = g(XEa d)ay,) = H g(xzm ¢v7y;) (82)
vfoo

Here we write ¥y = ®;{OOZU as usual, and xy and xy, denote the central characters of ¥ and

>y, respectively. More generally, we have the Gauss sums

g(OX) = g("x,y),y) and g(X"E) = g(X”Ea’(vb?y,)v

where yox. denotes the central character of 7X.
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Similar to (56), for all s € C we have a o-linear isomorphism
oIy @Y @ Xpe-1/2@Mp_1,p — T @78 @7(Xfs-1/2) @ Mp_1,5-
Note that 7(xs—1/2) = (“X)f,s—1/2 When s € % + Z.

PROPOSITION 7.4. For all sy € 1 +Z and o € Aut(C), the following diagram commutes.

n(n—1)
G(x=)G(x)™ 2 Z°(,80,Xx5)

@%@ Xpe-1 @My C

di |

n(n—1)
G(xox)G(7x) “Z°(,80,7Xf)

C

Iy @7 @7 (Xpgp-1) @M1 g

Proof. Write I1; = ®'D+OO
Rptootvs Ap = @ypeo Ay, and assume that

II, as usual. By the uniqueness of Whittaker functionals, we write Ay =

Ao(en) = Ay (er) = 1

for all but finitely many v { oo such that II, and ¥, are unramified, where e, € II, and €, € %,
are the spherical vectors used in the definition of the restricted tensor products IIy and . For
places v as above, if moreover x,, is unramified and v, has conductor O, then it is known that
(see [JS81a, Proposition 2.4])

7°(ey ® €y @My 11,8 Xu) = 1,
where m;)z—l,kv € M,—1x, is the Haar measure on GL,,—1(k,) such that a maximal open compact
subgroup has total volume 1. The proposition then follows from Proposition 5.1. ]
In analogy to (78), for the finite part we introduce
TP = G(xen) - GT)" V200 4 + 5,7 xg).
Specifically, we have

Piii=G(xs)-GO)" "2 5+ Goxg).

Then Proposition 7.4 can be rephrased as the following commutative diagram.

o

po
M @%@ x5, @My y — C

al lo (83)

@78 @ (xpy) @ Myry —2L C

7.4 Proof of Theorem 1.2
As in (77), we have the modular symbol map

P, H(TT) @ H(TS) @ H(%x;) @ Myt — C.
Put
ors  LE+7,Tx7TxX)
T Qo . g(X“Z) X g(ox)n(n—l)/2'

Vs
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Then by Proposition 7.2 the following diagram commutes.

P19 oo,

M @78 @ 7(xfj) @M1, @ H( o) ® H(7¥s0) @ H(Xoo,5) C

o7 *
Lcan J/ l Lj

U’]D.
H(O) @ H(°E) @ H(Ox;) @ My 1 5 — C

We are now ready to prove Theorem 1.2. It is clear that (3) is a consequence of (4), and we will
prove the latter. To save space, denote the subspaces of my(kX )-fixed vectors in the two spaces
in the left vertical arrow of the last diagram by H(IL,7%,7x, j)ioc and H(?IL, 7%, %X, ) glob,
respectively, so that the last diagram reads as follows.

U]___[ G'E o . JP;J(X)UPSOJ
H( ) ) Xa.])loc

LcanJ/ l“ L;f (84)

. U’P
H(UHaazaaXunglob s

By (74), we have a commutative diagram
H(L S, X, Hioe —— H(TLTE, X, ioc
Ot | [ 7253 s (85)
H(TL S, X, j)gob. —— H(7TL 7, 7X, )glob

where the top horizontal arrow is the tensor product of the left vertical arrows in (79) and (83),
and for short we write

Q(]) = Q&n (H) : anfl(z) and UQ(]) = Qan (UH) . an,I (JZ)

It is well-known that the global modular symbol is Aut(C)-equivariant (see [RaglO,
Proposition 3.14]), that is, the following diagram commutes.

. Pj
H(H727X7])glob — C

Ul la (86)
. 7Pj
H(Unv UZ? UX7 ])glob — C
Since 2, ,; and Q. only differ by a sign, (4) is equivalent to the equation
12212V v,
(5)-
Qi) Qg

which amounts to the commutativity of the following diagram.

c 225 ¢C

L; J{ JL;T 87
) l”“m (87)

c -5 ¢C

Here
L3+ xS x x)

-G(xz) - Gx)nn—/2

*

L] = Q, .
ILL7V7.]
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The commutative diagrams (84), (85) and (86), together with (79) and (83), give us the
following diagram

P QP2
. £ 0,
H(H727X7])loc - d

\ o
PRSP,
H(0H70270X>.7)10c - C
1 L*
2} tcan -
o - 7 L*
Q(ji-Lcan ’PJ UQ(]>
H(H7E7X7.j)glob C
o
o
UP,
H(7IL 78,7 X, J)glob : C,

where all squares are commutative except (87). This forces (87) to be commutative as well. This
proves (4), hence finishes the proof of Theorem 1.2.
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