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Abstract
We investigate the effect of water quality on the educational outcomes of children aged 8–11
in 39 districts in five states in theGanges Basin of India. Using data from theCentre for Pollu-
tion Control Board of India and the Indian Human Development Survey (IHDS) 2011–12,
we study the effect of water quality in the Ganges Basin on the performance in three test
scores. Our evidence suggests that faecal coliform levels in water sources above safety thresh-
olds negatively affect reading and writing test scores. The effects of Nitrate-N and Nitrite-N
in the water appear to be weaker compared to those of faecal coliform. The results establish
that water pollution caused by excessive presence of faecal coliform is an important environ-
mental factor in determining educational outcomes of children.High levels of faecal coliform
in the water could be lowering cognitive abilities of the pollution-affected children through
the channel of waterborne diseases.
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1. Introduction
The Ganges spans approximately 26 per cent of India’s territory and sustains nearly half
of its population (Chakraborti et al., 2018). Despite its importance, it is becoming one
of the world’s most polluted rivers due to growing population, industrialisation, and
urbanisation (Chaudhary and Walker, 2019). Urban areas near the Ganges saw a 30
per cent population increase from 2001 to 2011, which likely worsened the pollution
(Government of India, 2011). Consequently, the pollution in the Ganges not only harms
the environment but also poses significant health and economic consequences for the
people living nearby (Das and Birol, 2010; Khan et al., 2016; and others).

Many studies show that polluted water threatens public health and economic well-
being. The Ganges, a key water source, is among the world’s most polluted rivers
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(Chaudhary andWalker, 2019). Pollution can affect children’s physical growth and cog-
nitive development, as water filters may not remove all pollutants. This paper explores
how pollution in the Ganges Basin affects the education of children aged 8–11 across 39
districts. Long-term exposure to pollution could impair cognitive abilities, potentially
leading to lower educational achievements (Dewey et al., 2023). We use data from the
Central Pollution Control Board (2012a) and the 2011–12 wave of the Indian Human
Development Survey (Desai andVanneman, 2012) to analyse how organic and inorganic
pollutants impact children’s test scores. We focus on the effects of faecal coliform and
Nitrate Nitrogen+Nitrite Nitrogen on children’s reading, maths and writing abilities.
For brevity, wewill refer toNitrateNitrogen+NitriteNitrogen asNitrate-N+Nitrite-N
henceforth.

Originating from the Gangotri glacier in Uttarakhand, India, the Ganges flows
2,525 km across five states to the Bay of Bengal. It is essential for drinking, cooking and
irrigation. However, pollution from sewage, industrial waste and agricultural runoff –
exacerbated by population and industrial growth – poses a significant challenge. A
recent report indicates that 764 industries release 500 million litres of wastewater into
the Ganges daily.1 Heavy metals in the water can cause kidney damage and cancer
(Lellis et al., 2019). Furthermore, long-term consumption of water with heavymetal con-
tent has been shown to impair cognitive function, according to several studies (Siegal and
Share, 1990; Tolins et al., 2014; Tyler and Allan, 2014). Nitrates and antibiotic-resistant
bacteria in the water also pose health risks (Quist et al., 2018; Adimalla, 2020). This study
examines the impact of faecal coliformandNitrate-N+Nitrite-Non children’s cognitive
abilities and educational outcomes, establishing an association between polluted water
in the Ganges and lower test scores.

Religious activities such as ritual baths, idol immersion, and cremation add to the
Ganges’ pollution, increasing heavy-metal levels and the river’s biochemical oxygen
demand (BOD), often exceeding theCentral PollutionControl Board (CPCB) standards.
During theMaha Kumbh festival, studies of the Ganges water show that suchmass gath-
erings significantly raise BOD, total suspended solids, and ammonia nitrogen beyond
safe limits for outdoor bathing. The water also shows high levels of faecal and total
coliforms, leading to more water-borne diseases (Tyagi et al., 2013).2

Several studies have shown that the water quality of the Ganges is unsuitable for
drinking and bathing at many monitoring points (Mariya et al., 2019). This can pose a
higher risk to human health (Chaudhri and Jha, 2012), and can potentially lead to lower
cognitive abilities through the channel of health deterioration. When it comes to educa-
tional outcomes of children in the context of developing countries, researchers are more
interested in socioeconomic and household conditions as determinants of children’s
education (Nambissan, 2009; Chaudhri and Jha, 2012). A growing literature provides
evidence that exposure to pollutants, especially air pollutants, leads to lower educational
outcomes in the US (Sanders, 2012; Rosofsky et al., 2014; Ebenstein et al., 2016; Roth,
2017). However, to the best of our knowledge, this is the first research that specifically
examines the negative impact of poor water quality on educational outcomes in the
context of a developing country like India.

1See ENVIS Centre on Control of Pollution Water, Air and Noise (CPCB) (2023) for more.
2FiguresA1,A2 andA3 in the online appendix respectively depict Indian states theGanges flows through,

and the pollution intensity from faecal coliform andNitrate-N+Nitrite-N in areasmonitored by the CPCB,
including the Ganges and its tributaries.
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This paper investigates the understudied area of pollution’s impact on education
in developing countries such as India. Water pollution leads to both immediate and
long-term health issues, including negative effects on cognitive development from pro-
longed pollution exposure. Increased population density in polluted areas further exac-
erbates these effects, reducing children’s cognitive abilities. Despite its importance, such
research is limited, often overshadowed by urgent issues like child mortality. Moreover,
while the discourse on environment and development prioritizes health and the reduc-
tion of child mortality, interest in educational outcomes often takes a backseat. Some
studies that explored only the environmental and health outcomes were conducted after
pollution control laws like the Ganga Action Plan were implemented (Dwivedi et al.,
2018). The lack of data for long-run health and cognitive outcomes is another hur-
dle in researching the connection between water pollution and children’s educational
outcomes.3

2. Data
To examine the relationship between the water quality of the river Ganges and children’s
educational outcomes, we merge two types of data: (1) household survey data, which
provides information on children’s educational outcomes, and (2) water quality data,
encompassing various measures of water quality.4 Below, we detail both data sources
and describe the variables employed to estimate our empirical model.

2.1 Indian human development survey
The source of the household survey data for this paper is the Indian Human Develop-
ment Survey (IHDS), a nationally representative dataset.5 For this paper, we use the
second round of the survey, conducted between November 2011 and October 2012.
In this round, 42,152 households across 1,503 villages and 971 urban neighbourhoods
throughout India were interviewed. While the first wave took place in the 2004–05
period, data from both the base year and the second round cannot be combined for this
study because educational outcomeswere onlymeasured in the second round.Most chil-
dren surveyed were at most two years old during the 2004–05 period and not suitable
for educational aptitude testing. Data on various socioeconomic characteristics, such as
individual health, household employment, and income, along with school facilities and
staff, were collected. The interviews utilised two sets of questionnaires: one on income
and social capital, typically answered by the male head of the household, and another

3Despite India’s long history of environmental protection laws, such as the Water (Prevention and
Control of Pollution) Act of 1974, the Air (Prevention and Control of Pollution) Act of 1981, and the
Environment (Protection) Act of 1986, the country has continued to face challenges in enforcing pollution
standards (Greenstone and Hanna, 2014). The CPCB and the State Pollution Control Boards (SPCBs) were
established, and the government of India has adopted several environmental protection regulations over
the past few decades. A landmark verdict by the Supreme Court in 1984, known as M.C. Mehta vs. Union
of India, significantly reduced Ganges pollution and led to a decrease in neonatal mortality rate (Do et al.,
2018). This case marked the beginning of various initiatives aimed at cleaning the river. Following this, in
1985, the Ganga Action Plan was initiated to control water pollution in the Ganges, and it was subsequently
expanded into the National River Conservation Plan, encompassing other rivers in India.

4District names serve as the common geographic identifiers between these two data sources.
5This dataset is made publicly available by Desai and Vanneman (2012). The IHDS is a biennial

household panel survey.

https://doi.org/10.1017/S1355770X24000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X24000123


4 Md Ohiul Islam and Moumita Ghorai

on education and health, answered by an ever-married woman. The collected data are
organised into fourteen modules, of which the Individual, Household, and School Facil-
ities modules are used for this study.6 After merging the data and excluding missing
values, we retain 1,147 observations for children aged 811 living in 39 districts across
five states in the Ganges Basin, where water quality was monitored.7

2.2 Water quality data
We gathered water quality data for the districts in the Ganges basin for the years 2012
and 2013, drawing from the CPCB (2012a) database. This database operates under the
Ministry of Environment, Forest, and Climate Change of the Indian Government.8 The
CPCB selects monitoring points along rivers or near water bodies (lakes and groundwa-
ter sources) that likely exhibit varying levels of key pollutants and potential turbidity.
Monitoring points within districts along a river are sometimes categorised as either
upstream or downstream fromwell-known locations.With eachmonitoring point’s spe-
cific location provided, we identify the nearest district to each point. For instance, if a
monitoring point is in a river, we assign it to the district situated directly on the river-
bank. Most districts in our sample are located by a river, on the banks of the Ganges
and/or Yamuna, or along their tributaries.9

Pollution data was collected quarterly and monthly at these monitoring points, with
CPCB publishing yearly averages for minimum, mean and maximum levels of each
water quality indicator. For example, at a specific monitoring point j at time t = 1,
the CPCB calculates the minimum, mean and the maximum levels of faecal coliform,
Fmax,1,j, Fmean,1,j, and Fmin,1,j, respectively. By averaging these measurements over total
T periods, they create (

∑T
t=1 Fmax,t,j)/T, (

∑T
t=1 Fmean,t,j)/T, and (

∑T
t=1 Fmin,t,j)/T. If

a district has J monitors – the monitor index being j = 1, 2, 3, . . . , J – and if data was
collected by CPCB at T times in 2012, then we calculate the district mean of faecal col-
iform as (

∑J
j
∑T

t=1 Fmean,t,j)/(T × J). We use this averaging scheme for each district.
Compared to the average maximum and minimum levels of pollution exposure, repre-
sented by (

∑J
j
∑T

t=1 Fmax,t,j)/(T × J) and (
∑J

j
∑T

t=1 Fmin,t,j)/(T × J) respectively, the
overall mean pollution level (

∑J
j
∑T

t=1 Fmean,t,j)/(T × J) more accurately indicates the
level of pollution to which the sample respondents were most frequently exposed. The
minimum and maximum readings from the monitoring points may reflect infrequent
dips and spikes in pollution, not necessarily representing the regular exposure levels for
children. Since CPCB provides only minimum and maximum readings at each moni-
toring point but not their frequencies, we decide to use only the mean pollution levels
from the monitoring points to calculate (

∑J
j
∑T

t=1 Fmean,t,j)/(T × J), the district-level

6Individual, Household, EligibleWomen, Birth History, Medical Staff, Medical Facilities, Non-Resident,
School Staff, School Facilities, Wage and Salary, Tracking, Village, Village Panchayat, Village Respondent.

7The merged data comprise 204,575 household members from 42,152 households. Of these household
members, 27,670 are under the age of 12. Maths, reading, and writing tests were administered to 11,749
individuals under 12. After removing around 100 missing values in control variables, we are left with 1,147
children in our analysis. These children reside in districts near the Ganges, Yamuna, or their tributaries
within the Ganges Basin, where CPCB monitored various water sources.

8Total coliforms organism and faecal coliform are very similar indicators. We only use faecal coliform in
this study.

9Five districts in our sample had the Ganges or Yamuna flowing through them. In two districts, Jhansi
and Gaya, the CPCB monitored only groundwater and lake water.
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pollution measure. District-level means of the other water quality variables have been
calculated in the same way.

We primarily use water quality data from 2012, supplementing it with 2013 data to fill
any gaps. Missing readings for certain monitoring points in 2012 could potentially bias
the computation of average water quality variables. To address this, we impute missing
values using their 2013 counterparts. We found that readings from monitoring points
available in both years were consistent, with no cases of monitors shifting from benign
pollution levels in 2012 to hazardous levels in 2013. Therefore, we are confident that our
approach to handling missing data ensures the reliability and representativeness of the
actual pollution levels.

2.3 Descriptive statistics
Table 1 displays mean values for key variables, with each column representing a sample
based on the type of water source monitored for pollution. For instance, the averages
in the first column are derived from data on children in districts where river water was
monitored. Column 7 in table 1 shows variable means for the full sample of 1,147 chil-
dren. In some districts, more than one type of water source was monitored. According
to columns 1 and 2 in table 1, mean faecal coliform andmean Nitrate-N+Nitrite-N lev-
els are higher in the ‘river’ and ‘Ganges’ samples compared to ‘Yamuna’, ‘groundwater’
(GW) and ‘Tributaries’ (Trib.). The main binary variables of interest are district-average
1[Mean faecal Coliform > 2, 500 MPN/100 ml] and 1[Mean Nitrate − N + Nitrite −
N > 1mg/1 L]. For simplicity and to save space, we express these variables as 1[FCOLI >

limit] and 1[NIT > limit] using Iverson notation, respectively.10
Table 1 displays significant variations in the average values of water pollution mea-

sures. For example, the highest mean faecal coliform level is observed in the ‘Lake’
sample, while the ‘Ganges’ sample records the highest mean levels of Nitrate-N+
Nitrite-N. Conversely, the ‘Yamuna’ sample, shown in column (3), has the lowest lev-
els of both mean faecal coliform and mean Nitrate-N+Nitrite-N, coinciding with
the lowest mean test scores. These patterns indicate a possible link between higher
district test scores and elevated levels of pollutants, possibly because urban districts,
despite higher pollution, often have access to better educational resources and means
to counteract water pollution effects. Hence, the descriptive data in table 1 alone can-
not comprehensively evaluate pollution’s negative impact on test scores. A detailed
analytical model is essential to pinpoint the impact of pollution exposure on test
scores.

Our study focuses primarily on district-mean levels of faecal coliform and Nitrate-
N+Nitrite-N as the main water pollutants, rather than on other pollutants for which
data are available. Other water quality metrics, such as biochemical oxygen demand

10The bars over FCOLI andNIT denote that they representmeans. The term ‘limit’ is used to indicate their
respective safe levels. Both variables indicate if the respective pollution amounts are above individual accept-
able limits. The IndianCPCB (2012b) sets the acceptable limit of faecal coliformat 2,500MPN/100ml,where
MPNmeans ‘most probable number’. Its limit is set at 2,500MPN/100ml by the IndianCPCB (2012b). They
inspected whether, in 100millilitres of water, themost probable count of coliform colonies was above 2,500.
The data from the Indian CPCB (2012a) does not include a limit for NITRATE- N+ NITRITE-N (mg/l).
The World Health Organisation (2011) provides separate safety limits for Nitrate-N and Nitrate-N, which
are 10mg/l and 1mg/l, respectively. Using the 1mg/l limit, the more restrictive of the two limits, we cre-
ate the binary indicator 1[NIT > limit]; the value 1 indicates that the NITRATE-N+NITRITE-N level has
exceeded 1mg/1.
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Table 1. Analytical sample means of key variables

(1) (2) (3) (4) (5) (6) (7)

Variables River Ganges Yamuna Lake GW Trib. All

Mean faecal coliform (MPN/100ml)a 2.27 2.44 0.06 6.25 1.69 1.77 1.15

Mean Nitrate-N/Nitrite-N (mg/l) 1.13 1.22 0.34 0.49 1.05 0.65 0.89

Mean biochemical oxygen demand (mg/l) 4.23 3.77 5.88 7.53 3.61 4.68 4.86

Mean dissolved oxygen (mg/l) 7.08 7.29 6.27 6.15 7.00 6.94 6.96

Mean pH 7.75 7.78 7.57 7.71 7.67 7.62 7.66

1[Faecal coliform> 2,500MPN/100ml] 0.84 0.83 1.00 0.84 0.68 0.59 0.72

1[Nitrate−N+Nitrite−N> 1mg/l] 0.22 0.24 0.00 0.18 0.35 0.30 0.27

1[BOD>3mg/l] 0.57 0.53 1.00 0.63 0.40 0.33 0.43

1[DO<4mg/l] 0.25 0.19 0.49 0.44 0.21 0.23 0.23

1[pH<6.5mg/l or pH>8.5mg/l] 1.00 1.00 1.00 1.00 1.00 0.95 0.96

Reading test Z-score 0.16 0.21 −0.12 0.32 0.19 0.13 0.13

Maths test Z-score 0.19 0.23 −0.09 0.45 0.26 0.21 0.20

Writing test Z-score 0.17 0.22 −0.12 0.43 0.22 0.18 0.16

Age 9.51 9.53 9.51 9.59 9.52 9.49 9.48

Sex – 1 if Male 0.49 0.50 0.53 0.55 0.52 0.53 0.52

1 [Majority religious group] 0.52 0.53 0.64 0.56 0.48 0.51 0.53

Anthropometry – height (cm) 128.06 128.15 129.00 126.43 126.60 126.32 127.13

Anthropometry – weight (kilograms) 25.73 25.87 25.30 26.36 25.63 25.17 25.32

1[HH expenditure�25th ptile]b 0.23 0.25 0.27 0.17 0.27 0.27 0.25

1[HH expenditure�50th ptile] 0.45 0.46 0.48 0.39 0.53 0.54 0.50

1[HH expenditure�75th ptile] 0.69 0.70 0.70 0.68 0.77 0.88 0.75

School distance (kilometres) 1.56 1.57 1.66 1.99 1.56 1.53 1.57

School hours/week 30.73 30.73 33.64 27.7 29.40 29.44 30.13

Private tuition hours/week 3.86 4.06 1.23 5.33 5.12 4.62 4.11

Books uniform cost (thousand Rs.) 0.89 0.88 1.26 0.99 0.65 0.73 0.84

Short-termmorbidity (days) 1.22 1.28 1.01 1.01 1.01 0.96 1.08

1[Water is purified in HH]c 0.10 0.11 0.05 0.15 0.09 0.77 0.09

1[HH has indoor piped water supply] 0.15 0.16 0.07 0.23 0.11 0.90 0.11

1[HH has water drinking vessel] 0.71 0.69 0.76 0.76 0.70 0.68 0.71

1[Always handwash]d 0.75 0.72 0.76 0.77 0.75 0.69 0.72

N 576 532 155 206 769 738 1,147

Notes: Columns (1) to (7) show variable means for district groups by water source type monitored in 2012. Columns (1)
to (6) (detail specific sources: Ganges and Yamuna (1), only Ganges (2), only Yamuna (3), lakes (4), groundwater (5), and
tributaries (6), with column (7) combining all districts.
aMean faecal coliform (MPN/100ml), reported in millions.
bHH expenditure: Household per capita expenditure.
cHousehold purifies water by boiling, filtering, aquaguard, or chemicals.
dMembers of the households always wash hands after defaecation.
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(BOD), dissolved oxygen level (DO) and pH, are not classified as pollutants, though
they do assess water quality.11 We incorporate these metrics as control variables in our
model. It is important to note that BOD andDO levels do not consistently correlate with
the levels of our primary pollutants of interest. Typically, higher BOD levels and lower
DO levels are observed in more turbid water, which may coincide with higher levels
of faecal coliform and Nitrate-N+Nitrite-N (Ahipathy and Puttaiah, 2006). However,
the absence of undesirable BOD and DO levels does not necessarily mean the absence of
unsafe levels of faecal coliform andNitrate-N+Nitrite-N. For instance, table 1 indicates
that the groundwater sample exhibits relatively fewer occurrences of undesirable BOD
andDO levels, yet themean faecal coliform level in these districts is very similar to that of
the full sample. In addition, in districts adjacent to the Yamuna River where BOD levels
exceed preferred thresholds, Nitrate-N+Nitrite-N levels do not reach hazardous levels.
Thus, BOD and DO levels do not always serve as accurate indicators of pollution. Lastly,
the pH level exhibits minimal variation across the samples mentioned in columns 1 to 7
of table 1.12 All these samples, along with almost all districts in ‘tributaries’ and the full
sample, maintain high but safe pH levels. Consequently, overall pH levels do not present
a significant risk to the cognitive abilities of children.

In table 1, individual characteristics such as age, gender, height, weight, and fam-
ily consumption expenditure show only marginal variation across the monitored water
source categories. Interestingly, the proportion of households with indoor piped water
supply and those purifying water vary between 0.05–0.77 and 0.09–0.77, respectively.
Handwashing after defecation is a critical preventive measure against many diseases
(Curtis and Cairncross, 2003), and the proportion of households consistently practicing
this varies narrowly from 0.69 to 0.77. Table A2 represents variable means for samples
that are exposed to unsafe levels of faecal coliform and Nitrate-N+Nitrite-N. Table A3
includesmeans of additional variableswe use as controls. Note that all tableswhose num-
bers are preceded by ‘A’ appear in the online appendix, in whichwe provide explanations
of the table contents below the tables as needed.

For regression analysis, we employ binary measures of the water pollutants,
1[FCOLI > limit] and 1[NIT > limit]. Using binary variables offers three distinct
advantages. First, they enable a clear distinction between the districts experiencing
unsafe pollution levels and those that do not, based on the established safety limits for
pollutant concentrations. Second, understanding the estimated effect of the binary vari-
ables that signal unsafe pollution levels in districts does not rely on pollution changing
by a certain amount; there was notmuch difference in pollution levels from 2012 to 2013.
Also, minute fluctuations, like a oneMPN increase in faecal coliform in 100ml of water,
are unlikely to make noticeable differences in test scores, making the estimated effect
of the one-unit hard to interpret. Lastly, identification of the effects of pollutants in a
regressionmodel can be challenging at extremely high values of the pollution-measuring
continuous variables. This complexity arises because districts with the most significant
river pollution are often both densely populated and economically advanced. It is easier

11BOD indicates the oxygen consumed by microorganisms. When more microorganisms are present in
the water, decomposing waste matter and propagating, dissolved oxygen levels decrease. Consequently,
these two variables are highly correlated (Jouanneau et al., 2014).

12pH measures the acidity or alkalinity of water, with the scale ranging from 0 to 14. Values below 7 are
acidic, and values above 7 are alkaline. Water with very low or high pH may indicate chemical or heavy
metal pollution (U.S. Geological Survey, 2019).
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for such districts to insure themselves against high levels of pollution by establishing
superior water filtration systems.

We examine the educational outcomes of children living in Ganges Basin districts,
focusing on areas wherewater sources weremonitored for pollution. The survey assessed
children’s reading, writing and arithmetic skills through tests administered to all eligi-
ble children aged 8–11 in each household. As indicated in table 1, the test scores are
considered continuous variables, with a comprehensive description provided in table
A4.13 These tests, developed in collaboration with researchers from PRATHAM,14 were
pretested to ensure they were comparable across various languages. This method allows
us to analyse the educational performance of school children in different states, accom-
modating the diverse languages used as mediums of instruction. Despite each Indian
state having its unique school curriculum, PRATHAM’s tests remain consistent across
the board. The standardisation of test scores enables us to assess the impact of pollution
exposure on children’s average position within the test score distribution.

3. Empirical model
The empirical model examines the effect of water quality on test scores (equation (1)).
The analytical sample contains unique children i= 1, 2, 3. . .n living in k= 1, 2, 3,. . . , K
districts,

Zik = αik + W′� + X′� + χk + εik, (1)

whereW is the vector of water quality variables and their values vary between districts,
X is a vector of Xik control variables, and χk are district dummy variables. We use the
same right-hand-side variables for each test outcome, Zik. Themain treatment variables,
1[FCOLI > limit] and 1[NIT > limit], vary only between districts and not within each
district. Our baseline model uses random intercept regression. εik is the individual-level
error term and Zik indicates our set of dependent variables are nested within clus-
ter k, with each district representing a separate cluster. Since 1[FCOLI > limit] and
1[NIT > limit] vary between districts, we can interpret the coefficient estimates of these
two variables as the average decline in the children’s position within the test score distri-
bution due to exposure to district-level pollutants.15 We include district-mean pH, and
binary indicators of BOD and DO in the vectorW from equation (1).16

13When adding more control variables to test the robustness of our primary estimates, treating scores
as ordinal or binary variables causes convergence issues in multinomial logistic/probit model estimations.
Similar to our method, studies by Chudgar and Quin (2012) and Singhal and Das (2019) also consider test
scores as continuous in their OLS model estimations, indicating that this approach does not compromise
the insights gained.

14The tests were available in multiple languages. PRATHAM is a non-governmental organisation that
supports social science research.

15For example, let us assume that the estimated effect of 1[FCOLI > limit] is statistically significant at
−0.015 on maths test scores, which means that living in a district with unsafe levels of faecal coliform in its
water sources causes the district’s children to experience, on average, a drop of 0.015 standard deviations in
theirmaths test score distributional position, effectivelymoving them to the left by 0.015 standard deviations
in the score distribution.

16Only results in tables 2, 3 and 4 include mean BOD. Including both BOD and DO measures in regres-
sion specifications results in these variables’ coefficient estimates having ambiguous signs. To simplify, we
include both mean BOD and mean DO only in tables 2, 3 and 4 to avoid confusion.
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The economic intuition behind applying the random-effectsmodel is that the district-
level errors are not necessarily affecting Zik through the variables of interest, W. Com-
munities within a district can invest in water treatment plants andwater supply networks
to insure against pollution. More affluent districts, often more urbanised, tend to pool
resources to develop better public water supply networks to mitigate water pollution
risks (Sarker et al., 2021). Since water supply networks are monopolies requiring an
initial fixed investment, and marginal cost of water supply to additional households is
low, all the households in a district would have the same quality of water supply net-
work available for them irrespective of individual household-level wealth and income.
In other words, both rich and poor participate in the same water distribution network
and are subject to similar levels of water quality. Thus, the unobserved heterogeneity
due to a district’s water supply characteristics of a district can be considered as random
intercepts, E(X|χk) = 0, for the households and are not likely to drive or be driven by
the household-level observed variables in X. If E(X|χk) �= 0, then we would need fixed-
effects estimation of equation (1). Therefore, we model district-level exposure to water
quality as random district-level effects.17

We prefer a random-effects model over one with district fixed effects because the
fixed- effects model can introduce multicollinearity between the district-level dummy
variables and the binary pollution variables. We run different tests to check if the
random-effects model should be used instead of some alternative models. Diagnostic
tests developed by Hausman (1978) and Schaffer and Stillman (2006) show that the
random-effects model is preferred over the fixed-effects model.18 Additionally, a test
by Breusch and Pagan (1980) shows that the random-effects model is favoured over
a simple ordinary least squares (OLS) model. Furthermore, we conduct a likelihood-
ratio (LR) test that indicates that a random-effects model is preferred to a pooled model
with district dummy controls. Overall, the results support applying a random intercept
(district-level) specification.

The binary variables indicating unsafe levels of faecal coliform and Nitrate-
N+Nitrite-N correlate with DO, BOD, and pH to some degree, as they all reflect aspects
of water quality. The exact functional relationships between them are unknown. Gener-
ally, water quality deteriorates when faecal coliform and Nitrate-N+Nitrite-N exceed
safety limits. Consequently, the estimated effect of main water pollution measures may
be overstated, capturing both the overall water quality impact and specific pollution con-
tents. However, water turbidity is also associated with poor quality, making it essential to
control for the effects of mean BOD, mean pH and mean DO in equation (1). By doing
so, wemight have overly adjusted for water quality effects, rendering the estimates of the
impact of unsafe levels of faecal coliform and Nitrate-N+Nitrite-N as ‘lower-bound’
estimates.

17In less-developed rural areas where (publicly funded) water supply networks are not established and
water treatment plants are privately owned, the ability to insure against low water quality varies only at
the community level, not at the household level. We control for the effect of this insurance ability using
water-supply related controls in our model.

18Schaffer and Stillman (2006) provide a test for over-identifying restrictions in random-effects versus
fixed-effects models. The fixed effects estimator relies on the orthogonality conditions that Wk, each vari-
able in the W vector (equation (1)), is uncorrelated with the idiosyncratic error εik, i.e., E(Wk × εik) = 0.
The random effects estimator introduces additional orthogonality conditions thatWk are uncorrelated with
the group-specific error χk (the ‘random effects’), i.e., E(Wk × χk) = 0. These additional orthogonality
conditions are over-identifying restrictions that we test. The results suggest considering a random-effects
model.
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3.1 Identification
Equation (1) is based on the structure of a simple education production function. This
function, widely discussed in the education economics literature, relates educational
inputs to outcomes like test scores and class rankings (see Krueger (1999) andHanushek
(2010), among others). We assume that water quality levels are ‘predetermined’ fac-
tors in the education production process. Thus, the error term εik is uncorrelated with
water quality, or E(W|εik) = 0. While this is a strong assumption, we later introduce a
propensity score matching model to estimate the causal effects of 1[FCOLI > limit] and
1[NIT > limit] on test scores, relaxing this initial assumption.

River pollution is the outcome tied to economic activities, population density and
geographic characteristics of an area. However, schooling is governed by state policies
and government mandates in India, i.e., all children must attend schools (Chhokar,
2010). The government provides funding to the schools and dictates school curricula
and related policies (Kingdon, 2007). The average quality of education and outreach
at a district is not subject to the aggregate factors which may drive river pollution –
overpopulation, urbanisation and industrialisation. Average education outcomes of the
children may be driven by river pollution and other aggregate factors. Pollution impacts
education production through the channel of both short-term and long-term health, as
health is directly linked to water quality and, consequently, to productive outcomes such
as educational attainment.

The CPCB employs stringent criteria to select monitoring points, indicating a non-
random selection process. Consequently, the non-random selection of monitoring sta-
tions leads to a non-random selection of districts in our analysis. To address this, we
calculate district-level mean pollution after aggregating readings from all monitoring
points in a district. If the sample distribution of pollutants is skewed right because CPCB
monitors more polluted areas, then the sample mean might exceed the true average
pollution level. However, our focus is on binary indicators that show whether average
monitored pollution levels exceed safety limits. Given that the sample includes districts
with pollution levels below the unsafe threshold, it seems unlikely that CPCB exclusively
monitored the most polluted river sections. Furthermore, some monitors detected no
faecal coliform and Nitrate-N+Nitrite-N levels, suggesting that the selection of mon-
itoring sites is unlikely to compromise the validity of our findings on the pollutants’
treatment effect.

For robustness checks, the vector X in equation (1) is expanded to include the effects
of teaching quality, educational expenditure, schooling quality, short-term morbidity,
use of technology, and household members’ personal hygiene. Since we lack variables
for long-term morbidity throughout the children’s lives, which could be linked to river
pollution, we use district-level short-term morbidity as a proxy. The decline in skills
such as maths, reading and writing cannot result from random sickness episodes alone.
Short-term morbidity does not reveal the children’s susceptibility to illness. Continu-
ous consumption of poor-quality water, even if it does not cause immediate sickness,
may lead to cognitive declines in children. The reading, writing and maths tests admin-
istered by Pratham (2021) measure the students’ average cognitive abilities. Therefore,
mean district-level morbidity is intended to capture spikes in short-term morbidity due
to unforeseen reasons and the overall health of children in the district, excluding the
cognitive loss channel in children exposed to unsafe pollution levels in drinking water.

We investigate the possible channels of cognitive ability loss due to pollutant con-
tents in drinking water. Thus, we further demonstrate that interaction terms between
1[FCOLI > limit] and binary variables describing household water supply and storage
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choices are statistically significant. This analysis aims to identify how water pollutants
not removed by the water supply system – which may or may not have a filtration
system – affect children’s cognitive abilities.19

Household characteristics such as the educational level of the head, available
resources, and income significantly impact children’s educational outcomes. Families
with well-educated heads, ample resources, and higher incomes often see better educa-
tional results for their children. However, when considering the substantial impact of
high water-pollution levels on education and income, children from households with
lower educational outcomes may become trapped in a cycle of poverty. These chil-
dren may face challenges in earning low incomes and lack the means to relocate from
areas with poor water quality. In such a scenario, the current household head’s lower
investment in children’s education might be linked to lower investment (Pk) in his/her
education when he/she was a child and therefore, E(Pk|εik) �= 0. In addition, the obser-
vational data used here does not include individual or household-level instruments that
could be used to infer causation between poor water quality and educational outcomes.

We define a binary treatment variable Tf in the following way:

Tf

{
1 if FCOLI > limit
0 otherwise .

Therefore, we estimate average treatment effect on the treated (ATT),whichmeasures
the difference between expected test scores of children in high-pollution districts Tf = 1
versus a counterfactual outcome expressed as:

ATTf = E[Z1 − Z0|Tf = 1]

= E[Z1|Tf = 1] − E[Z0|Tf = 1]. (2)

In equation (2), Z0 and Z1 are outcomes of the non-treated (Tf = 0) and the treated
(Tf = 1). The subscript f expresses that the treatment is unsafe levels of faecal coliform.
E[Z0|Tf = 1] is the counterfactual state that we do not observe and estimate. By exten-
sion, the ATT is also applicable for unsafe levels of Nitrate-N+Nitrite-N. If Tn holds
1 for district-level mean Nitrate-N+Nitrite-N to be over the safe level, and 0 other-
wise, then ATTn = E[Z1 − Z0|Tn = 1] = E[Z1|Tn = 1] − E[Z0|Tn = 1]. The subscript
n expresses that the treatment is unsafe levels of Nitrate-N+Nitrite-N. Identification
is dependent on the assumption of conditional independence – if we control for the
household and individual factors that drive educational outcomes, then the treatment
effect can be considered random. For this non-experimental exercise, we use the widely
known propensity score matching (PSM) developed by Rosenbaum and Rubin (1983).20

The baseline regression results in tables 2–4 can be combined to provide a picture of
the negative impact of river pollution on children’s test outcomes. Column 1 results are
estimated using the full sample in each of the three tables. The pollutants do not appear
to generate a statistically significant effect on the test scores which are based on the full

19While we account for the effects of district-level short-termmorbidity, this channel could receive mixed
effects from other externalities associated with river pollution. For instance, consuming fish from a polluted
river could also impair children’s cognitive functions in the long term (Singh and Soma, 2014). Another
potential externality is the use of polluted water for irrigation, which might bypass the water supply system
and affect health (Singh et al., 2020).

20We implement PSM using the algorithm described in chapter 24 of Cameron and Trivedi (2022).
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Table 2. Baseline regression – the effect of water pollution on reading test score

(1) (2) (3) (4) (5) (6)

Reading Reading Reading Reading Reading Reading

Score Score Score Score Score Score

AGE 0.0949 0.122 0.0980 0.0908 0.0913 0.120
(0.0252) (0.0597) (0.0354) (0.0253) (0.0356) (0.0318)

FEMALE 0.00724 0.0586 0.0229 0.0144 0.0138 0.0154
(0.0479) (0.0641) (0.0856) (0.0596) (0.0796) (0.0519)

HEIGHT 0.00275 0.00138 −0.00244 0.00117 −0.00141 0.000889
(0.00272) (0.00562) (0.00428) (0.00233) (0.00448) (0.00257)

WEIGHT 0.0140 0.00848 0.0198 0.0154 0.0221 0.0128
(0.00514) (0.00915) (0.00613) (0.00562) (0.00638) (0.00670)

HH con.≤75th ptile −0.0125 0.216 −0.0561 0.0953 −0.0305 0.0147
(0.0720) (0.0963) (0.114) (0.111) (0.103) (0.103)

HH con.≤50th ptile −0.0965 −0.357 −0.150 −0.116 −0.168 −0.0951
(0.0673) (0.139) (0.0982) (0.106) (0.0930) (0.132)

HH con.≤25th ptile −0.278 −0.196 −0.294 −0.286 −0.198 −0.285
(0.0680) (0.136) (0.0814) (0.132) (0.109) (0.137)

Indoor piped water 0.225 0.101 0.244 0.241 0.261 0.288
(0.0882) (0.123) (0.0955) (0.114) (0.0996) (0.137)

1[FCOLI > limit] −0.129 −0.749 −0.234 −0.0689 −0.245 −0.0578
(0.0933) (0.313) (0.115) (0.134) (0.124) (0.0814)

1[NIT > limit] −0.0812 −0.0459 −0.0650 −0.193 −0.119 −0.140
(0.104) (0.103) (0.170) (0.0607) (0.172) (0.0999)

1[DO < threshold] −0.0752 −0.0169 0.131 −0.171 0.0688 −0.0318
(0.0987) (0.327) (0.0896) (0.203) (0.138) (0.165)

Mean BOD 0.00291 0.00647 0.0190 0.0312 0.00126 0.00130
(0.00434) (0.00925) (0.00805) (0.0233) (0.0255) (0.00375)

Mean pH −0.160 −1.603 −0.171 −0.167 0.0684 −0.233
(0.123) (0.613) (0.109) (0.197) (0.177) (0.198)

N 1,147 206 532 769 576 738

Overall R2 0.27 0.33 0.30 0.53 0.31 0.51

Sample All Lake Ganges GW River Trib.

HH con., Household consumption per capita; ptile, percentile; GW, groundwater; Trib., Tributaries.
Notes: Robust standard errors clustered at district level in parentheses.
Explanatory variables not reported: Numerical variables such as ‘hours spent at school per week’, ‘hours spent doing
homework per week’, ‘hours spent being tutored per week’, ‘distance from school to home’, ‘number of days the child
spent disabled because of short-term morbidity in the last 30 days’. Binary variables such as ‘1= Rupees spent on books
and uniform> Rs. 500’, ‘1=water storage vessel available at home’, ‘1=water is purified at home though somemode of
filtration or boiling’, ‘1= household members always wash hands after defaecation’.

sample. Only for the ‘river’ and the ‘Ganges’ samples do we see unsafe levels of faecal col-
iform generating a statistically significant negative impact.21 The largest impact of faecal

21We remind the readers that the CPCB of India monitored groundwater and lakes in some districts. We
consider all districts where any water source is monitored and which are in states through which the rivers
Ganges, Yamuna, and their tributaries flow.
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Table 3. Baseline regression - the effect of water pollution onmaths test score

(1) (2) (3) (4) (5) (6)

Score Score Score Score Score Score

AGE 0.0667 0.0231 0.0999 0.0689 0.0875 0.0653
(0.0256) (0.0411) (0.0468) (0.0325) (0.0448) (0.0241)

FEMALE −0.0685 0.0543 −0.0294 −0.0553 −0.0306 −0.0458
(0.0414) (0.154) (0.0783) (0.0643) (0.0753) (0.0719)

HEIGHT 0.00394 0.0149 −0.000741 0.00267 0.000194 0.00473
(0.00281) (0.00295) (0.00427) (0.00353) (0.00406) (0.00329)

WEIGHT 0.0148 0.00479 0.0222 0.0124 0.0241 0.0130
(0.00645) (0.00700) (0.00659) (0.00884) (0.00623) (0.00891)

HH con.≤25th ptile −0.259 −0.474 −0.370 −0.259 −0.273 −0.226
(0.0898) (0.203) (0.0675) (0.127) (0.0988) (0.131)

HH con.≤50th ptile −0.0245 −0.0155 −0.0206 −0.0489 −0.0365 −0.0000922
(0.0969) (0.127) (0.150) (0.128) (0.137) (0.141)

HH con.≤75th ptile −0.246 −0.115 −0.379 −0.250 −0.315 −0.238
(0.0919) (0.133) (0.152) (0.106) (0.144) (0.0976)

Indoor piped water 0.138 0.169 0.0510 0.158 0.0687 0.220
(0.0896) (0.227) (0.140) (0.106) (0.133) (0.0799)

1[FCOLI > limit] −0.146 −0.669 −0.322 −0.0913 −0.342 −0.131
(0.128) (0.311) (0.132) (0.126) (0.138) (0.0911)

1[NIT > limit] −0.0493 0.112 0.0868 0.0168 0.0282 −0.0912
(0.160) (0.175) (0.107) (0.114) (0.111) (0.127)

1[D.O. < threshold] −0.0545 −0.0524 0.115 −0.137 0.0611 0.00650
(0.163) (0.357) (0.167) (0.230) (0.156) (0.189)

Mean BOD 0.000479 0.000237 0.0123 0.0176 −0.00489 −0.00351
(0.00391) (0.0117) (0.0161) (0.0237) (0.0285) (0.00374)

Mean pH −0.372 −1.468 −0.335 −0.326 −0.111 −0.488
(0.196) (0.484) (0.178) (0.262) (0.238) (0.172)

N 1,147 206 532 769 576 738

Overall R2 0.28 0.56 0.34 0.27 0.33 0.26

Sample All Lake Ganges GW River Trib.

HH con., Household consumption per capita; ptile, percentile; GW, groundwater; Trib., Tributaries.
Notes: Robust standard errors clustered at district level in parentheses.
Explanatory variables not reported: Numerical variables such as ‘hours spent at school per week’, ‘hours spend doing
homework per week’, ‘hours spent being tutored per week’, ‘distance from school to home’, ‘number of days the child
spent disabled because of short-term morbidity in the last 30 days’. Binary variables such as ‘1= Rupees spent on books
and uniform> Rs. 500’, ‘1=water storage vessel at home’, ‘1=water is purified at home though somemode of filtration
or boiling’, ‘1= household members always wash hands after defaecation’.

coliform is on the writing test and the smallest on the reading test when the samples,
‘river’ and the ‘Ganges’ are considered (columns 1 and 5 in tables 2–4). Overall, faecal
coliform has a negative impact on test outcomes. Unsafe levels of Nitrate-N+Nitrite-N
only has a significant impact on reading tests when ‘groundwater’ districts are con-
sidered. Among other variables, age, height, and weight have some estimated positive
impact on the test scores as expected. Binary indicators of household consumption
is coded 1 if per capita consumption expenditure of a household is at the 25th, 50th
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Table 4. Baseline regression – the effect of water pollution on writing test score

(1) (2) (3) (4) (5) (6)

Score Score Score Score Score Score

AGE 0.0951 0.0429 0.114 0.106 0.103 0.128
(0.0281) (0.0541) (0.0434) (0.0313) (0.0421) (0.0374)

FEMALE 0.0536 0.140 0.0266 0.0717 0.00104 0.101
(0.0348) (0.0829) (0.0607) (0.0424) (0.0609) (0.0478)

HEIGHT 0.00206 0.00317 0.00217 0.00367 0.00342 0.00103
(0.00278) (0.00819) (0.00399) (0.00256) (0.00408) (0.00313)

WEIGHT 0.00759 0.0120 0.00544 0.00378 0.00820 0.00161
(0.00507) (0.00883) (0.00724) (0.00525) (0.00775) (0.00614)

HH con.≤25th ptile −0.326 −0.586 −0.344 −0.280 −0.261 −0.288
(0.0952) (0.294) (0.0985) (0.123) (0.123) (0.127)

HH con.≤50th ptile −0.0394 −0.0116 −0.168 −0.0335 −0.153 −0.0539
(0.0613) (0.190) (0.0968) (0.0912) (0.0869) (0.0858)

HH con.≤75th ptile −0.0342 0.0235 −0.132 −0.0278 −0.0577 0.0335
(0.0865) (0.138) (0.0736) (0.104) (0.0898) (0.132)

Indoor piped water 0.168 −0.0467 0.0863 0.125 0.104 0.339
(0.0888) (0.140) (0.110) (0.114) (0.103) (0.126)

1[FCOLI > limit] −0.170 −0.341 −0.351 0.00234 −0.364 −0.0119
(0.110) (0.326) (0.178) (0.136) (0.183) (0.154)

1[NIT > limit] 0.109 −0.0870 0.0851 0.00774 0.0307 0.0798
(0.149) (0.206) (0.172) (0.0932) (0.186) (0.136)

1[D.O. < threshold] −0.137 −0.116 −0.0176 −0.218 −0.0700 −0.147
(0.107) (0.377) (0.142) (0.110) (0.162) (0.127)

Mean BOD 0.00236 0.0156 0.0183 0.0175 0.00139 0.000363
(0.00280) (0.0112) (0.00758) (0.0220) (0.0249) (0.00248)

Mean pH −0.111 −0.627 −0.125 0.0458 0.108 −0.233
(0.0948) (0.520) (0.138) (0.174) (0.177) (0.155)

N 1,147 206 532 769 576 738

Overall R2 0.20 0.31 0.26 0.31 0.44 0.23

Sample All Lake Ganges GW River Trib.

HH con., Household consumption per capita; ptile, percentile; GW, groundwater; Trib., Tributaries.
Notes: Robust standard errors clustered at district level in parentheses.
Explanatory variables not reported: Numerical variables such as ‘hours spent at school per week’, ‘hours spend doing
homework per week’, ‘hours spent being tutored per week’, ‘distance from school to home’, ‘number of days the child
spent disabled because of short-term morbidity in the last 30 days’. Binary variables such as ‘1= Rupees spent on books
and uniform> Rs. 500’, ‘1=water storage vessel available at home’, ‘1=water is purified at home though somemode of
filtration or boiling’, ‘1= household members always wash hands after defaecation’.

and 75th percentile of the distribution or below. As the reference group is children
from households above the 75th percentile of the per capita consumption expendi-
ture distribution, the estimated effects of these variables, when statistically significant,
understandably are negative.

Having an indoor piped water supply is also estimated to have a positive impact on
children’s reading test scores (columns 1 and 3–6 in table 2), and also on maths and
reading test scores (column 6 in tables 3 and 4). In districts adjacent to groundwater and
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tributaries that weremonitored for pollution, the effect of unsafe levels of faecal coliform
and Nitrate-N+Nitrite-N are statistically indistinguishable from zero.22 We investigate
whether the interaction between unsafe levels of faecal coliform and access to indoor
piped water supply significantly affects test scores. While indoor piped water alone has
minimal impact on scores, column 6 in table A5 reveals that in the ‘river’ sample, the
positive effect of indoor piped water (+0.818) on writing scores is nearly cancelled out
by its interaction with the faecal coliform variable (−0.803). This suggests that faecal
coliform may impair children’s cognitive abilities, as reflected in test scores, despite the
presence of indoor pipedwater supply. The results in columns 3 and 5 in table 3 are based
on ‘Ganges’ and ‘groundwater’ samples. Tables 2–4 support the impact of unsafe levels
of faecal coliform being primarily driven by the pollution in the river Ganges. Our other
binary variable of interest about Nitrate-N+Nitrite-N only has a significant impact on
reading test scores when the districts where groundwater is monitored are chosen.

We look for heterogeneity in the estimated effect of 1[FCOLI > limit] and 1[NIT >

limit] between genders. Looking for differential pollution effect on boys versus girls, we
find that 1[FCOLI > limit] has approximately 0.01 standard deviation greater effect on
boys than girls in writing tests (columns 9 and 12 in table A6).23

Caste-based and religion-based discrimination in accessing safe water suggests that
water pollution’s impact might vary across different castes and religious groups (Hoff,
2016). However, dividing the sample by religion and caste results in too few observa-
tions per group, leadingmostly to inconclusive results and hindering our ability to detect
potential heterogeneity in the effects of 1[FCOLI > limit] and 1[NIT > limit]. Given
the distinct social statuses and relationships among the six religious and caste groups,
merging these groups to enlarge sample sizes could lead to misleading conclusions.

In table 5, we present ATT by estimating a PSM model as outlined in equation (2).
The estimated ATT shows causal impact of the main pollution treatments. The results
show that when the full samples are considered, Tf has a statistically significant causal
impact on reading, maths and writing scores. Tn also has a negative impact on reading
and maths scores.

3.2 Robustness checks
We check the robustness of the effects of the pollutants in several ways. We check if the
effects 1[FCOLI > limit] and 1[NIT > limit] differ across states. We find that the more
economically developed West Bengal sees greater negative impact of 1[FCOLI > limit]
on writing tests compared to the Uttar Pradesh and Bihar-Jharkhand sample (columns
6 and 9 in table A10).24 Next, we include more variables in X′�(equation (1)) that cover
more factors related to individual characteristics, household characteristics, water source
information, short-term morbidity and schooling. The results in tables A11 show if the
effects of 1[FCOLI > limit] and 1[NIT > limit] on reading and writing are robust even
after the inclusion of a long list of control variables. The results in table A12 are esti-
mated by adding indicators related to teaching quality to the regression specification in

22We cannot provide estimates separately for the districts adjacent to the river Yamunawhere its waterwas
tested for pollution because Nitrate-N + Nitrite-N and faecal coliform have no variation for those districts.

23Table A7 shows the male-female mean test score differences. Tables A7, A8 and A9 show results from
attempts to tease out channels that could negatively affect female test scores.

24In this table, the coefficient for 1[NIT > limit] for the sample of West Bengal is not identified as it has
no variations in that state.
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Table 5. Average treatment effect on the treated

(1) (2) (3) (4) (5) (6)

Reading Maths Writing Reading Maths Writing

Score Score Score Score Score Score

Tf (1 versus 0) −0.0882 −0.265 −0.143
(0.0412) (0.0762) (0.0120)

Tn (1 versus 0) −0.314 −0.256 −0.119
(0.0648) (0.0825) (0.0844)

N 1,147 1,147 1,147 1,147 1,147 1,147

Notes: Abadie and Imbens (2016) robust standard errors in parentheses. Tf = 1 means that the household is in district
that received the treatment of exposure to unsafe levels of faecal coliform and Tf = 0means untreated. Tn = 1means that
the household is in district that received the treatment of exposure to unsafe levels of Nitrate-N+Nitrite-N and Tn = 0
means untreated. Average treatment effect on the treated has been estimated by propensity-score matching. We con-
sider a logit treatmentmodel. Conditioning variables in the treatmentmodel: demographic identities, age, height, weight,
consumption expenditure by households, and individual-level variables: household per capita income, school distance,
school hours/week, homework hours/week, private tuition hours/week, expenditure on books and uniform, short-term
morbidity (days of disability in the previous thirty days before the survey interview), Binary: whether the household boils
water for purification (1= yes), whether household members wash hands after defaecation (1= yes).

addition to the set of explanatory variables corresponding to the results in table A11.25
The estimated effect of 1[FCOLI > limit] on reading and writing scores is still robust in
table A12.

As a sensitivity analysis, we estimate the baseline results using mixed-model specifi-
cations where the random-effects are interpreted as district-specific random intercepts
(table A13). The estimated effect of 1[FCOLI > limit] in table A13 are similar to those in
tables 2–4, proving that these alternative specifications donot change the baseline results.
In addition, tables A14 and A15 exhibit the statistically robust effects of 1[FCOLI >

limit] and 1[NIT > limit], respectively employing two-level and three-level random-
intercept models that account for variations within villages, neighbourhoods and house-
holds. In table A16, we find that after including a measure of short-term morbidity, the
effects of 1[FCOLI > limit] on reading scores in the ‘river’ sample and 1[NIT > limit]
on reading scores in the full sample remain robust statistically. Next, after adding state-
specific controls to our regression specifications, we find that the effect of 1[NIT >

limit] loses its statistical significance but the effect of 1[FCOLI > limit] remains sta-
tistically robust on the three test scores for the full sample (table A17). We attempt to
separate the seasonality effect from the pollution effect in table A18. As our dataset is of
a cross-sectional nature, we plug State ID × Disctrict mean morbidity × Survey month
– interaction terms – into the model, which are supposed to account for variations in
district-mean morbidity over the survey months, and find that the effect of 1[FCOLI >

limit]remains robust on reading and maths scores in the full-sample regression
(table A18).

Besides water pollution, other types of pollution like land and air pollution may also
affect test scores. An increase in water and air pollution when both are driven by rapid
urbanisation can coincide, and the estimated effect of water pollutants can partially

25Description of these variables can be found in table A3.
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contain the effect of air pollution.We have included PM2.5,26 a measure of air pollution,
as a control variable in our model. PM2.5 refers to particulate matter in the air that are
less than 2.5 micrometres in diameter. We find that the impact of 1[FCOLI > limit] on
reading and maths scores remains statistically significant in the full sample in table A19.
Moreover, its influence on writing scores also proved to be statistically significant in dis-
tricts near Ganges. Our final robustness checking strategy instruments the district-mean
level of faecal coliformwith the district’s upstream adjacent district’s mean level of faecal
coliform (MeanFCOLI). This instrumentation is based on the idea that pollution from
an upstream district generates exogenous variation in its downstream neighbouring dis-
trict; the upstream district is not likely to be influenced by downstream conditions. The
effect of instrumented MeanFCOLI on reading scores across three different samples –
full sample, ‘river’, and ‘tributaries’ sample – are reported in table A20.

The section ‘Explanation for Table A20’ in the online appendix includes the instru-
mentation strategy. We also observe weaker effect of the instrumented MeanFCOLI on
the maths score in the full sample and the ‘tributaries’ sample but not on the writing
score, potentially due to a smaller number of observations available. Notably, in the
‘tributaries’ sample, the coefficients for districtMeanFCOLI remain unchanged between
the random-effects and generalised 2SLS random-effects model (columns 13 to 18 in
table A20). This instrumental variable analysis, leveraging upstream faecal coliform
levels, acts as an additional robustness check, supporting our primary findings.

4. Conclusion
This study focuses on the impact of water pollution on the educational outcomes of
school-going children aged 8–11 across 39 districts in the Ganges Basin of India. Water,
as a crucial natural resource for production and consumption, can have long-term effects
on human health, life expectancy, and cognitive functions through various channels.
Using data from the CPCB of India and the IHDS 2011–12, we estimate water pollution’s
effect on performance in three tests taken by children aged 8–11 as part of the IHDS.We
find that unsafe faecal coliform levels have a consistently robust negative effect on read-
ing andwriting test scores. In several extended specifications and sensitivity analyses, the
impact of faecal coliform onmaths scores was not statistically robust. The negative effect
ofNitrate-N+Nitrite-Nwas statistically indistinguishable from zero in some robustness
checks. The negative effects of faecal coliform in water sources on children’s reading
and writing performance prove to be consistently significant, even when controlling for
additional factors such as average district-level short-term morbidity in children (over
thirty days), quality of teaching, and adjustmentsmade using a PSMmodel. This suggests
that faecal coliform contamination may impair the cognitive development of children
exposed to poor water quality through the channel of health deterioration for prolonged
periods (exceeding 30 days). Future studies employing larger datasets and more pre-
cisely pinpointed water pollution data have the potential to refine our understanding of

26PM2.5, also known as particulate matter 2.5, refers to tiny airborne particles with a diameter of 2.5
microns or less. These particles are commonly measured in micro-grams per cubic meter (μg/m3) to deter-
mine their concentration in the air. To ensure a safe and healthy environment, health regulations and
standards are established to control and restrict the levels of PM2.5 present in the atmosphere. Presently,
theWHOguidelines advocate for an annual average PM2.5 concentration of 5micro-grams per cubicmeter
(μg/m3) of air (World Health Organisation, 2021). Our records encompass the yearly mean PM2.5 data at
the district level. We collect this data from the Energy Policy Institute at the University of Chicago (2023).
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howwater contaminants like faecal coliform andNitrate-N+Nitrite-N impact cognitive
functions.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X24000123.
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