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THE DILUTION ASSAY OF VIRUSES

B Y P. A. P. MORAN

Department of Statistics, Australian National University, Canberra, A.C.T.

Suppose that A is the average density of virus particles per unit volume. If x is
a dilution of this and unit volume is applied to an egg (or plate in other problems)
the probability that the egg remains sterile is

P = er**t (1)

provided that if a particle is present, it will infect the egg. To make a dilution assay
we choose dilutions x1} ..., xm (m levels) and apply these to nx, ..., nm eggs. If
these result in rx, ..., rm sterile eggs we can estimate A by maximum likelihood. The
theory has been given by Barkworth & Irwin (1938), and full references to work on
this problem will be found in Finney (1952). If we plot the quantities rx\nx,..., rmjnm

against x1, ...,xm we get a set of point whose fit to the curve (1) can be tested by
a x2 test. In a number of situations, however, it is found that (1) does not give
a good fit. The estimation of A is then completely invalid. In the present paper we
consider why this happens, what types of curve may be fitted to the data and what
they imply, and we also give a simple rapid test for such data fitting an exponential
curve.

Now suppose that an individual virus particle has a probability p(o^p^ 1) of
infecting an egg. Since the particles are selected at random, we can suppose this
probability p to vary from particle to particle, p0 being the average value. We
must not, however, allow it to vary from egg to egg. Then it is easy to see that the
probability of an egg remaining sterile is

e-AV, (2)

and the whole theory goes through as before except that we are now estimating
Ap0 instead of A. Xp0 is the effective density of the virus particles when applied to
eggs and by dilution assay it is not possible to estimate A and p0 separately.*

However, if p varies from egg to egg so that the eggs differ amongst themselves
in their liability to be infected, the situation is quite different. Suppose that p has
a probability distribution whose density function is f(p)(0^p^l). Then the
probability that the egg is sterile is

[ (3)

It will be noted that this is the moment generating function oif(p). We have now
to choose a plausible form for f(p). Since p must lie between 0 and 1 it is natural
to choose a distribution of /?-type and thus suppose

* A and p0 are in fact 'unidentifiable' in the statistical sense. It is possible to make
assumptions about/(p) which will make them 'identifiable' in theory, but not in practice.
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where I and m are not necessarily integral. Then

However, the fitting of such a function to empirical data is not practicable. Not
only is (4) not a tabulated function but it involves three parameters. I have been
unable to find a suitable probability distribution on the range (0, 1) which involves
only two parameters and for which the moment generating function (3) has
a simple form.

Some approximate approach is therefore necessary. Suppose p has a mean
value p0. To allow for variation about this mean let p have a distribution of gamma
type so that .

^ j J (5)
The mean value of this distribution is al which we equate to p0. The objection

to using this distribution is that it supposes that p can take all values from zero to
infinity. This will probably not matter much if p0 is near zero, but if p0 is near
unity and the variation about p0 is not small compared with 1 — p0 we cannot
expect a good fit.

Inserting (5) in (3) we get
P = T(l)J0aT(l)

= (1+Aaz)-*. (6)

This is the zero term in a negative binomial distribution. The mean value of p is
po=al and the variance of p about this mean value is aH.

Now consider the fitting of this formula to an observed dilution series. Suppose
that rii eggs are tested at each of m dilutions xv ...,xm and that r{ are found to be
sterile at dilution xi. We then find for the logarithm of the likelihood

£ = 2r, loge P , + 2 K - r t . ) loge(l -Pt),

where the logarithms are to the base e. Then putting Xa — h

, dL
and aT

dL

f ( rt-nt

dL 1 dL lxt(rt - nt) Pt loge (1 + kxt)
dkdl Idle

It is convenient to set the calculations of these quantities out on a systematic
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form. As an example consider some data of Parker (1940, table 1). These are as
follows:

Dilution No. inoculated No. sterile
1
2"1

2-2
2-3

2-4

2-5
2-6

2-'
2-8

38
39
40
40
40
40
40
40
40

0
5
8
15
21
30
32
35
36

An attempt was first made to fit an exponential curve to these data. After
several cycles A was estimated to be 7-34 with a standard error of 0-71. Calculating
the expected number fertile and sterile at each dilution, and grouping together the
results with expectations less than 5 or greater than 35, we find ^ 2 = 19-02 with
4 degrees of freedom. Clearly the exponential does not fit.

To fit the zero term of the negative binomial data guesses for k and I were found
by putting the curve (6) through the points where x = 0-25 and 0-0625. This gave
k = 11-53 and 1= 1-1865. On calculating the expected values with these parameters
a x2 °f 2-13 was found which would have had 3 degrees of freedom ascribed to it if
the method of fitting had been most efficient. After two cycles had been calculated
estimates k — 10-915 and 1= 1-2650 were found. On calculating the expected num-
bers for these parameters, and grouping in the usual manner, x2 w a s found to be
2-25 with 3 degrees of freedom. This x2 w a s larger than for the initial guess,
illustrating the fact that maximum likelihood and minimum x2 estimation do not
give exactly the same results.

The fit being good, the variance-covariance matrix was calculated as the inverse
of the matrix

dk* dkdl

dldk ~d

From this we find the standard error of k to be 4-69 and of I to be 0-365. The
correlation between the two estimators is —0-954. The estimate of the 'degrees of
freedom' (21) in the distribution of 2p is 2(1-265) = 2-53 with a standard error of 0-73.
This would seem to indicate that p varies considerably about this mean.

Formula (6) was also fitted to data of von Magnus (1951). This consisted of five
series of dilutions of the same initial suspension of virus particles. A x2 of 25-60
was found with 10 degrees of freedom. This is beyond the 1 % point, indicating
that formula (6) does not give a good fit.

We may draw the following conclusions from the above discussion:
(1) If the data do not fit an exponential curve the estimation of A is not possible.
(2) If the distribution of p is approximately fitted by a y-type distribution

(which will probably be true if the mean value of p is near zero or if the standard
deviation is small compared with 1 — p0) then formula (6) will probably give a good
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fit and the value of I will give an estimate of the extent of the variation of p about
p0. It is only possible in this case to estimate Xp0 and not A.

(3) A rapid test whether a given dilution series is likely to fit an exponential
curve or be more spread out would be desirable and such a test is considered below:

A test for ezponentiality in dilution series

Consider a twofold dilution series so that the mean densities in unit volume of
the inoculum are A2m(m =..., —1,0, 1,...), and such that e~A2m covers a range from
near unity to near zero. Write pm=e~x%m and then

Suppose that n eggs (or plates) are tested at each dilution and the observed number
sterile is fm. As a test criterion calculate

T = S/m(»-/m). (8)

If the series does not fit an exponential formula but is more spread out we will
expect T to be inflated and thus T will provide as a useful test whether this is so.
Assuming (7) we easily prove that

and E(T) = n(n-l).

T is the sum of a number of bounded independent variates, and its distribution

should not be far from normality. Consider its variance. We have

var(T) = HE{fl (n - fmf) -
and after some reduction this is equal to

n(n - 1 )2{(n -l)pm- (5n -

Summing over all values of m and remembering that pm+x = p^ we get

var (T)=»(W-l){5-3»+(8»-12)(2(<-p*,))}.

The sum 2 ( ^ —Pm) varies with p0 but belongs to an interesting class of series which
are almost independent of a parameter in them. In fact

2 ( ^ - 0 = 0-4150375,

with an error never greater than 0-000004, i.e. one part in 105. Taking the value as

0-4150375 we get vnv(T) = n(n- l){0-3203w + 0-0195},

and the standard error of T is the square root of this. The power of this test, for
alternatives of the type considered, may well be as great or greater than that of the
X2 test since the latter is an ' overall' test of divergence from expectation.

Taking Parker's data as an example, we cannot apply the test strictly since the
number of eggs is not the same at each dilution. If, however, we altered the number
tested at dilution 1 and 2"1 to 40 and kept the number sterile constant, and also
supposed that at dilutions beyond 2~8 the number sterile would have been 40, we

§ e t T = 2080, E(T)=156O, S.E.(T)= 141-5;

T-E(T)
S.E.(T)

so that a significant deviation is observed.

= 3-67;
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The above test can only be applied when the series is long enough for pm to be
nearly unity and zero at the two ends. A similar test can be set up for fourfold and
tenfold dilutions, but is less satisfactory because E(T) then varies somewhat
with p0.

I am indebted to Dr S. Fazekas de St Groth for proposing this problem and for
some helpful discussions.
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