UNIQUELY COLOURABLE GRAPHS WITH LARGE GIRTH

BÉLA BOLLOBÁS AND NORBERT SAUER

Tutte [1], writing under a pseudonym, was the first to prove that a graph with a large chromatic number need not contain a triangle. The result was rediscovered by Zykov [5] and Mycielski [4]. Erdös [2] proved the much stronger result that for every $k \ge 2$ and g there exist a k-chromatic graph whose girth is at least g.

A graph is said to be *uniquely k-colourable* if it is k-colourable and any k-colouring of the vertices gives the same colour classes. Harary, Hedetniemi and Robinson [3] proved that a uniquely k-colourable graph need not contain a complete graph of order k. The aim of this note is to prove a common extension of these results.

The vertex set of a graph H is denoted by V(H). C^{l} is a cycle of length l and P^{l} is a path of length l. Two edges are *independent* if they are not adjacent. In the proof of our theorem we shall make use of some straightforward inequalities involving binomial coefficients. For convenience we list them here.

If 0 < b < a then Stirling's formula gives

(1)
$$\binom{a}{b} < \left(\frac{ea}{b}\right)^{b}$$
.

If $0 \le x < b$ and b + x < a then by expanding the coefficients we obtain

(2)
$$\binom{a-x}{b}\binom{a}{b}^{-1} \leq \left(\frac{a-b}{a}\right)^x < e^{-bx/a}$$

and

(3)
$$\begin{pmatrix} a - x \\ b - x \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}^{-1} \leq \left(\frac{b}{a}\right)^{x}$$
.

THEOREM. For all $k \ge 2$ and $g \ge 3$ there is a uniquely k-colourable graph whose girth is at least g.

Proof. Let V_1, V_2, \ldots, V_k be disjoint *n*-sets. Let \mathscr{G} be the set of all *k*-partite graphs with vertex sets V_1, V_2, \ldots, V_k , containing $m = \left[\binom{k}{2} n^{1+\epsilon}\right]$ edges,

Received June 4, 1976.

1340

where $0 < \epsilon < 1/4g$. Note that

$$|\mathscr{G}| = \binom{\binom{k}{2}n^2}{m}.$$

We shall find it convenient to adopt the language of probability theory. From now on by a graph we mean a member of \mathscr{G} , and each graph is supposed to occur with the same probability. In all subsequent inequalities n is supposed to be sufficiently large. The proof is based on estimating three different subsets of \mathscr{G} .

(i) The expected number of cycles C^{l} $(l \ge 3 \text{ is fixed})$ in a graph $G \in \mathscr{G}$ is at most

$$N_{l} = \binom{kn}{l} \frac{l!}{2l} \binom{\binom{k}{2}n^{2}-l}{m-l} \binom{\binom{k}{2}n^{2}}{m}^{-1},$$

since there are $\binom{kn}{l} \frac{l!}{2l}$ ways of choosing a cycle C^{l} with $V(C^{l}) \subset V = \bigcup_{i} V_{i}$, and a cycle C^{l} is contained in 0 or

$$\binom{\binom{k}{2}n^2-l}{m-l}$$

of the graphs belonging to \mathscr{G} .

Note that by (3)

$$N_{l} < \frac{(kn)^{l}}{2l} m^{l} \left(\binom{k}{2} n^{2} \right)^{-l} < (kn)^{l} n^{-l(1-\epsilon)} = k^{l} n^{l\epsilon},$$

so

$$\sum_{l=3}^{p-1} N_l < n^{-\epsilon/2} n^{p\epsilon}.$$

This implies, in particular, that if \mathscr{G}_1 denotes the set of all graphs with at most $f = [n^{\varrho \epsilon}]$ cycles of length less than g then $|\mathscr{G}_1| \ge (1 - n^{-\epsilon/2}) |\mathscr{G}|$.

(*ii*) Let us estimate now the number of graphs in \mathscr{G} that do not contain two cycles of length less than g having a vertex in common. Suppose $G \in \mathscr{G}$ does contain two such cycles. Then it also contains a cycle C^{l_1} , $l_1 < g$, and a path P^{l_2} , $l_2 < g$, joining two vertices of C^{l_1} such that C^{l_1} and P^{l_2} have no edge in common. The expected number of such pairs is at most

$$N(l_1, l_2) = l_1(kn)^{l_1}(kn)^{l_2-1} \binom{\binom{k}{2}n^2 - l_1 - l_2}{m - l_1 - l_2} \binom{\binom{k}{2}n^2}{m}^{-1}.$$

Applying (3) we see that

 $N(l_1, l_2) < l_1 k^{l_1 + l_2} n^{\epsilon(l_1 + l_2)} n^{-1}.$

Since $2g\epsilon < \frac{1}{2}$ we obtain that

$$\sum_{\substack{3 \le l_1 < g \\ 1 \le l_2 < g}} N(l_1, l_2) < n^{-1/2}.$$

In particular, if \mathscr{G}_2 is the set of all graphs in \mathscr{G}_1 that do not contain two cycles of length less than g with a vertex in common, then

(4) $|\mathscr{G}_2| > (1 - n^{-\epsilon/3}) |\mathscr{G}|.$

(*iii*) Let us show now that most graphs $G \in \mathscr{G}$ have the property that if we omit a set E_0 of at most $n^{g_{\epsilon}}$ independent edges, then the obtained graph G' is uniquely k-colourable.

Suppose $G \in \mathscr{G}$ and $G - E_0$ has a k-colouring whose colour classes are not V_1, V_2, \ldots, V_k . Let W be a colour class of maximal cardinality different from the V_i 's. We distinguish two cases according to the sizes of the intersections $W \cap V_i$. Let $0 < \eta < 1/2k$.

(a) There are at least two colour classes, V_i and V_j , say, such that

 $|W \cap V_i| > \eta n$ and $|W \cap V_j| > \eta n$.

This implies that there exist sets W_i , W_j , $W_i \supset V_i$, $W_j \supset V_j$, $|W_i| = |W_j| = t = [\eta n]$ such that G has $q < n^{g_{\epsilon}}$ edges joining W_i to W_j . Denote by M(q) the expected number of pairs W_i , W_j joined by exactly q edges, $q < n^{g_{\epsilon}}$. Our aim is to show that $M = \sum_{q \leq n} g^{g_{\epsilon}} M(q)$ is small. We have

$$M(q) = \binom{k}{2} \binom{n}{t}^{2} \binom{t^{2}}{q} \binom{\binom{k}{2}n^{2} - t^{2}}{m-q} \binom{\binom{k}{2}n^{2}}{m}^{-1}$$
Replacing $\binom{\binom{k}{2}n^{2} - t^{2}}{m-q}$ with $\binom{\binom{k}{2}n^{2} - t^{2}}{m}$ and applying (2) we get
$$M(q) < k^{2} (e/\eta)^{2\eta n} \left(\frac{e\eta^{2}n^{2}}{q}\right)^{q} e^{-1/2\eta^{2}n^{1+\epsilon}} < n^{(1+\epsilon)q} e^{-1/3\eta^{2}n^{1+\epsilon}}.$$

Hence

(5) $M < \exp(-n^{1+\epsilon/2} + 2n^{g\epsilon}\log n) < e^{-n}$.

(b) $|W \cap V_j| < \eta n$ unless j = i. Let $a_l = |W_l| = |W \cap V_l|$ for $l \neq i$ and let $W_i \subset W \cap V_i$, $|W_i| = n - \sum_{l \neq i} a_l = n - A$. Then $0 < A < k\eta n$ and G contains

$$q \leq \min\{A, n^{\varrho_{\epsilon}}\}$$

edges joining the W_i 's.

Denote by $L(i, (a_j), q)$ the expected number of subgraphs with vertex classes W_1, W_2, \ldots, W_k and exactly q edges $(|W_l| = a_l, l \neq i \text{ and } |W_i| = n - A = n - \sum_{l \neq i} a_l)$. Then

$$L(i, (a_j), q) < \left(\prod_{j \neq i} \binom{n}{a_j}\right) \binom{n}{A} \binom{An}{q} \binom{\binom{k}{2}n^2 - A(n-A)}{m-q} \binom{\binom{k}{2}n^2}{m}^{-1} < n^{2A} \left(\frac{eAn}{q}\right)^q e^{-A/2n}.$$

In the estimate above we used that

$$\binom{\binom{k}{2}n^2 - An + A^2}{m - q} \binom{\binom{k}{2}n^2}{m}^{-1} < \binom{\binom{k}{2}n^2 - An/2}{m} \binom{\binom{k}{2}n^2}{m}^{-1} < e^{-An^{\epsilon/2}}.$$

Denoting by L(A) the sum of all $L(i, (a_j), q)$'s for which $\sum_{j \neq i} a_j = A$ we have

$$L(A) < k A^{k} (en)^{2A} \left(\frac{eAn}{q}\right)^{q} e^{-An^{\epsilon}/2}$$
$$< \left(\frac{eAn}{q}\right)^{q} \exp\left(-\frac{A}{2}n^{\epsilon} + 3A\log n\right) < n^{3q} e^{-An^{\epsilon}/3}.$$

Now if $1 \leq A \leq n^{g_{\epsilon}}$ then $q \leq A$ so

 $L(A) < n^{3A} e^{-A/3n\epsilon} < e^{-1/4n^{\epsilon}}.$

Similarly, if $A \ge n^{g_{\epsilon}}$ and $g \le n^{g_{\epsilon}}$ then

 $\log L(A) < 3n^{g_{\epsilon}} \log n - \frac{1}{3}n^{(g+1)\epsilon} < -n^{g_{\epsilon}},$

 \mathbf{so}

 $L(A) < e^{-nq\epsilon}$.

Consequently if $L = \sum_{A} L(A)$ where the summation is over all values of A, $1 \leq A \leq \eta n$, then

(6)
$$L < e^{-n^{\epsilon}/2}$$
.

In particular, if \mathscr{G}_3 denotes the set of graphs in \mathscr{G} which are such that no matter which $f = [n^{\varrho \epsilon}]$ independent edges of it we omit, the resulting graph is still uniquely *k*-colourable, then (5) and (6) imply

(7)
$$|\mathcal{G}_3| > (1 - e^{-n^{\epsilon}/6})|\mathcal{G}|.$$

Armed with inequalities (4) and (7) the theorem follows easily. Put $\mathscr{G}_4 = \mathscr{G}_2 \cap \mathscr{G}_3$. Then (4) and (7) give

$$|\mathscr{G}_4| \ge (1 - n^{\epsilon/4})|\mathscr{G}|.$$

Let $G \in \mathscr{G}_4$. Then, since $G \in \mathscr{G}_2$, we can omit a set of $f = [n^{\varrho_\ell}]$ independent edges such that the resulting graph G^* has girth at least g. Since $G \in \mathscr{G}_4$ this graph G^* is uniquely k-colourable.

Call a graph G of at least k + 1 vertices *critically uniquely k-colourable* if it is uniquely *k*-colourable but no proper subgraph of it is. Clearly G cannot have k + 1 vertices and it is not trivial that for a given $k \ge 3$ there are critically uniquely *k*-colourable graphs with arbitrarily many vertices. However, if G is uniquely *k*-colourable and its girth is at least g > k then its minimal uniquely *k*-colourable subgraph (which must be critically uniquely *k*-colourable) must have at least $(k - 2)^{(g-2)/2}$ or, trivially, at least g vertices. Thus we have the following corollary of our theorem.

COROLLARY. For every $k \ge 3$ and n there is a critically uniquely k-colourable graph with at least n vertices.

References

- 1. B. Descartes, A three colour problem, Eureka, April, 1947; Solution March, 1948.
- 2. P. Erdös, Graph theory and probability, Can. J. Math. 11 (1959), 34-38.
- F. Harary, S. T. Hedetniemi and R. W. Robinson, Uniquely colourable graphs, J. Comb. Theory 6 (1969), 264-270.
- 4. J. Mycielski, Sur le coloriage des graphes, Coll. Math. 3 (1955), 161-162.
- A. A. Zykov, On some properties of linear complexes (in Russian), Mat. Sbornik, N.S. 24 (1949) 163-188. Amer. Math. Soc. Transl. 79 (1952).

University of Cambridge, Cambridge, England; University of Calgary, Calgary, Alberta