UNIQUELY COLOURABLE GRAPHS WITH LARGE GIRTH

BÉLA BOLLOBÁS AND NORBERT SAUER

Tutte [1], writing under a pseudonym, was the first to prove that a graph with a large chromatic number need not contain a triangle. The result was rediscovered by Zykov [5] and Mycielski [4]. Erdös [2] proved the much stronger result that for every $k \geqq 2$ and g there exist a k-chromatic graph whose girth is at least g.

A graph is said to be uniquely k-colourable if it is k-colourable and any k colouring of the vertices gives the same colour classes. Harary, Hedetniemi and Robinson [3] proved that a uniquely k-colourable graph need not contain a complete graph of order k. The aim of this note is to prove a common extension of these results.

The vertex set of a graph H is denoted by $V(H) . C^{l}$ is a cycle of length l and P^{l} is a path of length l. Two edges are independent if they are not adjacent. In the proof of our theorem we shall make use of some straightforward inequalities involving binomial coefficients. For convenience we list them here.

If $0<b<a$ then Stirling's formula gives
(1) $\binom{a}{b}<\left(\frac{e a}{b}\right)^{b}$.

If $0 \leqq x<b$ and $b+x<a$ then by expanding the coefficients we obtain
(2) $\binom{a-x}{b}\binom{a}{b}^{-1} \leqq\left(\frac{a-b}{a}\right)^{x}<e^{-b x / a}$
and
(3) $\binom{a-x}{b-x}\binom{a}{b}^{-1} \leqq\left(\frac{b}{a}\right)^{x}$.

Theorem. For all $k \geqq 2$ and $g \geqq 3$ there is a uniquely k-colourable graph whose girth is at least g.

Proof. Let $V_{1}, V_{2}, \ldots, V_{k}$ be disjoint n-sets. Let \mathscr{G} be the set of all k-partite graphs with vertex sets $V_{1}, V_{2}, \ldots, V_{k}$, containing $m=\left[\binom{k}{2} n^{1+\epsilon}\right]$ edges,

[^0]where $0<\epsilon<1 / 4 g$. Note that
$$
|\mathscr{G}|=\binom{k}{2} n^{2} .
$$

We shall find it convenient to adopt the language of probability theory. From now on by a graph we mean a member of \mathscr{G}, and each graph is supposed to occur with the same probability. In all subsequent inequalities n is supposed to be sufficiently large. The proof is based on estimating three different subsets of \mathscr{G}.
(i) The expected number of cycles $C^{l}(l \geqq 3$ is fixed) in a graph $G \in \mathscr{G}$ is at most

$$
\left.N_{l}=\binom{k n}{l} \frac{l!}{2 l}\binom{\binom{k}{2} n^{2}-l}{m-l}\binom{k}{2} n^{2}\right)^{-1}
$$

since there are $\binom{k n}{l} \frac{l!}{2 l}$ ways of choosing a cycle C^{l} with $V\left(C^{l}\right) \subset V=$ $\cup_{1}{ }^{k} V_{i}$, and a cycle C^{l} is contained in 0 or

$$
\binom{\binom{k}{2} n^{2}-l}{m-l}
$$

of the graphs belonging to \mathscr{G}.
Note that by (3)

$$
N_{l}<\frac{(k n)^{l}}{2 l} m^{l}\left(\binom{k}{2} n^{2}\right)^{-l}<(k n)^{l} n^{-l(1-\epsilon)}=k^{l} n^{l \epsilon}
$$

so

$$
\sum_{l=3}^{0-1} N_{l}<n^{-\epsilon / 2} n^{\rho \epsilon}
$$

This implies, in particular, that if \mathscr{G}_{1} denotes the set of all graphs with at most $f=\left[n^{g \epsilon}\right]$ cycles of length less than g then $\left|\mathscr{G}_{1}\right| \geqq\left(1-n^{-\epsilon / 2}\right)|\mathscr{G}|$.
(ii) Let us estimate now the number of graphs in \mathscr{G} that do not contain two cycles of length less than g having a vertex in common. Suppose $G \in \mathscr{G}$ does contain two such cycles. Then it also contains a cycle $C^{l_{1}}, l_{1}<g$, and a path $P^{l_{2}}, l_{2}<g$, joining two vertices of $C^{l_{1}}$ such that $C^{l_{1}}$ and $P^{l_{2}}$ have no edge in common. The expected number of such pairs is at most

$$
\left.N\left(l_{1}, l_{2}\right)=l_{1}(k n)^{l_{1}}(k n)^{l_{2}-1}\binom{k}{2} n^{2}-l_{1}-l_{2}\right)\left(\binom{k}{m-l_{1}-l_{2}} n^{2}\right)^{-1} .
$$

Applying (3) we see that

$$
N\left(l_{1}, l_{2}\right)<l_{1} k^{l_{1}+l_{2}} n^{\epsilon\left(l_{1}+l_{2}\right)} n^{-1} .
$$

Since $2 g \epsilon<\frac{1}{2}$ we obtain that

$$
\sum_{\substack{3 \leq l_{1}<g \\ 1 \leqq l_{2}<g}} N\left(l_{1}, l_{2}\right)<n^{-1 / 2} .
$$

In particular, if \mathscr{G}_{2} is the set of all graphs in \mathscr{G}_{1} that do not contain two cycles of length less than g with a vertex in common, then
(4) $\quad\left|\mathscr{G}_{2}\right|>\left(1-n^{-\epsilon / 3}\right)|\mathscr{G}|$.
(iii) Let us show now that most graphs $G \in \mathscr{G}$ have the property that if we omit a set E_{0} of at most $n^{g_{\epsilon}}$ independent edges, then the obtained graph G^{\prime} is uniquely k-colourable.

Suppose $G \in \mathscr{G}$ and $G-E_{0}$ has a k-colouring whose colour classes are not $V_{1}, V_{2}, \ldots, V_{k}$. Let W be a colour class of maximal cardinality different from the V_{i} 's. We distinguish two cases according to the sizes of the intersections $W \cap V_{i}$. Let $0<\eta<1 / 2 k$.
(a) There are at least two colour classes, V_{i} and V_{j}, say, such that $\left|W \cap V_{i}\right|>\eta n \quad$ and $\quad\left|W \cap V_{j}\right|>\eta n$.
This implies that there exist sets $W_{i}, W_{j}, W_{i} \supset V_{i}, W_{j} \supset V_{j},\left|W_{i}\right|=\left|W_{j}\right|=$ $t=[\eta n]$ such that G has $q<n^{g \epsilon}$ edges joining W_{i} to W_{j}. Denote by $M(q)$ the expected number of pairs W_{i}, W_{j} joined by exactly q edges, $q<n^{g \epsilon}$. Our aim is to show that $M=\sum_{q \leqq n}{ }^{g \epsilon} M(q)$ is small. We have

$$
\left.\left.\begin{array}{c}
M(q)=\binom{k}{2}\binom{n}{t}^{2}\binom{t^{2}}{q}\binom{k}{2} n^{2}-t^{2} \\
m-q
\end{array}\right)\binom{k}{2} n^{2}\right)^{-1} .
$$

Hence
(5) $M<\exp \left(-n^{1+\epsilon / 2}+2 n^{\rho \epsilon} \log n\right)<e^{-n}$.
(b) $\left|W \cap V_{j}\right|<\eta n$ unless $j=i$. Let $a_{l}=\left|W_{l}\right|=\left|W \cap V_{l}\right|$ for $l \neq i$ and let $W_{i} \subset W \cap V_{i},\left|W_{i}\right|=n-\sum_{l \neq i} a_{l}=n-A$. Then $0<A<k \eta n$ and G contains

$$
q \leqq \min \left\{A, n^{\theta \epsilon}\right\}
$$

edges joining the W_{i} 's.

Denote by $L\left(i,\left(a_{j}\right), q\right)$ the expected number of subgraphs with vertex classes $W_{1}, W_{2}, \ldots, W_{k}$ and exactly q edges $\left(\left|W_{l}\right|=a_{l}, l \neq i\right.$ and $\left|W_{i}\right|=$ $\left.n-A=n-\sum_{l \neq i} a_{l}\right)$. Then

$$
\left.\left.\begin{array}{l}
L\left(i,\left(a_{j}\right), q\right) \\
\quad<\left(\prod_{j \neq i}\binom{n}{a_{j}}\right)\binom{n}{A}\binom{A n}{q}\left(\binom{k}{2} n^{2}-A(n-A)\right. \\
m-q
\end{array}\right)\left(\begin{array}{c}
k \\
2 \\
m
\end{array}\right) n^{2}\right)^{-1}
$$

In the estimate above we used that

$$
\left.\left.\binom{\binom{k}{2} n^{2}-A n+A^{2}}{m-q}\binom{\binom{k}{2} n^{2}}{m}^{-1}<\binom{k}{2} n^{2}-A n / 2\right)\binom{k}{2} n^{2}\right)^{-1}<e^{-A n^{\epsilon} / 2}
$$

Denoting by $L(A)$ the sum of all $L\left(i,\left(a_{j}\right), q\right)$'s for which $\sum_{j \neq i} a_{j}=A$ we have

$$
\begin{aligned}
& L(A)<k A^{k}(e n)^{2 A}\left(\frac{e A n}{q}\right)^{q} e^{-A n^{\epsilon} / 2} \\
&<\left(\frac{e A n}{q}\right)^{q} \exp \left(-\frac{A}{2} n^{\epsilon}+3 A \log n\right)<n^{3 q} e^{-A n^{\epsilon} / 3} .
\end{aligned}
$$

Now if $1 \leqq A \leqq n^{g \epsilon}$ then $q \leqq A$ so

$$
L(A)<n^{3 A} e^{-A / 3 n^{\prime} \epsilon}<e^{-1 / 4 n^{\epsilon} \epsilon}
$$

Similarly, if $A \geqq n^{\rho \epsilon}$ and $g \leqq n^{\rho \epsilon}$ then

$$
\log L(A)<3 n^{g \epsilon} \log n-\frac{1}{3} n^{(g+1) \epsilon}<-n^{g \epsilon},
$$

so

$$
L(A)<e^{-n \ell t} .
$$

Consequently if $L=\sum_{A} L(A)$ where the summation is over all values of A, $1 \leqq A \leqq \eta n$, then
(6) $L<e^{-n t / 2}$.

In particular, if \mathscr{G}_{3} denotes the set of graphs in \mathscr{G} which are such that no matter which $f=\left[n^{\circ \epsilon}\right]$ independent edges of it we omit, the resulting graph is still uniquely k-colourable, then (5) and (6) imply
(7) $\left|\mathscr{G}_{3}\right|>\left(1-e^{-n \epsilon / 6}\right)|\mathscr{G}|$.

Armed with inequalities (4) and (7) the theorem follows easily. Put $\mathscr{G}_{4}=$ $\mathscr{G}_{2} \cap \mathscr{G}_{3}$. Then (4) and (7) give

$$
\left|\mathscr{G}_{4}\right| \geqq\left(1-n^{\epsilon / 4}\right)|\mathscr{G}| .
$$

Let $G \in \mathscr{G}_{4}$. Then, since $G \in \mathscr{G}_{2}$, we can omit a set of $f=\left[n^{\theta \epsilon}\right]$ independent edges such that the resulting graph G^{*} has girth at least g. Since $G \in \mathscr{G}_{4}$ this graph G^{*} is uniquely k-colourable.

Call a graph G of at least $k+1$ vertices critically uniquely k-colourable if it is uniquely k-colourable but no proper subgraph of it is. Clearly G cannot have $k+1$ vertices and it is not trivial that for a given $k \geqq 3$ there are critically uniquely k-colourable graphs with arbitrarily many vertices. However, if G is uniquely k-colourable and its girth is at least $g>k$ then its minimal uniquely k-colourable subgraph (which must be critically uniquely k-colourable) must have at least ($k-2)^{(\theta-2) / 2}$ or, trivially, at least g vertices. Thus we have the following corollary of our theorem.

Corollary. For every $k \geqq 3$ and n there is a critically uniquely k-colourable graph with at least n vertices.

References

1. B. Descartes, A three colour problem, Eureka, April, 1947; Solution March, 1948.
2. P. Erdös, Graph theory and probability, Can. J. Math. 11 (1959), 34-38.
3. F. Harary, S. T. Hedetniemi and R. W. Robinson, Uniquely colourable graphs, J. Comb. Theory 6 (1969), 264-270.
4. J. Mycielski, Sur le coloriage des graphes, Coll. Math. I (1955), 161-162.
5. A. A. Zykov, On some properties of linear complexes (in Russian), Mat. Sbornik, N.S. 24 (1949) 163-188. Amer. Math. Soc. Transl. 79 (1952).

University of Cambridge,
Cambridge, England;
University of Calgary,
Calgary, Alberta

[^0]: Received June 4, 1976.

