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Abstract
Given a sequence 𝒌 := (𝑘1, . . . , 𝑘𝑠) of natural numbers and a graph G, let 𝐹 (𝐺; 𝒌) denote the number of colourings
of the edges of G with colours 1, . . . , 𝑠, such that, for every 𝑐 ∈ {1, . . . , 𝑠}, the edges of colour c contain no clique
of order 𝑘𝑐 . Write 𝐹 (𝑛; 𝒌) to denote the maximum of 𝐹 (𝐺; 𝒌) over all graphs G on n vertices. This problem was
first considered by Erdős and Rothschild in 1974, but it has been solved only for a very small number of nontrivial
cases. In previous work with Pikhurko and Yilma, (Math. Proc. Cambridge Phil. Soc. 163 (2017), 341–356), we
constructed a finite optimisation problem whose maximum is equal to the limit of log2 𝐹 (𝑛; 𝒌)/

(𝑛
2
)

as n tends to
infinity and proved a stability theorem for complete multipartite graphs G.

In this paper, we provide a sufficient condition on 𝒌 which guarantees a general stability theorem for any graph
G, describing the asymptotic structure of G on n vertices with 𝐹 (𝐺; 𝒌) = 𝐹 (𝑛; 𝒌) · 2𝑜 (𝑛2) in terms of solutions to
the optimisation problem. We apply our theorem to systematically recover existing stability results as well as all
cases with 𝑠 = 2. The proof uses a version of symmetrisation on edge-coloured weighted multigraphs.
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1. Introduction

Let a nonincreasing sequence 𝒌 = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠 of natural numbers be given. By an s-edge-
colouring (or colouring for brevity) of a graph 𝐺 = (𝑉, 𝐸), we mean a function 𝜒 : 𝐸 → [𝑠], where
we denote [𝑠] := {1, . . . , 𝑠}. Note that colourings do not have to be proper, that is, adjacent edges can
have the same colour. A colouring 𝜒 of G is called 𝒌-valid if, for every 𝑐 ∈ [𝑠], the colour-c subgraph
𝜒−1 (𝑐) contains no copy of 𝐾𝑘𝑐 , the complete graph of order 𝑘𝑐 . Write 𝐹 (𝐺; 𝒌) for the number of
𝒌-valid colourings of G.

In a previous paper with Yilma [24], we investigated the Erdős-Rothschild problem of determining
𝐹 (𝑛; 𝒌), the maximum of 𝐹 (𝐺; 𝒌) over all graphs G on n vertices, and the 𝒌-extremal graphs, that is
order-n graphs which attain this maximum. We assume throughout the paper, as we did there, that 𝑠 ≥ 2
and that 𝑘𝑐 ≥ 3 for all 𝑐 ∈ [𝑠] (since 𝑘𝑐 = 2 just forbids colour c and the problem reduces to one with
𝑠 − 1 colours).

The case when 𝑘1 = . . . = 𝑘𝑠 =: 𝑘 , which we denote by 𝒌 = (𝑘1, . . . , 𝑘𝑠) = (𝑘; 𝑠), was first
considered by Erdős and Rothschild in 1974 (see [7, 8]). A trivial lower bound on 𝐹 (𝑛; (𝑘; 𝑠)) is
obtained by taking the largest 𝐾𝑘 -free graph on n vertices, namely, the Turán graph 𝑇𝑘−1 (𝑛) which is
the complete (𝑘 − 1)-partite graph with parts as equal as possible. Any s-edge-colouring of this graph
is 𝒌-valid, so we have

𝐹 (𝑛; (𝑘; 𝑠)) ≥ 𝑠𝑡𝑘−1 (𝑛) , (1.1)

where 𝑡𝑘−1(𝑛) is the number of edges in 𝑇𝑘−1 (𝑛). In particular, Erdős and Rothschild conjectured that,
when 𝒌 = (3, 3) and n is sufficiently large, the trivial lower bound (1.1) is in fact tight and, furthermore,
𝑇2 (𝑛) is the unique 𝒌-extremal graph on n vertices. The conjecture was verified for all 𝑛 ≥ 6 by Yuster
[29] (who also computed 𝐹 (𝑛; (3, 3)) for smaller n). Proving Yuster’s extension of the conjecture, Alon
et al. [1] showed that an analogous result holds for two and three colours: for large n, the Turán graph
𝑇𝑘−1 (𝑛) is the unique 𝒌-extremal graph for 𝒌 = (𝑘, 𝑘) and 𝒌 = (𝑘, 𝑘, 𝑘). The proof of this result uses
Szemerédi’s regularity lemma, so the graphs to which it applies are very large indeed. However, the
assertions are not true for all numbers n of vertices. As was remarked in [1], the assertions do not
hold when 𝑘 ≤ 𝑛 < 𝑠 (𝑘−2)/2, as in this case, a random colouring of the edges of 𝐾𝑛 with s colours
contains no monochromatic 𝐾𝑘 with probability more than 1

2 . Thus, for this range of n, we have
𝐹 (𝑛; (𝑘; 𝑠)) > 𝑠(

𝑛
2)/2 ≥ 𝑠𝑡𝑘−1 (𝑛) . Hàn and Jiménez [9] used graph containers to obtain an essentially

optimal lower bound for the order n of graphs for which the trivial lower bound (1.1) for 𝑠 = 2, 3 is tight.
In this paper, we are only interested in large n. It was proved in [1, Proposition 5.1] that the limit

𝐹 (𝒌) := lim
𝑛→∞

log2 𝐹 (𝑛; 𝒌)
𝑛2/2

(1.2)

exists (and is positive) when 𝒌 = (𝑘; 𝑠). It can be easily seen that the proof from [1] extends to an
arbitrary fixed sequence 𝒌. The authors of [1] noted that when more than three colours are used, the
behaviour of 𝐹 (𝑛; (𝑘; 𝑠)) changes, making its determination both harder and more interesting. Namely,
it was shown in [1, page 287] that if 𝑠 ≥ 4 (and 𝑘 ≥ 3), then 𝐹 (𝑛; (𝑘; 𝑠)) is exponentially in 𝑛2 larger
than 𝑠𝑡𝑘−1 (𝑛) .

https://doi.org/10.1017/fms.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.12


Forum of Mathematics, Sigma 3

Table 1. Known results..

𝒌 = (𝑘; 𝑠) 𝐹 (𝒌) extremal graph citation

any k 𝑠 = 2 1 − 1
𝑘−1 𝑇𝑘−1 (𝑛) [1]

𝑠 = 3 (1 − 1
𝑘−1 ) log2 3 𝑇𝑘−1 (𝑛) [1]

𝑘 = 3 𝑠 = 4 1
4 + 1

2 log2 3 𝑇4 (𝑛) [1, 25]
𝑠 = 5 1

2 + 1
2 log2 3 𝑆𝛼,𝛽 (𝑛) , 𝑇𝛼,𝛽 (𝑛) (*) [4]

𝑠 = 6 3
4 + 1

2 log2 3 𝑇8 (𝑛) [4]
𝑘 = 4 𝑠 = 4 8

9 log2 3 𝑇9 (𝑛) [1, 25]

(*) These graphs are known to be asymptotically extremal only: they achieve the right exponent in 𝐹 (𝑛;𝒌 ) .

In particular, any extremal graph has to contain many copies of 𝐾𝑘 . The authors of [1] determined
𝐹 (𝒌) for 𝒌 = (3, 3, 3, 3) and 𝒌 = (4, 4, 4, 4), where 𝑇4 (𝑛) and 𝑇9 (𝑛), respectively, achieve the right
exponent. Pikhurko and Yilma [25] were able to obtain an exact result for these cases: that these
Turán graphs are the unique respective extremal graphs. Recently, Botler et al. [4] announced the
determination of 𝐹 (𝒌) for 𝒌 = (3; 5), (3; 6). For 𝑠 = 6, they proved that 𝑇8 (𝑛) is the unique extremal
graph, and also proved a stability result. For 𝑠 = 5, they uncovered new behaviour: for large n, there is
an infinite family {𝑆𝛼,𝛽 (𝑛) : 0 ≤ 𝛼 + 𝛽 ≤ 1

4 } ∪ {𝑇𝛼,𝛽 (𝑛) : 0 ≤ 𝛼, 𝛽 ≤ 1
4 } of asymptotically optimal

graphs with either 4, 6 or 8 parts, where 𝑆𝛼,𝛽 (𝑛) denotes the complete partite graph with parts of size
𝑛
4 ,

𝑛
4 , 𝛼𝑛, 𝛼𝑛, 𝛽𝑛, 𝛽𝑛, (

1
4 − 𝛼 − 𝛽)𝑛, ( 1

4 − 𝛼 − 𝛽)𝑛 and 𝑇𝛼,𝛽 (𝑛) denotes the complete partite graph with
parts of size 𝛼𝑛, 𝛼𝑛, ( 1

4 − 𝛼)𝑛, ( 1
4 − 𝛼)𝑛, 𝛽𝑛, 𝛽𝑛, ( 1

4 − 𝛽)𝑛, ( 1
4 − 𝛽)𝑛. These are the only known results,

asymptotic or exact.
Many other versions of the Erdős-Rothschild problem have been studied, where the goal is to max-

imise the number of colourings of some discrete object when one forbids certain coloured substructures.
Erdős and Rothschild themselves considered the generalisation where one forbids a monochromatic
graph H. In [1], the authors showed that the trivial lower bound (1.1) is tight for large n when H is
colour-critical, that is, the removal of any edge from H reduces its chromatic number (note that every
clique is colour-critical). In a further generalisation, Balogh [3] considered edge-colourings in which
a specific colouring of a fixed graph H is forbidden. Other authors have addressed this question in the
cases of forbidden monochromatic matchings, stars, paths, trees and some other graphs in [12, 13],
matchings with a prescribed colour pattern in [14], rainbow stars in [17] and multicoloured cliques in
[15]. A so-called ‘q-analogue’ was addressed in [16], which considers a related problem in the context
of vector spaces over a finite field 𝐺𝐹 (𝑞). Alon and Yuster [2] studied a directed version of the prob-
lem, to determine the maximum number of T-free orientations of an n-vertex graph, where T is a given
k-vertex tournament. The problem of counting monochromatic H-free edge-colourings in hypergraphs
was studied in [11, 20, 21]. Additive versions have also been studied, where an underlying group [10]
or set [22] with addition is coloured, and monochromatic triples (𝑥, 𝑦, 𝑧) with 𝑥 + 𝑦 = 𝑧 are forbidden.

1.1. An optimisation problem

This paper concerns the relation between the structure of almost extremal graphs for 𝐹 (𝑛, 𝒌) and optimal
solutions of a certain optimisation problem, Problem 𝑄𝑡 , which we now define.

Problem 𝑄𝑡 : Given a sequence 𝒌 := (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠 of natural numbers and 𝑡 ∈ {0, 1, 2},
determine

𝑄𝑡 (𝒌) := max
(𝑟 ,𝜙,𝜶) ∈feas𝑡 (𝒌)

𝑞(𝜙,𝜶), (1.3)

the maximum value of

𝑞(𝜙,𝜶) := 2
∑

1≤𝑖< 𝑗≤𝑟
𝜙 (𝑖 𝑗)≠∅

𝛼𝑖𝛼 𝑗 log2 |𝜙(𝑖 𝑗) | (1.4)

over the set feas𝑡 (𝒌) of feasible solutions, that is, triples (𝑟, 𝜙,𝜶), such that
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◦ 𝑟 ∈ N and 𝜙 ∈ Φ𝑡 (𝑟; 𝒌), where Φ𝑡 (𝑟; 𝒌) is the set of all functions 𝜙 :
( [𝑟 ]

2
)
→ 2[𝑠] , such that

𝜙−1(𝑐) :=
{
𝑖 𝑗 ∈

(
[𝑟]
2

)
: 𝑐 ∈ 𝜙(𝑖 𝑗)

}
is 𝐾𝑘𝑐 -free for every colour 𝑐 ∈ [𝑠] and |𝜙(𝑖 𝑗) | ≥ 𝑡 for all 𝑖 𝑗 ∈

( [𝑟 ]
2
)
;

◦ 𝜶 = (𝛼1, . . . , 𝛼𝑟 ) ∈ Δ𝑟 , where Δ𝑟 is the set of all 𝜶 ∈ R𝑟 with 𝛼𝑖 ≥ 0 for all 𝑖 ∈ [𝑟], and
𝛼1 + . . . + 𝛼𝑟 = 1.

Note that for 𝑡 = 1, 2, a triple (𝑟, 𝜙,𝜶) ∈ feas𝑡 (𝒌) necessarily has 𝑟 < 𝑅(𝒌) where 𝑅(𝒌) is the
Ramsey number of 𝒌 (i.e. the minimum R, such that 𝐾𝑅 admits no 𝒌-valid s-edge-colouring). Thus, the
maximum in (1.3) is attained for 𝑡 = 1, 2 since 𝑞(𝑟, 𝜙, ·) is continuous for each of the finitely many pairs
(𝑟, 𝜙), and feas𝑡 (𝒌) is a (nonempty) compact space. It is also attained for 𝑡 = 0 by (1.5) below. We call
𝜙 ∈ Φ0(𝑟; 𝒌) a colour pattern and 𝜶 ∈ Δ𝑟 a vertex weighting. A triple (𝑟, 𝜙,𝜶) is called 𝑄𝑡 -optimal if
it attains the maximum, that is, (𝑟, 𝜙,𝜶) ∈ feas𝑡 (𝒌) and 𝑞(𝑟, 𝜙,𝜶) = 𝑄𝑡 (𝒌). One can easily show [24,
Lemma 6] that

𝑄(𝒌) := 𝑄2 (𝒌) = 𝑄1 (𝒌) = 𝑄0 (𝒌). (1.5)

Note that a 𝑄0-optimal triple can have r arbitrarily large, by, for example, adding vertices of weight 0
or splitting an existing vertex into two clones. Let opt𝑡 (𝒌) be the set of 𝑄𝑡 -optimal triples (𝑟, 𝜙,𝜶). Let
feas∗(𝒌) be the set of (𝑟, 𝜙,𝜶) ∈ feas2(𝒌) with 𝛼𝑖 > 0 for every 𝑖 ∈ [𝑟]. Let opt∗(𝒌) be the set of
basic optimal solutions, which are 𝑄2-optimal triples (𝑟, 𝜙,𝜶) with 𝛼𝑖 > 0 for every 𝑖 ∈ [𝑟].

Given vectors 𝒂 = (𝑎1, . . . , 𝑎𝑠) and 𝒃 = (𝑏1, . . . , 𝑏𝑡 ), write 𝒂 ≤ 𝒃 if 𝑎𝑖 ≤ 𝑏𝑖 for all 𝑖 ≤ max{𝑠, 𝑡}
where 𝑎𝑖 := 0 for all 𝑖 > 𝑠 and 𝑏𝑖 := 0 for all 𝑖 > 𝑡. We write ‖𝒂 − 𝒃‖1 :=

∑
𝑖≤max{𝑠,𝑡 } |𝑎𝑖 − 𝑏𝑖 | for the

ℓ1-distance between 𝒂 and 𝒃. In this paper, we always take log to the base 2; from now on, we omit any
subscript.

One should think of feasible triples (𝑟, 𝜙,𝜶) as vertex-weighted edge-coloured multigraphs. It is not
hard to show that 𝐹 (𝒌) ≥ 𝑄(𝒌). Indeed, given 𝒌, a 𝑄1-optimal triple (𝑟, 𝜙,𝜶) and 𝑛 ∈ N, take the
complete r-partite n-vertex graph 𝐾𝜶 (𝑛) whose parts 𝑋1, . . . , 𝑋𝑟 satisfy | |𝑋𝑖 | −𝛼𝑖𝑛 | ≤ 1 for all 𝑖 ∈ [𝑟].
Consider those s-edge-colourings of 𝐾𝜶 (𝑛) in which, for 𝑥 ∈ 𝑋𝑖 and 𝑦 ∈ 𝑋 𝑗 , we only allow colours in
𝜙(𝑖 𝑗) to be used on 𝑥𝑦. Every such colouring is 𝒌-valid, since every 𝜙−1(𝑐) is 𝐾𝑘𝑐 -free. Clearly, 𝐹 (𝑛; 𝒌)
is bounded below by the number of such colourings of 𝐾𝜶 (𝑛), which is∏

𝑖 𝑗∈( [𝑟 ]2 )
|𝜙(𝑖 𝑗) | |𝑋𝑖 | |𝑋 𝑗 | = 2𝑞 (𝜙,𝜶)𝑛

2/2+𝑂 (𝑛) = 2𝑄 (𝒌)𝑛2/2+𝑂 (𝑛) .

Taking the limit as 𝑛 → ∞, we have 𝐹 (𝒌) ≥ 𝑄(𝒌). With Yilma, we proved the following results relating
the determination of 𝐹 (𝑛; 𝒌) to Problem 𝑄1, including a matching upper bound.

Theorem 1.1 [24]. The following hold for every 𝑠 ∈ N and 𝒌 ∈ N𝑠 .

(i) For every 𝑛 ∈ N, at least one of the 𝒌-extremal graphs of order n is complete multipartite.
(ii) 𝐹 (𝑛; 𝒌) = 2𝑄 (𝒌) (𝑛2)+𝑜 (𝑛2) , that is, 𝐹 (𝒌) = 𝑄(𝒌).

(iii) For every 𝛿 > 0, there are 𝜂 > 0 and 𝑛0, such that if 𝐺 = (𝑉, 𝐸) is a complete multipartite graph
of order 𝑛 ≥ 𝑛0 with (nonempty) parts 𝑉1, . . . , 𝑉𝑟 and 𝐹 (𝐺; 𝒌) ≥ 2(𝑄 (𝒌)−𝜂)𝑛2/2, then there is a
𝑄1-optimal triple (𝑟, 𝜙,𝜶′), such that ‖𝜶 − 𝜶′‖1 ≤ 𝛿, where 𝜶 := ( |𝑉1 |

𝑛 , . . . , |𝑉𝑟 |
𝑛 ).

Thus, by (1.5), to determine 𝐹 (𝒌), it suffices to find the optimal solutions to Problem 𝑄2, which has
the smallest feasible set among the problems 𝑄𝑡 . Unfortunately, this is difficult even when 𝒌 is small.
Given a pair (𝑟, 𝜙), one can use the method of Lagrange multipliers to find a best possible 𝜶 for this
pair; though the number of pairs (𝑟, 𝜙) is finite, there are generally too many for a computer search.
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Indeed, the upper bound of 𝑅(𝒌) for r grows large very quickly, though we expect the optimal r to be
much smaller than 𝑅(𝒌).

1.2. New results

The main contribution of this paper is a general stability theorem that determines the structure of any
n-vertex graph G which is almost 𝒌-extremal, that is with 𝐹 (𝐺, 𝒌) = 𝐹 (𝑛; 𝒌) · 2𝑜 (𝑛2) . This will show
that the structure of any such graph is similar to an optimal solution to Problem 𝑄0, and almost all
valid colourings almost follow an optimal colour pattern. This stability result holds for all 𝒌 satisfying
a rather general condition, which we call the extension property. Given opt∗(𝒌), one can easily check
whether this condition holds. Indeed, we show that in almost all instances for which 𝐹 (𝒌) is known, 𝒌
satisfies a strong version of this property.

Definition 1.2 (Clones and extension property). Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 . Given 𝑟 ∈ N and 𝜙 ∈ Φ0(𝑟; 𝒌),
we say that 𝑖 ∈ [𝑟] is

◦ a clone of 𝑗 ∈ [𝑟] \ {𝑖} (under 𝜙) if 𝜙(𝑖𝑘) = 𝜙( 𝑗 𝑘) for all 𝑘 ∈ [𝑟] \ {𝑖, 𝑗} and |𝜙(𝑖 𝑗) | ≤ 1;
◦ a strong clone of j (under 𝜙) if additionally 𝜙(𝑖 𝑗) = ∅.

We say that 𝒌 has

◦ the extension property if, for every (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝜙 ∈ Φ0(𝑟∗+1; 𝒌), such that 𝜙|( [𝑟∗ ]2 ) = 𝜙∗

and
∑

𝑖∈[𝑟∗ ]:𝜙 ( {𝑖,𝑟∗+1})≠∅ 𝛼𝑖 log |𝜙({𝑖, 𝑟∗ + 1}) | = 𝑄(𝒌), there exists 𝑗 ∈ [𝑟∗], such that 𝑟∗ + 1 is a
clone of j under 𝜙;

◦ the strong extension property if in fact 𝑟∗ + 1 is a strong clone of j.

We explain the intuition and motivation behind this property in Section 2.1. For now, we remark
that it is generally easy to check whether 𝒌 has the extension property, when opt∗(𝒌) is known. We
check it for some cases in Section 5. For 𝒌 with the extension property, one can describe all solutions
to opt0(𝒌) in terms of basic optimal solutions. Every solution can be obtained by ‘blowing up’ a basic
optimal solution (𝑟∗, 𝜙∗,𝜶∗); that is, taking arbitrarily many clones of the vertices and modifying part
sizes so that the sum of vertex weights of clones of j equals 𝛼∗

𝑗 for every j; and then possibly adding
colour c edges between clones of each j, without creating a c-coloured copy of 𝐾𝑘𝑐 , where c is the
colour with the largest forbidden clique. Without loss of generality, we assume 𝑘1 ≥ . . . ≥ 𝑘𝑠 , so that
𝑐 = 1. If 𝑘1 = 𝑘2, then one cannot add any colour 1 edges between clones without creating a forbidden
clique.

Lemma 1.3. Let 𝑠 ∈ N and suppose that 𝒌 ∈ N𝑠 with 𝑘1 ≥ . . . ≥ 𝑘𝑠 has the extension property. Let
(𝑟, 𝜙,𝜶) ∈ feas0(𝒌). Then (𝑟, 𝜙,𝜶) ∈ opt0(𝒌) if and only if there exist (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and a
partition 𝑉1 ∪ . . . ∪𝑉𝑟∗ of {𝑖 : 𝛼𝑖 > 0}, such that the following hold.

(i) For all 𝑗 ∈ [𝑟∗], 𝛼∗
𝑗 =

∑
𝑖∈𝑉𝑗

𝛼𝑖 .
(ii) For all 𝑖 𝑗 ∈

( [𝑟∗ ]
2

)
, 𝑖′ ∈ 𝑉𝑖 and 𝑗 ′ ∈ 𝑉 𝑗 , we have that 𝜙(𝑖′ 𝑗 ′) = 𝜙∗(𝑖 𝑗).

(iii) For all 𝑖 ∈ [𝑟∗] and distinct 𝑖′, 𝑗 ′ ∈ 𝑉𝑖 , we have that 𝜙(𝑖′ 𝑗 ′) ⊆ {1}. Moreover, if at least one
𝜙(𝑖′𝑖′′) for distinct 𝑖′, 𝑖′′ ∈ 𝑉𝑖 and 𝑖 ∈ [𝑟∗] is nonempty, then 𝑘1 > 𝑘2 and there is an integer vector
ℓ ∈ N𝑟∗ , such that ‖ℓ‖1 ≤ 𝑘1 − 1 and 𝜙−1(1) [𝑉𝑖] is 𝐾ℓ𝑖+1-free for all 𝑖 ∈ [𝑟∗].

Our main result is the following stability theorem. The edit distance 𝑑edit(𝐺,𝐺 ′) of two graphs
𝐺,𝐺 ′ of the same order is the minimum number of edges that need to be added/removed to make 𝐺 ′

isomorphic to G. Given graphs G and H and 𝛿 > 0, we say that G is 𝛿-far from being H-free if it has
edit distance at least 𝛿 |𝑉 (𝐺) |2 to every H-free graph with the same number of vertices (note that we
only need to delete edges here). Given disjoint 𝐴, 𝐵 ⊆ 𝑉 (𝐺) and 0 ≤ 𝑑 ≤ 1, we say that 𝐺 [𝐴, 𝐵] is
(𝛿, 𝑑)-regular if 𝑑𝐺 (𝐴, 𝐵) := 𝑒𝐺 (𝐴, 𝐵) |𝐴|−1 |𝐵 |−1 ∈ (𝑑 − 𝛿, 𝑑 + 𝛿), and |𝑑𝐺 (𝑋,𝑌 ) − 𝑑𝐺 (𝐴, 𝐵) | < 𝛿 for
all 𝑋 ⊆ 𝐴, 𝑌 ⊆ 𝐵 with |𝑋 |/|𝐴|, |𝑌 |/|𝐵 | ≥ 𝛿. We are now ready to state the stability theorem. It says
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that, for any large n-vertex graph G which has close to the maximum number of valid colourings; that
is, 𝐹 (𝐺; 𝒌) = 𝐹 (𝑛, 𝒌) · 2𝑜 (𝑛2) , for almost all of its valid colourings 𝜒, there is a solution to opt0 (𝒌)
which describes the structure of 𝜒: it looks like a ‘blow-up’ of the solution. Lemma 1.3 describes the
structure of solutions in terms of basic optimal solutions, and, therefore, there is a basic optimal solution
(𝑟∗, 𝜙∗,𝜶∗) which describes the structure of 𝜒. Part (ii) implies that, not only is there a partition of𝑉 (𝐺),
such that 𝜒 has many edges of every colour 𝑐 ∈ 𝜙∗(𝑖 𝑗) between the i-th and j-th parts (and few edges of
any other colour), these edges are in fact well-distributed and of roughly equal densities between these
parts.

Theorem 1.4 (Stability). Let 𝑠 ∈ N, and suppose that 𝒌 ∈ N𝑠 with 𝑘1 ≥ . . . ≥ 𝑘𝑠 has the extension
property. Then for all 𝛿 > 0, there exist 𝑛0 ∈ N and 𝜀 > 0, such that the following holds. If G is a graph
on 𝑛 ≥ 𝑛0 vertices, such that

log 𝐹 (𝐺; k)(𝑛
2
) ≥ 𝑄(k) − 𝜀,

then, for at least (1 − 2−𝜀𝑛2 )𝐹 (𝐺; 𝒌) colourings 𝜒 : 𝐸 (𝐺) → [𝑠] which are 𝒌-valid, there are
(𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and a partition 𝑌1 ∪ . . . ∪ 𝑌𝑟∗ of 𝑉 (𝐺), such that the following hold.

(i) For all 𝑖 ∈ [𝑟∗], we have that | |𝑌𝑖 | − 𝛼∗
𝑖 𝑛 | < 1.

(ii) For all 𝑐 ∈ 𝜙∗(𝑖 𝑗) and 𝑖 𝑗 ∈
( [𝑟∗ ]

2
)
, we have that 𝜒−1 (𝑐) [𝑌𝑖 , 𝑌 𝑗 ] is (𝛿, |𝜙∗(𝑖 𝑗) |−1)-regular. In

particular, 𝑒𝐺 (𝑌𝑖 , 𝑌 𝑗 ) ≥ (1 − 𝑠𝛿) |𝑌𝑖 | |𝑌 𝑗 |.
(iii) Suppose

∑
𝑖∈[𝑟∗ ] 𝑒(𝐺 [𝑌𝑖]) > 𝛿𝑛2. Then 𝒌 does not have the strong extension property, and all but at

most 𝛿𝑛2 edges in
⋃

𝑖∈[𝑟∗ ] 𝐺 [𝑌𝑖] are coloured with 1 under 𝜒. Moreover, if ℓ := (ℓ1, . . . , ℓ𝑟∗ ) ∈ N𝑟∗

is such that 𝐺 [𝑌𝑖] is 𝛿-far from being 𝐾ℓ𝑖 -free, then ‖ℓ‖1 ≤ 𝑘1 − 1.

Somewhat conversely, if (i), (iii) and 𝑒𝐺 (𝑌𝑖 , 𝑌 𝑗 ) ≥ (1− 𝑠𝛿) |𝑌𝑖 | |𝑌 𝑗 | hold for some triple (𝑟∗, 𝜙∗,𝜶∗) ∈
opt∗(𝒌), a partition 𝑌1, . . . , 𝑌𝑟∗ of an n-vertex graph G, and 𝛿 = 𝑜(1), and each 𝐺 [𝑌𝑖] is 𝐾ℓ𝑖+1-free for
some vector ℓ of 1-norm at most 𝑘1 − 1, then 𝐹 (𝐺; 𝒌) ≥ 2(𝑄 (𝒌)−𝑜 (1))𝑛2/2.

One should note the similarities between the statements of Theorem 1.4 and Lemma 1.3. Indeed, this
parallel shows that the gist of Theorem 1.4 is ‘near-extremal graphs look like blow-ups of solutions to
opt∗(𝒌)’. This is not quite true within parts, as here, G could be very far from a complete partite graph.
Note also that the partition 𝑌1 ∪ . . . ∪ 𝑌𝑟∗ may be different for different colourings 𝜒.

We illustrate these statements with the example 𝒌 = (5, 3). As it is not hard to show (or see
Lemma 1.8), opt∗((5, 3)) consists of just one element, namely, (2, 𝜙∗, ( 1

2 ,
1
2 )), where 𝜙∗(12) := {1, 2}.

Thus, by Theorem 1.4 and the remark after it, the set of almost extremal graphs can be described as
consisting of graphs that are 𝑜(𝑛2)-close to 𝑇2 (𝑛) with triangle-free graphs added into each part, or a
𝐾4-free graph added into one part. Note that the partition 𝑌1 ∪ 𝑌2 of Theorem 1.4 may depend on the
colouring. For example, if G is 𝑇4 (𝑛) with parts 𝑉1, . . . , 𝑉4, then Theorem 1.4 gives that for a typical
colouring, there are disjoint pairs 𝑖 𝑗 , ℓ𝑚, such that almost all edges between 𝑉𝑖 and 𝑉 𝑗 and between 𝑉ℓ
and 𝑉𝑚 are coloured with colour 1; then 𝑌1 and 𝑌2 in Theorem 1.4 have to be 𝑉𝑖 ∪ 𝑉 𝑗 and 𝑉ℓ ∪ 𝑉𝑚, up
to changing 𝑜(𝑛) vertices.

If 𝒌 has the strong extension property, then G is close to a complete multipartite graph by Theorem 1.4.
So the pairs (𝑟∗,𝜶∗) associated with the colourings specified by the theorem are close to each other
up to a relabelling of colours. We have the following corollary of Theorem 1.4 for 𝒌 with the strong
extension property.

Corollary 1.5. Let 𝑠 ∈ N, and suppose that 𝒌 ∈ N𝑠 with 𝑘1 ≥ . . . ≥ 𝑘𝑠 has the strong extension
property. Then for all 𝛿 > 0, there exists 𝑛0 ∈ N and 𝜀 > 0, such that the following holds. Let G be a
graph on 𝑛 ≥ 𝑛0 vertices, such that

log 𝐹 (𝐺; 𝒌)(𝑛
2
) ≥ 𝑄(𝒌) − 𝜀.
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Then there are 𝑟∗,𝜶∗ and a partition V(G) = 𝑉1 ∪ . . . ∪ 𝑉𝑟∗ with
�� |𝑉𝑖 | − 𝛼∗

𝑖 𝑛
�� < 1 for all 𝑖 ∈ [𝑟∗], such

that the edit distance between G and 𝐾 [𝑉1, . . . , 𝑉𝑟∗ ] is at most 𝛿𝑛2. Moreover, for at least (1 − 2−𝜀𝑛2 ) ·
𝐹 (𝐺; 𝒌) 𝒌-valid s-edge-colourings 𝜒 of G, there exists (𝑟∗, 𝜙∗,𝜶) ∈ opt∗(𝒌) where ‖𝜶 − 𝜶∗‖1 ≤ 𝛿,
such that 𝜒−1(𝑐) [𝑉𝑖 , 𝑉 𝑗 ] is (𝛿, |𝜙∗(𝑖 𝑗) |−1)-regular for all 𝑖 𝑗 ∈

( [𝑟∗ ]
2

)
and 𝑐 ∈ 𝜙∗(𝑖 𝑗).

Recall from Theorem 1.1(i) that at least one extremal graph is complete multipartite. The following
conjecture was made in [24]:

Conjecture 1.6. For every 𝒌, every 𝒌-extremal graph is complete multipartite.

In [23], we will use Corollary 1.5 to prove an exact result for all 𝒌 with the strong extension property:
that for such 𝒌, every large extremal graph is a complete multipartite graph with part ratios roughly
𝛼∗

1, . . . , 𝛼
∗
𝑟∗ for some 𝜶∗ coming from a basic optimal triple (𝑟∗, 𝜙∗,𝜶∗). However, it seems much harder

to prove an exact result for 𝒌 without the strong extension property, as Theorem 1.4 as well as the
example 𝒌 = (5, 3) above show that, in general, there are many asymptotically extremal graphs which
are far from complete multipartite.

1.3. Applications

Armed with Theorem 1.4, to determine asymptotically 𝒌-extremal graphs, one need only solve Problem
𝑄2 for 𝒌, and then check for the extension property using the optimal solutions.

We apply our stability theorem to reprove stability for most of the cases in which 𝐹 (𝑛; 𝒌) has
already been determined, in a systematic fashion. For this, it suffices to solve Problem 𝑄2 (which
follows from these earlier works), and to prove the extension property. Proving the extension property is
straightforward: there are 𝑂 (𝑠𝑟 ) possible attachments of a new vertex to some (𝑟, 𝜙,𝜶) so a computer
could check these for reasonable 𝑠, 𝑟 . Actually, when optimal solutions have a particular nice form, which
they do in almost all known cases, one can reduce the problem to determining solutions to some simple
exponential equation over the integers (see Lemma 5.3). We cannot prove stability for 𝒌 = (3, 3, 3, 3, 3),
which does not have the extension property, strong or otherwise.

Theorem 1.7. Each 𝒌 among (𝑘, 𝑘), (𝑘, 𝑘, 𝑘), (3, 3, 3, 3), (4, 4, 4, 4) has the strong extension property,
for all integers 𝑘 ≥ 3. Thus, Theorem 1.4 applies to every such 𝒌.

As an example, we solve the optimisation problem for 𝑠 = 2 and state a version of Theorem 1.4 to
illustrate it. Note that it would not be too difficult to prove stability for 𝑠 = 2 directly.

Lemma 1.8. Let 𝑘 ≥ ℓ ≥ 3 be positive integers, 𝒌 := (𝑘, ℓ) and 𝜙 be the function on
( [ℓ−1]

2
)

that assumes
value {1, 2} for every pair. Then 𝑄(𝒌) = 1− 1

ℓ−1 and opt∗(𝒌) = {(ℓ − 1, 𝜙, 𝒖)} where 𝒖 is uniform, and
𝒌 has the extension property. Moreover, 𝒌 has the strong extension property if and only if 𝑘 = ℓ.

We write 𝜔(𝐺) for the clique number of a graph G; that is, the size of its largest clique.

Theorem 1.9. Let 𝑘 ≥ ℓ ≥ 3 be integers. For all 𝛿 > 0, there exist 𝑛0 ∈ N and 𝜀 > 0, such that the
following holds. Let G be a graph on 𝑛 ≥ 𝑛0 vertices, such that log 𝐹 (𝐺; (𝑘, ℓ)) ≥ (𝑄(𝑘, ℓ) − 𝜀)

(𝑛
2
)
.

Then there is a graph 𝐺 ′ which can be obtained from G by modifying at most 𝛿𝑛2 adjacencies, and an
equipartition 𝑉 (𝐺 ′) = 𝐴1 ∪ . . . ∪ 𝐴ℓ−1, such that 𝐺 ′ [𝐴𝑖 , 𝐴 𝑗 ] is complete for all distinct 𝑖, 𝑗 ∈ [ℓ − 1],
and

∑
𝑖∈[ℓ−1] 𝜔(𝐺 ′ [𝐴𝑖]) ≤ 𝑘 − 1.

Moreover, for at least (1− 2−𝜀𝑛2 )𝐹 (𝐺; 𝒌) valid colourings 𝜒 of G, 𝜒−1(𝑐) [𝐴𝑖 , 𝐴 𝑗 ] is (𝛿, 1
2 )-regular

for 𝑐 = 1, 2 and distinct 𝑖, 𝑗 ∈ [ℓ − 1], and all but at most 𝛿𝑛2 edges in
⋃

𝑖∈[ℓ−1] 𝐺 [𝐴𝑖] are coloured
with colour 1.

1.4. A sketch of the proof of Theorem 1.4

Since the proof of Theorem 1.4 is quite involved, we give a fairly detailed sketch first. Let G be a graph
on n vertices, such that log 𝐹 (𝐺; 𝒌) ≥ (𝑄(𝒌) − 𝜀)

(𝑛
2
)
. There are several ingredients to the proof.
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Regularity lemma: G is close to some nearly optimal (𝑟, 𝜙,𝜶) in feas0(𝒌). The multicolour version
of Szemerédi’s regularity lemma was already used to prove the existing results on 𝐹 (𝑛; 𝒌) in [1, 25] (for
definitions and statements related to the regularity lemma, see Section 4.1). Given a 𝒌-valid colouring
𝜒 of G, we obtain an equitable partition𝑈1 ∪ . . .∪𝑈𝑟 in which almost all pairs are regular in all colours
in [𝑠]. Define a colour pattern 𝜙 :

( [𝑟 ]
2
)
→ 2[𝑠] by adding the colour c to 𝜙(𝑖 𝑗) if 𝜒−1 (𝑐) [𝑉𝑖 , 𝑉 𝑗 ] is

regular, and has density that is not too small. The embedding lemma (Lemma 4.6) implies that 𝜙−1(𝑐)
is 𝐾𝑘𝑐 -free for all 𝑐 ∈ [𝑠]. In this way, much of the information carried by 𝜒 is transferred to the tuple
RL(𝜒) := (𝑟, 𝜙,U ), where U := {𝑈1, . . . ,𝑈𝑟 }.

Of course, one still needs to prove that this process is in some sense reversible: that the structure of
G itself, as well as the structure of its colourings, can be recovered from (𝑟, 𝜙,U ). This may not always
be the case: we could have chosen some pathological 𝜒 to generate (𝑟, 𝜙,U ). For example, in the case
𝒌 = (3, 3), the unique extremal graph is𝑇2 (𝑛) = 𝐾 
𝑛/2�, �𝑛/2� , but we could have chosen 𝜒 which colours
every edge with colour 1. Then we cannot recover many further colourings from (𝑟, 𝜙,U ).

For this reason, we only wish to consider tuples (𝑟, 𝜙,U ) which are the image of many colourings;
that is, some nontrivial proportion of all colourings. Such a tuple is called popular; and we think of
colourings 𝜒 which map to this tuple as being good representatives of the set of all colourings of G.
Since, as we show in Proposition 4.10, almost every colouring maps to a popular tuple, it suffices to
fix a popular tuple (𝑟, 𝜙,U ) and only consider colourings which map to this tuple. Intuitively, all such
colourings should be similar.

Let 𝛼𝑖 := 1/𝑟 for all 𝑖 ∈ [𝑟]. Then (𝑟, 𝜙,𝜶) ∈ feas0 (𝒌). So the regularity lemma allows us to pass
from G to a feasible solution to Problem 𝑄0. It turns out that since (𝑟, 𝜙,U ) is popular, we have that

𝑞(𝜙,𝜶) ≥ 𝑄(𝒌) − 2𝜀,

and, moreover, that 𝐺 [𝑈𝑖 ,𝑈 𝑗 ] is almost complete for all 𝑖 𝑗 ∈
( [𝑟 ]

2
)

(see Claim 4.1). Since we can choose
r large (but still bounded), the number of edges of G within any 𝑈𝑖 can be made very small. Therefore,
the structure of G can be recovered from (𝑟, 𝜙,U ).

Symmetrisation: from (𝑟, 𝜙,𝜶) ∈ feas0(𝒌) to some (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌). This is the main part
of the proof (Lemma 3.1), and in it, we forget about G entirely, and instead concentrate on (𝑟, 𝜙,𝜶).
We think of this object as a vertex-weighted coloured multigraph: the weights are given by 𝜶, and
the coloured edges by 𝜙. We will apply a version of symmetrisation to (𝑟, 𝜙,𝜶). Symmetrisation was
originally used in (ordinary) graphs by Zykov [30] to give a new proof of Turán’s theorem. In its most
basic form, it is the process of considering two nonadjacent vertices x and y in a graph G, and replacing
x by a clone of y, that is a vertex 𝑦′ whose neighbourhood is the same as that of y. With Yilma [24],
we used symmetrisation to modify any 𝒌-extremal graph into one which is both extremal and complete
multipartite (Theorem 1.1(i)). Here, we use a version of symmetrisation as follows. Suppose that there
is some 𝑖 𝑗 ∈

( [𝑟 ]
2
)
, such that |𝜙(𝑖 𝑗) | ≤ 1. Then we create a new feasible solution on r parts by making

vertex j a clone of vertex i, or vice versa. One of these choices will be such that the new solution
(𝑟, 𝜙′,𝜶) satisfies 𝑞(𝜙′,𝜶) ≥ 𝑞(𝜙,𝜶). At the end of this process, we will obtain (𝑟, 𝜙 𝑓 ,𝜶) ∈ feas0 (𝒌)
(where f is for final), such that |𝜙 𝑓 (𝑖 𝑗) | ≥ 2 whenever 𝑖, 𝑗 are not clones and

𝑞(𝜙 𝑓 ,𝜶) ≥ 𝑄(𝒌) − 2𝜀

(in fact, we split each step into small steps to get slowly evolving colour patterns 𝜙 = 𝜙0, . . . , 𝜙 𝑓 ).
The solution (𝑟, 𝜙 𝑓 ,𝜶) corresponds to a smaller solution (𝑟 𝑓 , 𝜓 𝑓 ,𝜶 𝑓 ) in which all clones are merged,
so (𝑟 𝑓 , 𝜓 𝑓 ,𝜶 𝑓 ) ∈ feas2 (𝒌) (and 𝑞(𝜓 𝑓 ,𝜶 𝑓 ) = 𝑞(𝜙 𝑓 ,𝜶) is near-optimal). A compactness argument
(Lemma 2.3) shows that there is some basic optimal solution (𝑟∗, 𝜙∗,𝜶∗) which is very close to the
near-optimal (𝑟 𝑓 , 𝜙 𝑓 ,𝜶 𝑓 ) in a very strong sense: 𝜶∗ and 𝜶 𝑓 are close in ℓ1-distance, and 𝜙 𝑓 equals 𝜙∗
between pairs with nonnegligible weights.

The extension property: (𝑟, 𝜙,𝜶) and (𝑟∗, 𝜙∗,𝜶∗) are close. Here, we mean ‘close’ in the sense of
Lemma 1.3. So we would like to show that when we merge pairs 𝑖 𝑗 with |𝜙(𝑖 𝑗) | ≤ 1 in (𝑟, 𝜙,𝜶) we
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obtain a weight vector 𝒖 which is close to 𝜶∗ in ℓ1-distance, and 𝜙 ⊆ 𝜙∗ on pairs of non-negligible
size. (This turns out to be a simplification; see below.) It is of course far from clear that we have not
changed (𝑟, 𝜙,𝜶) drastically to obtain (𝑟∗, 𝜙∗,𝜶∗). That this is not so is effectively a consequence of the
extension property.

Having obtained (𝑟∗, 𝜙∗,𝜶∗) from symmetrisation, we can now, with the benefit of hindsight, follow
the procedure backwards. At each stage, we check whether the attachments of each vertex are large;
if not we sequentially put bad vertices into an exceptional set, called 𝑈0

𝑖 at the i-th step. At each
stage, the extension property implies that every vertex x is either in 𝑈0

𝑖 or it corresponds to some
vertex k in the optimal solution (𝑟∗, 𝜙∗,𝜶∗); that is, 𝜙𝑖 (𝑥𝑦) ⊆ 𝜙∗(𝑘 𝑗) for all 𝑗 ∈ [𝑟∗] \ {𝑘} and all
vertices y corresponding to j. Let 𝑈𝑘

𝑖 be the set of vertices corresponding to k at Step i. Note that
|𝜙𝑖 (𝑥𝑦) | ≤ 1𝑖 𝑓 𝑥, 𝑦 ∈ 𝑈𝑘

𝑖 .
So, going back through the procedure, at each step there are a small fraction of vertices x which were

exceptional but are no longer exceptional, and these are moved to the 𝑈𝑘
𝑖 for which x corresponds to k;

and there are a small fraction of vertices moved into 𝑈0
𝑖 . When we return to Step 0, we want to show

that 𝜙 ⊆ 𝜙∗ between any two classes 𝑈 𝑗
0 and 𝑈𝑘

0 , even though the attachment between 𝑈0
0 and the rest

of the vertices, as well as the colour pattern within a class 𝑈𝑘
𝑖 may have changed. Therefore, if we can

show that 𝑈0
0 is small (Claim 3.1.2) and every 𝑈𝑘

0 , 𝑘 > 0, is about the same size throughout, then the
procedure did not really change (𝑟, 𝜙,𝜶) much at all. Furthermore, we have a partition 𝑈0

0 ,𝑈
1
0 , . . . ,𝑈

𝑟∗

0
of [𝑟] such that 𝜙 ⊆ 𝜙∗ between 𝑈𝑖

0,𝑈
𝑗
0 , 𝑖, 𝑗 ≠ 0; and |𝜙(𝑖 𝑗) | ≤ 1 within a class. In fact, the above

sketch is a simplification, and though the exceptional set is always small, the other parts could change
significantly in size. Nevertheless, we show that for each i there are 𝑟𝑖 nonzero nonexceptional parts with
part ratios given by some �̃�𝑖 , and (𝑟𝑖 , 𝜙𝑖 , �̃�𝑖) ∈ opt∗(𝒌), where 𝜙𝑖 ⊆ 𝜙𝑖 between pairs and |𝜙𝑖 ( 𝑗 𝑘) | ≤ 1
within a class.

Recovering G from (𝑟∗, 𝜙∗,𝜶∗). We now transfer the information we have gleaned about (𝑟, 𝜙,𝜶)
back to G itself. The partition of [𝑟] induces a partition 𝑋0, 𝑋1, . . . , 𝑋𝑟∗ on 𝑉 (𝐺). For every 𝜒 ∈
RL−1((𝑟, 𝜙,U )), we almost always have 𝜒(𝑥𝑦) ∈ 𝜙∗(𝑖 𝑗) when 𝑖 𝑗 ∈

( [𝑟∗ ]
2

)
and 𝑥 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑋 𝑗 . In Claims

4.2 and 4.3, we show, for almost all these 𝜒, that 𝜒−1(𝑐) [𝑋𝑖 , 𝑋 𝑗 ] is regular. Indeed, if 𝜒−1 (𝑐) [𝑋𝑖 , 𝑋 𝑗 ]
is not regular, then Lemma 4.4 implies that there is 𝑐∗ ∈ [𝑠] and large sets 𝑋 ⊆ 𝑋𝑖 and 𝑌 ⊆ 𝑋 𝑗 between
which the density of colour 𝑐∗ edges is significantly less than it is between 𝑋𝑖 and 𝑋 𝑗 . But Corollary 4.8
implies that very few s-edge colourings of 𝐺 [𝑋𝑖 , 𝑋 𝑗 ] are such that some colour class (𝑐 ∈ 𝜙∗(𝑖 𝑗)) has
size much less than the average |𝜙∗(𝑖 𝑗) |−1.

The final step is to look inside the classes. We discretise by applying the regularity lemma again
within each class (which is large by Lemma 2.8). This allows us to apply Lemma 2.5 to prove (iii).

1.5. Organisation

Most of the paper concerns optimal triples for Problem 𝑄𝑡 rather than graphs. In Section 2, we collect
some tools concerning these optimal triples, and some consequences of the extension property. The
main result in Section 3 is the stability of optimal solutions given the extension property, which is the key
component of the proof of our graph stability result, Theorem 1.4. In Section 4, we transfer statements
on optimal triples to graphs, and prove Theorem 1.4, after stating and proving some tools concerning
the regularity lemma. Then we prove Corollary 1.5. Section 5 concerns applications of Theorem 1.4, in
particular, it contains the derivations of Theorems 1.7 and 1.9. We finish with some concluding remarks
in Section 6.

2. Optimal solutions of Problem 𝑄𝑡

We will now explore some properties of optimal solutions, which will be useful in later sections. The
following proposition states that, in an optimal solution (𝑟, 𝜙,𝜶) ∈ opt0(𝒌), every vertex i of positive
weight attaches optimally, in that the normalised contribution 𝑞𝑖 (𝜙,𝜶) to the sum
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𝑞(𝜙,𝜶) =
∑
𝑖∈[𝑟 ]

𝛼𝑖𝑞𝑖 (𝜙,𝜶) where 𝑞𝑖 (𝜙,𝜶) :=
∑

𝑗∈[𝑟 ]\{𝑖 }
𝜙 (𝑖 𝑗)≠∅

𝛼 𝑗 log |𝜙(𝑖 𝑗) |

is equal to 𝑄(𝒌).

Proposition 2.1. Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 , and suppose that (𝑟, 𝜙,𝜶) ∈ opt0(𝒌). For every 𝑖 ∈ [𝑟] with
𝛼𝑖 > 0, we have that 𝑞𝑖 (𝜙,𝜶) = 𝑄(𝒌).

Proof. Without affecting the statement, we can remove all indices i with 𝛼𝑖 = 0. So assume that 𝛼𝑖 > 0
for all 𝑖 ∈ [𝑟]. We use the method of Lagrange multipliers. Recall that the constraint is that 𝑔(𝜶) = 0,
where 𝑔(𝜶) := ‖𝜶‖1 − 1. Fix 𝜙 ∈ Φ0(𝑟; 𝒌), and let

L(𝜶, 𝜆) := 𝑞(𝜙,𝜶) − 𝜆𝑔(𝜶).

Since the optimal vertex weighting 𝜶 is in the interior of Δ𝑟 (and L is continuously differentiable there),
there is 𝜆, such that (𝜶, 𝜆) is a critical point of L. Thus,

𝜕L
𝜕𝛼𝑖

= 2𝑞𝑖 (𝜙,𝜶) − 𝜆 = 0 and
𝜕L
𝜕𝜆

= ‖𝜶‖1 − 1 = 0 for all 𝑖 ∈ [𝑟] .

We see that 𝑞𝑖 (𝜙,𝜶), 𝑖 ∈ [𝑟], are equal to each other and the common value is 𝜆/2 = ‖𝜶‖1𝜆/2 =∑
𝑖∈[𝑟 ] 𝛼𝑖𝑞𝑖 (𝜙,𝜶) = 𝑞(𝜙,𝜶) = 𝑄(𝒌). Therefore, every (𝑟, 𝜙,𝜶) ∈ opt0(𝒌) satisfies the equation in the

statement of the proposition. �

The next proposition shows that the objective function 𝑞(𝜙, ·) is Lipschitz continuous.

Proposition 2.2 [24, Proposition 11]. Let 𝑠, 𝑟 ∈ N and 𝒌 ∈ N𝑠 . Let 𝜙 ∈ Φ0(𝑟; 𝒌) and 𝜶, 𝜷 ∈ Δ𝑟 . Then

|𝑞(𝜙,𝜶) − 𝑞(𝜙, 𝜷) | < 2(log 𝑠)‖𝜶 − 𝜷‖1.

The next lemma states that whenever we have a feasible solution (𝑟, 𝜙,𝜶) ∈ feas1(𝒌) which is almost
optimal, there is some vertex weighting 𝜶∗ which is close to 𝜶, such that (𝑟, 𝜙,𝜶∗) is an optimal solution.

Lemma 2.3 [24, Claim 15]. Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 . For all 𝛿 > 0, there exists 𝜀 > 0, such that the
following holds. Let (𝑟, 𝜙,𝜶) ∈ feas1(𝒌) be such that 𝑞(𝜙,𝜶) ≥ 𝑄(k) − 𝜀. Then there exists 𝜶∗ ∈ Δ𝑟 ,
such that ‖𝜶 − 𝜶∗‖1 < 𝛿 and (𝑟, 𝜙,𝜶∗) ∈ opt1 (𝒌).

Consider the following definition.

Definition 2.4 (Capacity). Given 𝑟 ∈ N, a graph G with vertex set [𝑟] and positive integers ℓ1, . . . , ℓ𝑟 ,
we write (ℓ1, . . . , ℓ𝑟 )𝐺 to denote the graph obtained from G by, for each 𝑖 ∈ [𝑟], replacing vertex i with
a clique 𝐾ℓ𝑖 , and joining every vertex in 𝐾ℓ𝑖 to all vertices in the cliques 𝐾ℓ 𝑗 , such that j is a neighbour
of i in G.

Let Cap(𝐺, 𝑘) be the set of those (ℓ1, . . . , ℓ𝑟 ) ∈ N𝑟 for which (ℓ1, . . . , ℓ𝑟 )𝐺 is 𝐾𝑘 -free.

Since (1, . . . , 1)𝐺 = 𝐺, certainly Cap(𝐺, 𝑘) ≠ ∅ whenever G is 𝐾𝑘 -free. It is easy to see that, if
𝒃 ∈ N𝑟 satisfies 𝒃 ∈ Cap(𝐺, 𝑘), then 𝒂 ∈ Cap(𝐺, 𝑘) for all 𝒂 ∈ N𝑟 with 𝒂 ≤ 𝒃. We think of Cap(𝐺, 𝑘)
as being a measure of how far a 𝐾𝑘 -free graph G is from containing a copy of 𝐾𝑘 . For example,
(1, 2, 2) ∈ Cap(𝐾3, 6), but Cap(𝐾3, 4) = {(1, 1, 1)}.

We now prove some facts about the capacity of (𝜙∗)−1(𝑐) in a basic optimal solution (𝑟∗, 𝜙∗,𝜶∗), that
is 𝑞(𝜙∗,𝜶∗) = 𝑄(𝒌), |𝜙∗(𝑖 𝑗) | ≥ 2 for all 𝑖 𝑗 ∈

( [𝑟∗ ]
2

)
, and 𝛼∗

𝑖 > 0 for all 𝑖 ∈ [𝑟∗]. The most important part
is (ii), which is essentially a consequence of the fact that maximally 𝐾𝑘 -free graphs on r vertices have
nontrivial capacity if and only if 𝑟 < 𝑘 − 1. This lemma will be important in proving Theorem 1.4(iii).

Lemma 2.5. Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 with 𝑘1 ≥ . . . ≥ 𝑘𝑠 . Let (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌), and define
𝐽𝑐 := ([𝑟∗], (𝜙∗)−1(𝑐)). Then the following statements hold.
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(i) 𝐽𝑐 is maximally 𝐾𝑘𝑐 -free.
(ii) With 1 ∈ N𝑟∗ denoting the all-1 vector, we have

Cap(𝐽𝑐 , 𝑘𝑐) =
{
{1} ∪ {ℓ ∈ N𝑟∗ : ‖ℓ‖1 ≤ 𝑘𝑐 − 1} if 𝑐 = 1 and 𝑘1 > 𝑘2

{1} otherwise;

furthermore, if Cap(𝐽1, 𝑘1) ≠ {1}, then 𝐽1 � 𝐾𝑟∗ .
(iii) 𝑟∗ ≥ 𝑘2 − 1.

Proof. Suppose that (i) does not hold for some 𝑐 ∈ [𝑠]. Then there exist distinct 𝑖′, 𝑗 ′ ∈ [𝑟∗], such
that 𝑖′ 𝑗 ′ ∉ 𝐸 (𝐽𝑐), and 𝐽𝑐 ∪ {𝑖′ 𝑗 ′} is 𝐾𝑘𝑐 -free. Let 𝜙′ :

( [𝑟∗ ]
2

)
→ 2[𝑠] be defined by setting 𝜙′(𝑖 𝑗) :=

𝜙∗(𝑖 𝑗) whenever 𝑖 𝑗 ≠ 𝑖′ 𝑗 ′; and setting 𝜙′(𝑖′ 𝑗 ′) := 𝜙∗(𝑖 𝑗) ∪ {𝑐}. By construction, 𝜙′ ∈ Φ2(𝑟∗; 𝒌). So
(𝑟∗, 𝜙′,𝜶∗) ∈ feas2 (𝒌). But

𝑞(𝜙′,𝜶∗) − 𝑞(𝜙∗,𝜶∗) = 2𝛼∗
𝑖′𝛼

∗
𝑗′ log

(
1 + 1

|𝜙∗(𝑖′ 𝑗 ′) |

)
≥ 2𝛼∗

𝑖′𝛼
∗
𝑗′ log

(
1 + 1

𝑠

)
> 0,

a contradiction. This proves (i).
We now prove (ii). To do this, we need the following simple claim.

Claim 2.5.1. Let 𝑘 ∈ N, and let H be maximally 𝐾𝑘 -free. Then every 𝑥 ∈ 𝑉 (𝐻) lies in a copy of 𝐾𝑘−1 if
and only if |𝑉 (𝐻) | ≥ 𝑘 − 1.

Proof of Claim. To prove the claim, note that the ‘only if’ direction is trivial. Suppose now that the
other direction does not hold; that is, 𝑟 := |𝑉 (𝐻) | ≥ 𝑘 − 1 and there exists 𝑥 ∈ 𝑉 (𝐻) which does not
lie in a copy of 𝐾𝑘−1. First consider the case when 𝑁𝐻 (𝑥) = 𝑉 (𝐻) \ {𝑥}. Then 𝐻 − 𝑥 is a 𝐾𝑘−2-free
graph on at least 𝑘 − 2 vertices. Thus, there is a nonedge e in 𝐻 − 𝑥. Let 𝐻 ′ := 𝐻 ∪ {𝑒}. Then 𝐻 ′ − 𝑥 is
𝐾𝑘−1-free, and since x not does lie in a 𝐾𝑘−1 in H, x does not lie in a copy of 𝐾𝑘 in 𝐻 ′. Therefore, 𝐻 ′ is
𝐾𝑘 -free, a contradiction.

Consider now the case when there is some 𝑦 ∈ 𝑉 (𝐻−𝑥), such that 𝑥𝑦 ∉ 𝐸 (𝐻). Then 𝐻 ′′ := 𝐻∪{𝑥𝑦}
is 𝐾𝑘 -free, since any clique which lies in 𝐻 ′′ but not H must contain x. Again, this is a contradiction,
proving the claim. �

Suppose that Cap((𝜙∗)−1(𝑐), 𝑘𝑐) ≠ {1}. Then there exists 𝑗 ∈ [𝑟∗], such that 1 + 𝒆 𝑗 ∈
Cap((𝜙∗)−1(𝑐)). Observe that the graph (1 + 𝒆 𝑗 )𝐽𝑐 is obtained from 𝐽𝑐 by inserting a twin 𝑗 ′ of j and
adding the edge 𝑗 𝑗 ′. If 𝑟∗ ≥ 𝑘𝑐 − 1, then j lies in a copy of 𝐾𝑘𝑐−1 in 𝐽𝑐 by Part (i) and the claim. So 𝑗 ′

together with the vertices in this copy form a copy of 𝐾𝑘𝑐 in (1 + 𝒆 𝑗 )𝐽𝑐 , a contradiction. So 𝑟∗ ≤ 𝑘𝑐 − 2.
Suppose instead that Cap((𝜙∗)−1(𝑐), 𝑘𝑐) = {1}. Then (1 + 𝒆 𝑗 )𝐽𝑐 contains a copy of 𝐾𝑘𝑐 for every

𝑗 ∈ [𝑟∗], and this copy necessarily contains j (since 𝐽𝑐 itself is𝐾𝑘𝑐 -free). Trivially, 𝑟∗ = |𝑉 (𝐽𝑐) | ≥ 𝑘𝑐−1.
We have proved that

Cap((𝜙∗)−1(𝑐), 𝑘𝑐) = {1} if and only if 𝑟∗ ≥ 𝑘𝑐 − 1. (2.1)

Let 𝐶 := {𝑐 ∈ [𝑠] : 𝑟∗ ≤ 𝑘𝑐 − 2}. If 𝐶 = ∅, then Cap((𝜙∗)−1(𝑐), 𝑘𝑐) = {1} for all 𝑐 ∈ [𝑠]. Note also
that {ℓ ∈ N𝑟∗ : ‖ℓ‖1 ≤ 𝑘𝑐 − 1} ⊆ {1}. So we are done in this case and may assume that 𝐶 ≠ ∅.

By Part (i), for all 𝑐 ∈ 𝐶, we have (𝜙∗)−1(𝑐) � 𝐾𝑟∗ since this is the unique maximally 𝐾𝑘𝑐 -free graph
on 𝑟∗ vertices. Define a new solution on 𝑟∗ + 1 vertices as follows. Suppose, without loss of generality,
that 𝛼𝑟∗ ≥ 𝛼𝑖 for all 𝑖 ∈ [𝑟∗]. Let

𝜙(𝑖 𝑗) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜙∗(𝑖 𝑗) if 𝑖 𝑗 ∈

( [𝑟∗ ]
2

)
𝜙∗(𝑖𝑟∗) if 𝑖 ∈ [𝑟∗ − 1], 𝑗 = 𝑟∗ + 1
𝐶 if {𝑖, 𝑗} = {𝑟∗, 𝑟∗ + 1}
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and

𝛼𝑖 :=

{
𝛼∗
𝑖 if 𝑖 ∈ [𝑟∗ − 1]

𝛼∗
𝑟∗/2 if 𝑖 ∈ {𝑟∗, 𝑟∗ + 1}.

Then 𝜙−1(𝑐) is 𝐾𝑘𝑐 -free for all 𝑐 ∈ [𝑠], so (𝑟∗ + 1, 𝜙,𝜶) ∈ feas1(𝒌). Furthermore,

0 ≥ 𝑞(𝜙,𝜶) − 𝑞(𝜙∗,𝜶∗) = 2
(
𝛼∗
𝑟∗

2

)2
log |𝐶 |,

and so |𝐶 | = 1. Let𝐶 = {𝑐∗}. Then 𝑘𝑐∗ −2 ≥ 𝑟∗ ≥ 𝑘𝑐−1 for all 𝑐 ∈ [𝑠]\{𝑐∗}. That is, 𝑐∗ = 1 and 𝑘1 > 𝑘2.
Suppose that (ℓ1, . . . , ℓ𝑟∗ ) ∈ N𝑟∗ . Since (𝜙∗)−1(1) � 𝐾𝑟∗ , the graph (ℓ1, . . . , ℓ𝑟∗ ) (𝜙∗)−1(1) is a clique
of order 𝑟∗ +

∑
𝑖∈[𝑟∗ ] (ℓ𝑖 − 1) =

∑
𝑖∈[𝑟∗ ] ℓ𝑖 . Therefore, Cap((𝜙∗)−1(1), 𝑘1) = {ℓ ∈ N𝑟∗ : ‖ℓ‖1 ≤ 𝑘1 − 1}

(note that this set contains 1). This completes the proof of (ii).
Finally, Part (iii) is an immediate consequence of Part (ii) and (2.1). �

2.1. The extension property

In this section, we explore the consequences of the extension property. Recall the equality from Propo-
sition 2.1 which is necessary for all vertices of positive weight in an optimal solution. Suppose we wish
to extend an optimal solution by adding a new vertex of zero weight. The following proposition shows
that the normalised contribution of this new vertex cannot be more than 𝑄(𝒌). Given 𝜙 ∈ Φ0(𝑟 + 1, 𝒌)
and 𝜶 ∈ Δ𝑟 , let

ext(𝜙,𝜶) := 𝑞𝑟+1(𝜙, (𝛼1, . . . , 𝛼𝑟 , 0)) =
∑
𝑖∈[𝑟 ]

𝜙 ( {𝑖,𝑟+1})≠∅

𝛼𝑖 log |𝜙({𝑖, 𝑟 + 1}) |,

which is the ‘normalised contribution’ of the zero-weighted vertex 𝑟 + 1 to 𝑞(𝜙, (𝛼1, . . . , 𝛼𝑟 , 0)).

Proposition 2.6. Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 . Suppose that (𝑟, 𝜙′,𝜶) ∈ opt∗(𝒌). Let 𝜙 ∈ Φ(𝑟 + 1, 𝒌) be such
that 𝜙|( [𝑟 ]2 ) = 𝜙′. Then ext(𝜙,𝜶) ≤ 𝑄(𝒌).

Proof. Suppose not. We will show that we can transfer a small amount of weight from [𝑟] to 𝑟 + 1,
and in so doing, increase 𝑞(𝜙, ·). Let 𝛾 > 0 satisfy ext(𝜙,𝜶) = (1 + 𝛾)𝑄(𝒌). Let 𝜀 ∈ (0, 2𝛾/(2𝛾 + 1)).
Define 𝜷 ∈ R𝑟+1 by setting

𝛽𝑖 :=

{
(1 − 𝜀)𝛼𝑖 if 𝑖 ∈ [𝑟]
𝜀 if 𝑖 = 𝑟 + 1.

Then 𝜶 ∈ Δ𝑟 implies that 𝜷 ∈ Δ𝑟+1. Now,

𝑞(𝜙, 𝜷) − 𝑞(𝜙,𝜶) = 𝜀(𝜀 − 2)𝑞(𝜙′,𝜶) + 2(1 − 𝜀)𝜀 · ext(𝜙,𝜶) = 𝜀(2𝛾 − 𝜀(1 + 2𝛾))𝑄(𝒌) > 0,

a contradiction. �

This motivates the extension property, which we repeat for the reader’s convenience:

Definition 2.7 (Clones and extension property). Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 . Given 𝑟 ∈ N and 𝜙 ∈ Φ0(𝑟; 𝒌),
we say that 𝑖 ∈ [𝑟] is

◦ a clone of 𝑗 ∈ [𝑟] \ {𝑖} (under 𝜙) if 𝜙(𝑖𝑘) = 𝜙( 𝑗 𝑘) for all 𝑘 ∈ [𝑟] \ {𝑖, 𝑗} and |𝜙(𝑖 𝑗) | ≤ 1;
◦ a strong clone of j (under 𝜙) if, additionally, 𝜙(𝑖 𝑗) = ∅.
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We say that 𝒌 has

◦ the extension property if, for every (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝜙 ∈ Φ0(𝑟∗+1; 𝒌), such that 𝜙|( [𝑟∗ ]2 ) = 𝜙∗

and ext(𝜙,𝜶∗) = 𝑄(𝒌); there exists 𝑗 ∈ [𝑟∗], such that 𝑟∗ + 1 is a clone of j under 𝜙;
◦ the strong extension property if in fact 𝑟∗ + 1 is a strong clone of j.

The extension property says that if we extend any basic optimal solution by adding an infinitesimal
part with optimal contribution 𝑄(𝒌), then the new vertex clones an existing one (with perhaps one
colour on the pair spanned by the two clones). Assuming that 𝒌 has the extension property, we can
prove some properties of elements in opt∗(𝒌), including a uniform lower bound for vertex weightings
in 𝑄∗-optimal solutions.

Lemma 2.8. Let 𝑠 ∈ N, and suppose that 𝒌 ∈ N𝑠 has the extension property. Then there exists 𝜇 > 0,
such that 𝛼∗

𝑖 > 𝜇 for all (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝑖 ∈ [𝑟∗].

Proof. Suppose not; then, for all 𝑛 ∈ N, there exists (𝑟∗𝑛, 𝜙∗𝑛,𝜶∗
𝑛) ∈ opt∗(𝒌) and 𝑖𝑛 ∈ [𝑟∗𝑛], such that

𝛼∗
𝑖𝑛

< 1/𝑛. By passing to a subsequence, since 𝑟∗𝑛 < 𝑅(𝒌), we may assume that 𝑟∗𝑛 ≡ 𝑟 and 𝜙∗𝑛 ≡ 𝜙 and,
without loss of generality, that 𝑖𝑛 ≡ 𝑟 . Since 𝜶∗

𝑛 ∈ Δ𝑟 and the simplex is closed and bounded, the Heine-
Borel theorem implies that 𝜶∗

1,𝜶
∗
2, . . . has a convergent subsequence 𝜶∗

𝑖1
,𝜶∗

𝑖2
, . . ., with limit 𝜷 ∈ Δ𝑟 .

Observe that 𝛽𝑟 = 0. Without loss of generality, assume that 𝜷 = (𝛽1, . . . , 𝛽𝑡 , 0, . . . , 0), where 𝑡 ∈ [𝑟−1]
and 𝛽 𝑗 > 0 for all 𝑗 ∈ [𝑡]. By continuity (Proposition 2.2), 𝑞(𝜙, (𝛽1, . . . , 𝛽𝑡 )) = 𝑞(𝜙, 𝜷) = 𝑄(𝒌), so
(𝑡, 𝜙, (𝛽1, . . . , 𝛽𝑡 )) ∈ opt∗(𝒌). Recall that 𝛼∗

𝑖𝑚 ,𝑟 > 0 for all 𝑚 ∈ N. By continuity and Proposition 2.1,∑
𝑗∈[𝑡 ]

𝛽 𝑗 log |𝜙(𝑟 𝑗) | = ext(𝜙, (𝛽1, . . . , 𝛽𝑟−1)) = lim
𝑚→∞

𝑞𝑟 (𝜙, (𝛼∗
𝑖𝑚 ,1, . . . , 𝛼

∗
𝑖𝑚 ,𝑟 )) = 𝑄(𝒌).

The extension property implies that there exists 𝑖 ∈ [𝑡], such that 𝜙(𝑟 𝑗) = 𝜙(𝑖 𝑗) for all 𝑗 ∈ [𝑡] \ {𝑖} and
|𝜙(𝑖𝑟) | ≤ 1, a contradiction to 𝜙 ∈ Φ2(𝑟; 𝒌). This completes the proof of the lemma. �

Next, we prove that the strong extension property implies that optimal colour patterns have trivial
capacity.

Lemma 2.9. Let 𝑠 ∈ N, and suppose that 𝒌 ∈ N𝑠 with 𝑘1 ≥ . . . ≥ 𝑘𝑠 has the extension property.

(i) If 𝒌 has the strong extension property, then for every (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝑐 ∈ [𝑠], we have
that Cap((𝜙∗)−1(𝑐), 𝑘𝑐) = {1}.

(ii) If 𝑘1 = 𝑘2, then 𝒌 has the strong extension property.
(iii) If (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝜙 ∈ Φ0(𝑟∗ + 1; 𝒌) is such that 𝜙|( [𝑟∗ ]2 ) = 𝜙∗ and 𝑟∗ + 1 is a clone of

𝑖 ∈ [𝑟∗] under 𝜙, then 𝜙({𝑖, 𝑟∗ + 1}) ⊆ {1}.

Proof. For 𝑐 ∈ [𝑠], write 𝐶 (𝑐) := Cap((𝜙∗)−1(𝑐), 𝑘𝑐) as shorthand. We use the following claim to
prove all three parts.

Claim 2.9.1. Let (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌), 𝑐 ∈ [𝑠] and 𝑗 ∈ [𝑟∗]. Define 𝜶 ∈ Δ𝑟∗+1 by setting 𝛼𝑖 := 𝛼∗
𝑖 for

all 𝑖 ∈ [𝑟∗] and 𝛼𝑟∗+1 := 0. Define 𝜙 ∈ Φ1(𝑟∗ +1; 𝒌) by setting 𝜙|( [𝑟∗ ]2 ) := 𝜙∗ and 𝜙({𝑖, 𝑟∗ +1}) := 𝜙∗(𝑖 𝑗)
for all 𝑖 ∈ [𝑟∗] \{ 𝑗} and 𝜙({ 𝑗 , 𝑟∗ +1}) := {𝑐}. Then, 1+𝒆 𝑗 ∈ 𝐶 (𝑐) if and only if (𝑟∗ +1, 𝜙,𝜶) ∈ opt1(𝒌).

Proof of Claim. We need to show that 1 + 𝒆 𝑗 ∈ 𝐶 (𝑐) if and only if both (𝑟∗ + 1, 𝜙,𝜶) ∈ feas1 (𝒌) and
𝑞(𝜙,𝜶) = 𝑄(𝒌). Firstly, we have (𝑟∗ + 1, 𝜙,𝜶) ∈ feas1 (𝒌) if and only if 𝜙−1(𝑐) is 𝐾𝑘𝑐 -free for all
𝑐 ∈ [𝑠]. For 𝑐′ ∈ [𝑠] \ {𝑐}, 𝜙−1(𝑐′) is obtained from (𝜙∗)−1(𝑐′) by cloning vertex 𝑟∗, so is 𝐾𝑘𝑐′ -free.
By definition, 𝜙−1(𝑐) is 𝐾𝑘𝑐 -free if and only if 1 + 𝒆 𝑗 ∈ 𝐶 (𝑐). Secondly, 𝑞(𝜙,𝜶) = 𝑞(𝜙∗,𝜶∗) = 𝑄(𝒌).
This proves the claim. �
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For (i), suppose that 𝒌 has the strong extension property but there is (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and
𝑐 ∈ [𝑠] for which 𝐶 (𝑐) ≠ {1}. Then there is 𝑗 ∈ [𝑟∗], such that 1 + 𝒆 𝑗 ∈ 𝐶 (𝑐). Let 𝜶 and 𝜙 be defined
as in Claim 2.9.1. By the claim, (𝑟∗ + 1, 𝜙,𝜶) ∈ opt1(𝒌). So∑

𝑖∈[𝑟∗ ]
𝛼𝑖 log |𝜙({𝑖, 𝑟∗ + 1}) | =

∑
𝑖∈[𝑟∗ ]\{ 𝑗 }

𝛼∗
𝑖 log |𝜙∗(𝑖 𝑗) | = 𝑄(𝒌)

by Proposition 2.1 applied to (𝑟∗, 𝜙∗,𝜶∗). But 𝑟∗ + 1 is not a strong clone of any 𝑗 ′ ∈ [𝑟∗] under 𝜙 since
|𝜙({𝑟∗ + 1, 𝑗}) | = 1 (and |𝜙({𝑟∗ + 1, 𝑖}) | = |𝜙( 𝑗𝑖) | ≥ 2 for all 𝑖 ∈ [𝑟∗] \ { 𝑗}). So 𝒌 does not have the
strong extension property, a contradiction.

Next, we prove (ii). So suppose that 𝒌 does not have the strong extension property. Then there is some
(𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and an extension 𝜙 ∈ Φ0(𝑟∗ + 1; 𝒌), such that 𝜙|( [𝑟∗ ]2 ) = 𝜙∗, ext(𝜙,𝜶∗) = 𝑄(𝒌)
and 𝑟∗ + 1 is a clone of some 𝑗 ∈ [𝑟∗] under 𝜙, but not a strong clone. So 𝜙({𝑖, 𝑟∗ + 1}) = 𝜙∗(𝑖 𝑗) for all
𝑖 ∈ [𝑟∗] \ { 𝑗}, and 𝜙({ 𝑗 , 𝑟∗ + 1}) = {𝑐} for some 𝑐 ∈ [𝑠]. Note that (𝑟∗ + 1, 𝜙,𝜶) ∈ opt1 (𝒌), where 𝜶
is defined as in the claim. Thus, by the claim, 1 + 𝒆 𝑗 ∈ 𝐶 (𝑐). By Lemma 2.5(ii), this implies 𝑐 = 1 and
𝑘1 > 𝑘2. This also gives Part (iii). �

2.2. The proof of Lemma 1.3

Recall that Lemma 1.3, informally speaking, enables us to characterise all solutions to Problem 𝑄0 in
terms of the basic optimal solutions opt∗(𝒌).

Proof of Lemma 1.3. Note that the ‘if’ direction is trivial, so it remains to prove the ‘only if’ direction.
Let (𝑟, 𝜙,𝜶) ∈ opt0(𝒌). We can assume that 𝛼𝑖 > 0 for all 𝑖 ∈ [𝑟].

It is convenient to consider triples (𝐴, 𝜙,𝜶) which are as feasible solutions (𝑟, 𝜙,𝜶) except A is a
set of r vertices (as opposed to [𝑟]), 𝜙 :

(𝐴
2
)
→ 2[𝑠] and 𝜶 ∈ Δ𝐴 := {(𝛼𝑖 : 𝑖 ∈ 𝐴) : 𝛼𝑖 > 0 for all 𝑖 ∈

𝐴 and
∑

𝑖∈𝐴 𝛼𝑖 = 1}. Given 𝑥, 𝑦 ∈ 𝐴, define a new vertex weighting 𝜶 ∈ Δ𝐴\{𝑦 }, the (𝑥, 𝑦)-merging
of 𝜶, by setting 𝛼𝑥 := 𝛼𝑥 + 𝛼𝑦 and 𝛼𝑧 := 𝛼𝑧 for all 𝑧 ∈ [𝑟] \ {𝑥, 𝑦}. Suppose |𝜙(𝑥𝑦) | ≤ 1. Then
(𝐴 \ {𝑦}, 𝜙′,𝜶) ∈ opt0(𝒌) where 𝜙′ := 𝜙|(𝐴\{𝑦}2 ) , and

𝑞𝑦 (𝜙,𝜶) =
∑

𝑧∈[𝑟 ]\{𝑥,𝑦 }
𝛼𝑧 log |𝜙(𝑧𝑦) | + (𝛼𝑥 + 𝛼𝑦) log |𝜙(𝑥𝑦) | = 𝑞𝑦 (𝜙,𝜶) = 𝑄(𝒌), (2.2)

where the last equality follows from Proposition 2.1.
Consider the following claim.

Claim 2.1. {𝑖 𝑗 ∈
( [𝑟 ]

2
)

: |𝜙(𝑖 𝑗) | ≤ 1} is a disjoint union of cliques.

Proof of Claim. Suppose for a contradiction to the claim that, without loss of generality, there is
some 𝑖 𝑗 ∈

( [𝑟−1]
2

)
, such that |𝜙(𝑖𝑟) |, |𝜙( 𝑗𝑟) | ≤ 1 but |𝜙(𝑖 𝑗) | ≥ 2. Suppose first that there exists

𝑖′ 𝑗 ′ ∈
( [𝑟 ]

2
)
\ {𝑖𝑟, 𝑗𝑟}, such that |𝜙(𝑖′ 𝑗 ′) | ≤ 1. At least one of 𝑖′, 𝑗 ′ is not in {𝑖, 𝑗 , 𝑟}, say 𝑗 ′. Take the

(𝑖′, 𝑗 ′)-merging 𝜶 of 𝜶. By the above observations, ([𝑟] \{ 𝑗 ′}, 𝜙′,𝜶) ∈ opt0 (𝒌), where 𝜙′ := 𝜙|( [𝑟 ]\{ 𝑗′}2 ) .

Note that 𝑖𝑟, 𝑗𝑟, 𝑖 𝑗 ∈
( [𝑟 ]\{ 𝑗′ }

2
)
, and 𝜙′(𝑥𝑦) = 𝜙(𝑥𝑦) for all 𝑥𝑦 ∈

( [𝑟 ]\{ 𝑗′ }
2

)
.

Do this repeatedly until the only pairs 𝑖′ 𝑗 ′ with |𝜙(𝑖′ 𝑗 ′) | ≤ 1 among the set A of remaining vertices are
𝑖𝑟 and 𝑗𝑟 . Let 𝜷 be the weight function and 𝜓 := 𝜙|𝐴 the colour pattern. We have (𝐴, 𝜓, 𝜷) ∈ opt0(𝒌).
Now obtain the (𝑖, 𝑟)-merging 𝜷 of 𝜷 and let 𝐴′ := 𝐴 \ {𝑟}. By the above, (𝐴′, 𝜓 ′, 𝜷) ∈ opt0 (𝒌) and
𝜓, 𝜷, 𝑟 satisfy (2.2). Further, |𝜓 ′(𝑥𝑦) | = |𝜙(𝑥𝑦) | ≥ 2 for every 𝑥𝑦 ∈

(𝐴′

2
)

and 𝛽𝑥 > 0 for every 𝑥 ∈ 𝐴′,
so in fact (𝐴′, 𝜓 ′, 𝜷) ∈ opt∗(𝒌). Since 𝒌 has the extension property, there exists 𝑦 ∈ 𝐴′, such that
𝜓 ′(𝑟ℓ) = 𝜓 ′(𝑦ℓ) for all ℓ ∈ 𝐴′, and |𝜓 ′(𝑦𝑟) | ≤ 1. In particular, |𝜓 ′(𝑟 𝑗) | = |𝜓 ′(𝑦 𝑗) | ≥ 2, a contradiction
to our assumption. �
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Proposition 2.1 implies that, for every 𝑖 ∈ [𝑟], we have that 𝑞𝑖 (𝜙,𝜶) = 𝑄(𝒌). By the claim, there is
a (unique up to relabelling) partition [𝑟] = 𝑉1 ∪ . . . ∪𝑉𝑟∗ , such that{

𝑖 𝑗 ∈
(
[𝑟]
2

)
: |𝜙(𝑖 𝑗) | ≤ 1

}
=

⋃
𝑗∈[𝑟∗ ]

(
𝑉 𝑗

2

)
(2.3)

(where a vertex 𝑖′ is the only member of some 𝑉𝑖 if and only if |𝜙(𝑖′ 𝑗) | ≥ 2 for all 𝑗 ∈ [𝑟] \ {𝑖′}).
Assume, without loss of generality, that 𝑖 ∈ 𝑉𝑖 for all 𝑖 ∈ [𝑟∗]. Let 𝜶∗ ∈ Δ𝑟∗ , such that 𝛼∗

𝑖 =
∑

𝑖′ ∈𝑉𝑖
𝛼𝑖′ ,

and set 𝜙∗ := 𝜙|( [𝑟∗ ]2 ) .

Claim 2.2. We have the following:

(a) (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌).
(b) For all 𝑖 ∈ [𝑟∗] and 𝑖′ ∈ 𝑉𝑖 , we have that 𝜙(𝑖′ 𝑗) = 𝜙(𝑖 𝑗) for all 𝑗 ∈ [𝑟∗] \ {𝑖}.

Proof of Claim. Let

𝐾 :=
⋃

𝑗∈[𝑟∗ ]
{( 𝑗 , 𝑗 ′) : 𝑗 ′ ∈ 𝑉 𝑗 \ { 𝑗}}

and 𝑡 := |𝐾 |. So K is a union of spanning stars in the 𝑉 𝑗 ’s. We will form a new solution by transferring
the total weight from 𝑉 𝑗 to j.

Let 𝜶0 := 𝜶, 𝜙0 := 𝜙 and 𝐴0 := [𝑟]. Order the elements ( 𝑗1, 𝑥1), . . . , ( 𝑗𝑡 , 𝑥𝑡 ) of K, and, for each
ℓ ≥ 1, let 𝜶ℓ be the ( 𝑗ℓ , 𝑥ℓ )-merging of 𝜶ℓ−1 and 𝐴ℓ := 𝐴ℓ−1 \ {𝑥ℓ } and 𝜙ℓ := 𝜙|(𝐴ℓ

2 )
. Precisely as in

(2.2), we have that (𝐴ℓ , 𝜙ℓ ,𝜶ℓ) ∈ opt0(𝒌), and∑
𝑘∈(𝐴ℓ

2 )
𝛼ℓ,𝑘 log |𝜙(𝑥ℓ 𝑘) | = 𝑄(𝒌). (2.4)

By construction, 𝐴𝑡 = [𝑟∗] and 𝛼𝑡 ,𝑖 > 0 for all 𝑖 ∈ [𝑟∗]. Let 𝜶∗ := (𝛼𝑡 ,1, . . . , 𝛼𝑡 ,𝑟∗ ) and 𝜙′ := 𝜙𝑡 |( [𝑟∗ ]2 ) =
𝜙|( [𝑟∗ ]2 ) . Then (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌). Moreover, by (2.4), we have that

∑
𝑖∈[𝑟∗ ] 𝛼

∗
𝑖 log |𝜙({𝑖, 𝑟∗ + 𝑗}) | =

𝑄(𝒌) for all 𝑗 ∈ [𝑟 − 𝑟∗], and 𝛼∗
𝑖 =

∑
𝑖′ ∈𝑉𝑖

𝛼𝑖′ . So 𝜶∗ and 𝜙∗ satisfy (a).
It remains to prove (b). For each 𝑖′ ∈ {𝑟∗ + 1, . . . , 𝑟}, let 𝑖 ∈ [𝑟∗] be such that 𝑖′ ∈ 𝑉𝑖 . Apply the

extension property to (𝑟∗, 𝜙∗,𝜶∗) with 𝑖′ playing the role of the additional vertex, whose colour pattern
is given by 𝜙. So there is some 𝑥𝑖′ ∈ [𝑟∗] which is a clone of 𝑖′ under 𝜙 in [𝑟∗]. But, by the definition of
𝑉𝑖 , |𝜙({𝑘, 𝑖′}) | ≤ 1 if and only if 𝑘 ∈ 𝑉𝑖 . But there is a unique member of 𝑉𝑖 which lies in [𝑟∗], namely,
i. Certainly i is a clone of itself. So for all 𝑖 ∈ [𝑟∗] and 𝑖′ ∈ [𝑟] ∩ 𝑉𝑖 , we have that 𝑖′ is a clone of vertex
i under 𝜙 in [𝑟∗]. So (b) holds, completing the proof of the claim. �

So Part (i) of Lemma 1.3 holds by (2.3) and Claim 2.2(a). For (ii), we need to prove that 𝜙(𝑖′ 𝑗 ′) = 𝜙(𝑖 𝑗)
for all 𝑖′ ∈ 𝑉𝑖 and 𝑗 ′ ∈ 𝑉 𝑗 , whenever 𝑖 ≠ 𝑗 . Suppose that there is some 𝑐 ∈ 𝜙(𝑖′ 𝑗 ′) \ 𝜙(𝑖 𝑗). Thus,
𝑐 ∉ 𝜙(𝑖 𝑗) = 𝜙∗(𝑖 𝑗), and by Lemma 2.5(i), (𝜙∗)−1(𝑐) is maximally 𝐾𝑘𝑐 -free, so there are vertices
{𝑥1, . . . , 𝑥𝑘𝑐−2} ∈ [𝑟∗] \ {𝑖, 𝑗} which, together with 𝑖, 𝑗 , span a copy of 𝐾𝑘𝑐 in (𝜙∗)−1(𝑐). But Claim
2.2(b) implies that, for all ℓ ∈ [𝑘𝑐 − 2], we have 𝑐 ∈ 𝜙∗(𝑖𝑥ℓ) = 𝜙(𝑖′𝑥ℓ) and 𝑐 ∈ 𝜙∗( 𝑗𝑥ℓ) = 𝜙( 𝑗 ′𝑥ℓ).
Therefore, 𝑥1, . . . , 𝑥𝑘𝑐−2, 𝑖

′, 𝑗 ′ span a copy of 𝐾𝑘𝑐 in 𝜙−1(𝑐), a contradiction. So 𝜙(𝑖′ 𝑗 ′) ⊆ 𝜙(𝑖 𝑗). Using
Proposition 2.1 and the fact that |𝜙(𝑖′𝑖′′) | ≤ 1 for all 𝑖′′ ∈ 𝑉𝑖 , we have that

𝑄(𝒌) = 𝑞𝑖′ (𝜙,𝜶) =
∑

𝑗∈[𝑟∗ ]\{𝑖 }

∑
𝑗′ ∈𝑉𝑗

𝛼 𝑗′ log |𝜙(𝑖′ 𝑗 ′) | ≤
∑

𝑗∈[𝑟∗ ]\{𝑖 }

∑
𝑗′ ∈𝑉𝑗

𝛼 𝑗′ log |𝜙(𝑖 𝑗) |

= 𝑞𝑖 (𝜙∗,𝜶∗) = 𝑄(𝒌).

Therefore, we have equality everywhere, and so 𝜙(𝑖′ 𝑗 ′) = 𝜙(𝑖 𝑗) = 𝜙∗(𝑖 𝑗) for all 𝑖 𝑗 ∈
( [𝑟∗ ]

2
)

and 𝑖′ ∈ 𝑉𝑖 ,
𝑗 ′ ∈ 𝑉 𝑗 . This completes the proof of (ii).
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For (iii), let 𝑐 ∈ [𝑠], 𝑖 ∈ [𝑟∗] and 𝑖′𝑖′′ ∈
(𝑉𝑖

2
)

with 𝑐 ∈ 𝜙(𝑖′𝑖′′). Then 1 + 𝒆𝑖 ∈ Cap((𝜙∗)−1(𝑐), 𝑘𝑐).
Lemma 2.5(ii) implies that 𝑐 = 1 and 𝑘1 > 𝑘2. Now, for each 𝑖 ∈ [𝑟∗], let ℓ𝑖 be the size of the largest
clique in 𝜙−1(1) [𝑉𝑖]. By definition, ℓ := (ℓ1, . . . , ℓ𝑟∗ ) ∈ Cap((𝜙∗)−1(1), 𝑘1), and so ‖ℓ‖1 ≤ 𝑘1 − 1 by
Lemma 2.5(ii). This complete the proof of (iii) and hence of the lemma. �

2.3. Nonoptimal attachments

We derive a further quantifiable consequence of the extension property in the following lemma, which
shows that if a basic optimal solution is extended by an infinitesimal part, if it is not a clone of an
existing vertex, then the deficit of its contribution is bounded away from zero.

Lemma 2.10. Let 𝑠 ∈ N, and let 𝒌 ∈ N𝑠 have the extension property. Then there exists 𝜂 > 0, such that
the following holds. Let (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝜙 ∈ Φ0(𝑟∗ + 1, 𝒌), such that 𝜙|( [𝑟∗ ]2 ) = 𝜙∗ and 𝑟∗ + 1
is not a clone of any 𝑖 ∈ [𝑟∗] under 𝜙. Then ext(𝜙,𝜶∗) ≤ 𝑄(𝒌) − 𝜂.

Proof. Suppose that the statement of the lemma does not hold. Then for all 𝑛 ∈ N, there exist
(𝑟∗𝑛, 𝜙∗𝑛,𝜶∗

𝑛) ∈ opt∗(𝒌) and 𝜙𝑛 ∈ Φ0(𝑟∗𝑛 + 1, 𝒌), such that 𝜙𝑛 |( [𝑟∗𝑛 ]
2 ) = 𝜙∗𝑛 and 𝑟∗𝑛 + 1 is not a clone

of any 𝑖 ∈ [𝑟∗𝑛] under 𝜙𝑛, but ext(𝜙𝑛,𝜶∗
𝑛) > 𝑄(𝒌) − 1

𝑛 . By passing to a subsequence (since 𝑟∗𝑛 < 𝑅(𝒌)),
we may assume that 𝑟∗𝑛 ≡ 𝑟; 𝜙∗𝑛 ≡ 𝜙∗ and 𝜙𝑛 ≡ 𝜙, so

ext(𝜙,𝜶∗
𝑛) > 𝑄(𝒌) − 1

𝑛
(2.5)

and 𝑟 + 1 is not a clone of any 𝑖 ∈ [𝑟] under 𝜙. Since Δ𝑟 is compact, we may choose a con-
vergent subsequence 𝜶∗

𝑖1
,𝜶∗

𝑖2
, . . . of 𝜶∗

1,𝜶
∗
2, . . ., with limit 𝜷. Now, since 𝑞(𝜙∗, ·) is continuous (by

Proposition 2.2),

𝑞(𝜙∗, 𝜷) = lim
𝑛→∞

𝑞(𝜙∗,𝜶∗
𝑖𝑛
) = 𝑄(𝒌),

and Lemma 2.8 implies that 𝛽 𝑗 = lim𝑛→∞ 𝛼∗
𝑖𝑛 , 𝑗

> 0 for every 𝑗 ∈ [𝑟]. So (𝑟, 𝜙∗, 𝜷) ∈ opt∗(𝒌). But
taking the limit in (2.5) implies that ext(𝜙, 𝜷) = 𝑄(𝒌). Now the extension property implies that there is
some 𝑖 ∈ [𝑟], such that 𝑟 + 1 is a clone of i under 𝜙, a contradiction. �

Given colour patterns 𝜓 ∈ Φ0(𝑟; 𝒌) and 𝜓 ′ ∈ Φ0(𝑟 ′; 𝒌) and a partition V = {𝑉1, . . . , 𝑉𝑟 } of [𝑟 ′], we
will say 𝜓 ′ =V 𝜓 if 𝜓 ′(𝑖′ 𝑗 ′) = 𝜓(𝑖 𝑗) for all 𝑖 𝑗 ∈

( [𝑟 ]
2
)
, 𝑖′ ∈ 𝑉𝑖 and 𝑗 ′ ∈ 𝑉 𝑗 , and 𝜓(𝑖′𝑖′′) = ∅ for all 𝑖 ∈ [𝑟]

and 𝑖′𝑖′′ ∈
(𝑉𝑖

2
)
. Similarly, given 𝜶 ∈ Δ𝑟 and 𝜶′ ∈ Δ𝑟 ′ and a partition V = {𝑉1, . . . , 𝑉𝑟 } of [𝑟 ′], we will

say 𝜶′ =V 𝜶 if
∑

𝑗∈𝑉𝑖
𝛼′
𝑗 = 𝛼𝑖 for all 𝑖 ∈ [𝑟].

Let (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌), let 𝑟 ∈ N and let [𝑟] have partitionV = {𝑉1, . . . , 𝑉𝑟∗ }. Let 𝜙 ∈ Φ0(𝑟+1; 𝒌)
be such that 𝜙|( [𝑟 ]2 ) =V 𝜙∗ and 𝜶 =V 𝜶∗. For 𝑖 ∈ [𝑟∗], let

𝑑𝑖 :=
∑

{𝛼 𝑗′ : 𝜙({𝑟 + 1, 𝑗 ′}) ≠ 𝜙∗(𝑖 𝑗), 𝑗 ′ ∈ 𝑉 𝑗 , 𝑗 ∈ [𝑟∗] \ {𝑖}} +
∑

{𝛼𝑖′ : |𝜙({𝑟 + 1, 𝑖′}) | ≥ 2, 𝑖′ ∈ 𝑉𝑖}

be the minimum weight of edits of pairs at 𝑟 + 1 needed to make 𝑟 + 1 a clone of i. If 𝑑𝑖 ≤ 𝛿, we say that
𝑟 + 1 is 𝛿-close to being a 𝜙∗-clone of i, otherwise, 𝑟 + 1 is 𝛿-far from being a 𝜙∗-clone of i.

The next lemma extends the previous one by allowing an arbitrary feasible attachment to a (blow-up
of a) basic optimal solution and supposing the new part is far from being a clone.

Lemma 2.11. Let 𝑠 ∈ N, and let 𝒌 have the extension property. Then there exists 𝜂 > 0, such that
the following holds. Let 𝛿 > 0 and (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌), let 𝑟 ∈ N and let [𝑟] have partition
V = {𝑉1, . . . , 𝑉𝑟∗ }. Let 𝜙 ∈ Φ0(𝑟 + 1; 𝒌) and 𝜶 ∈ Δ𝑟 be such that 𝜙|( [𝑟 ]2 ) =V 𝜙∗ and 𝜶 =V 𝜷 for some
𝜷 ∈ Δ𝑟∗ with ‖𝜷 − 𝜶∗‖1 ≤ 𝜂𝛿. Suppose that 𝑟 + 1 is 𝛿-far from being a 𝜙∗-clone of any 𝑖 ∈ [𝑟∗]. Then
ext(𝜙,𝜶) ≤ 𝑄(𝒌) − 𝜂𝛿.
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Proof. We will derive the lemma from the following claim.

Claim 2.11.1. There exists 𝜂 > 0, such that when additionally 𝜷 = 𝜶∗, we have ext(𝜙,𝜶) ≤ 𝑄(𝒌) −
2𝜂𝛿 log 𝑠.

Suppose that the claim holds and we wish to prove the lemma. Let 𝜶′ ∈ Δ𝑟∗ be such that 𝜶′ =V 𝜶∗

and ‖𝜶 − 𝜶′‖1 ≤ 𝜂𝛿. Such an 𝜶′ exists: for example, for all 𝑗 ∈ [𝑟∗] and all 𝑖 ∈ 𝑉 𝑗 , take 𝛼′
𝑖 := 𝛼𝑖𝛼

∗
𝑗/𝛽 𝑗 .

Since ext(𝜙,𝜶′) ≤ 𝑄(𝒌) − 2𝜂𝛿 log 𝑠, we have

ext(𝜙,𝜶) ≤ ext(𝜙,𝜶′) + log 𝑠 · ‖𝜶 − 𝜶′‖1 ≤ 𝑄(𝒌) − 𝜂𝛿,

as required. So it remains to prove the claim.

Proof of Claim. Let 𝜂′ > 0 be the constant obtained from Lemma 2.10. We will show that we can take
𝜂 := 𝜂′/(2 log 𝑠).

It will be convenient to write 0 instead of 𝑟 + 1 for the attachment. So we require an upper bound
for 𝑞0(𝜙,𝜶). Let 1/𝑛 � 1/𝑟, 𝛿, 𝜂′, and for each 𝑗 ∈ [𝑟∗], subdivide the parts in each 𝑉 𝑗 to get a total
of n subparts, so that as many of these subparts as possible have the same size. We may assume that in
fact every subpart of parts in 𝑉 𝑗 have the same size 𝛼∗

𝑗/𝑛, since the total size of smaller parts is at most
𝑟/𝑛 which is negligible compared to 𝜂′ and 𝛿. So, relabelling, we have a partition U := {𝑈1, . . . ,𝑈𝑟 } of
[𝑟∗𝑛] and 𝜶𝑛 ∈ Δ𝑟∗𝑛, such that 𝜶𝑛,𝑘 = 𝛼∗

𝑗/𝑛 for every 𝑘 ∈ U 𝑗 := {𝑈 𝑗′ : 𝑗 ′ ∈ 𝑉 𝑗 }, and |U 𝑗 | = 𝑛. Write
U 𝑗 := {𝑥 𝑗 ,1, . . . , 𝑥 𝑗 ,𝑛}.

For all ℓ ∈ [𝑛], let 𝑇ℓ := {𝑥1,ℓ , . . . , 𝑥𝑟∗ ,ℓ } be the ℓ-th transversal, and let 𝜙ℓ := 𝜙|{0}∪𝑇ℓ . Recall that
𝜙|𝑇ℓ = 𝜙∗. For each 𝑗 ∈ [𝑟∗], let 𝐶 𝑗 be the set of all ℓ ∈ [𝑛], such that 0 is a clone of j under 𝜙ℓ . So
𝐶 := 𝐶1 ∪ . . . ∪ 𝐶𝑟∗ is a disjoint union. By rearranging the transversals, we are going to make all sets
𝐶 𝑗 empty except at most one. For this, partition C into pairs {ℓ1, ℓ2} and a set 𝐶0, such that in every pair
{ℓ1, ℓ2}, we have ℓ1 ∈ 𝐶 𝑗1 and ℓ2 ∈ 𝐶 𝑗2 for distinct 𝑗1, 𝑗2 ∈ [𝑟∗], and there is at most one 𝑗 ∈ [𝑟∗], such
that 𝐶0 ∩ 𝐶 𝑗 ≠ ∅. For all pairs {ℓ1, ℓ2}, swap the labels of 𝑥 𝑗1 ,ℓ1 and 𝑥 𝑗1 ,ℓ2 . Update C. Notice that now,
C is our previous 𝐶0, as neither ℓ1 nor ℓ2 gives a transversal where 0 is a clone (since 𝜙ℓ1 has size two
on every pair in {0} ∪ 𝑇ℓ1 , and 𝜙ℓ2 has size at most 1 on exactly two pairs in {0} ∪ 𝑇ℓ2 ).

Let Φ be the set of all 𝜙ℓ . Let Φclone ⊆ Φ be such that 𝜙ℓ ∈ Φclone if and only if 0 is a clone under
𝜙ℓ of some 𝑗 ∈ [𝑟∗]. By construction, every such ℓ lies in C and there is a unique such 𝑗 = 𝑗∗ ∈ [𝑟∗].

We can make edits of weight at most 1 − |𝐶 |/𝑛 to make 0 a clone of 𝑗∗ under 𝜙. Indeed, we can edit
each 𝜙ℓ with ℓ ∈ [𝑛] \ 𝐶, requiring edits to parts of size 𝛼∗

1/𝑛, . . . , 𝛼
∗
𝑟∗/𝑛 of total size 1/𝑛. Thus, our

hypothesis implies that

1 − |𝐶 |/𝑛 ≥ 𝛿.

Lemma 2.10 implies that 𝑞0(𝜓,𝜶∗) ≤ 𝑄(𝒌) − 𝜂′ whenever 𝜓 ∈ Φ \ Φclone. Therefore, using
Proposition 2.6,

𝑞0 (𝜙,𝜶) =
∑
ℓ∈[𝑛]

𝑞0 (𝜙ℓ ,𝜶𝑛) =
∑
ℓ∈𝐶

𝑞0 (𝜙ℓ ,𝜶∗)/𝑛 +
∑

ℓ∈[𝑛]\𝐶
𝑞0 (𝜙ℓ ,𝜶∗)/𝑛

≤ |𝐶 |𝑄(𝒌)/𝑛 + (𝑛 − |𝐶 |) ((𝑄(𝒌) − 𝜂′)/𝑛 = 𝑄(𝒌) − (1 − |𝐶 |/𝑛)𝜂′ ≤ 𝑄(𝒌) − 𝜂′𝛿,

as required. �

This completes the proof of the lemma. �

The final lemma in this subsection considers an arbitrary not necessarily feasible attachment. Now,
either the new part is far from being a clone, or it lies in many forbidden monochromatic cliques. This
is the key tool in the proof of Lemma 3.1.

Lemma 2.12. Let 𝑠 ∈ N, and let 𝒌 = (𝑘1, . . . , 𝑘𝑠) have the extension property, where 𝑘1 ≥ . . . ≥ 𝑘𝑠 .
There exists 𝜂 > 0, such that the following hold. Let 𝛿 > 0, and let (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌), let 𝑟 ∈ N, and
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let [𝑟] have partition V = {𝑉1, . . . , 𝑉𝑟∗ }. Let 𝜙 :
( [𝑟+1]

2
)
→ 2[𝑠] and 𝜶 ∈ Δ𝑟 be such that 𝜙|( [𝑟 ]2 ) =V 𝜙∗

and 𝜶 =V 𝜷 for some 𝜷 ∈ Δ𝑟∗ with ‖𝜷 − 𝜶∗‖1 ≤ 𝜂𝛿, and ext(𝜙,𝜶) ≥ 𝑄(𝒌) − 𝜂𝛿. Then one of the
following hold.
◦ There exists ℓ ∈ [𝑟], such that 𝑟 + 1 is 𝛿-close to a 𝜙∗-clone of ℓ.
◦ Let L be the set of sets {𝑥1, . . . , 𝑥𝑘1−1} ∈

( [𝑟 ]
𝑘1−1

)
, such that 𝜙−1(𝑐) [{𝑟 + 1, 𝑥1, . . . , 𝑥𝑘1−1}] ⊇ 𝐾𝑘𝑐 for

some 𝑐 ∈ [𝑠]. Then
∑

(𝑥1 ,...,𝑥𝑘1−1) ∈𝐿 𝛼𝑥1 . . . 𝛼𝑥𝑘1−1 ≥ 𝜂.

Proof. Let 𝜂′ > 0 be the constant obtained from Lemma 2.11. Suppose for a contradiction that for all
𝑛 ∈ N, there exist (𝑟∗𝑛, 𝜙∗𝑛,𝜶∗

𝑛) ∈ opt∗(𝒌), 𝑟𝑛, V𝑛, 𝜙𝑛 :
( [𝑟𝑛+1]

2
)
→ 2[𝑠] , 𝜷𝑛, such that 𝜶𝑛 =V𝑛 𝜷𝑛 and

‖𝜷𝑛 − 𝜶∗
𝑛‖1 ≤ 𝜂′𝛿/2, 𝜙𝑛 |( [𝑟𝑛 ]

2 ) =V𝑛 𝜙∗𝑛, ext(𝜙𝑛,𝜶𝑛) ≥ 𝑄(𝒌) − 𝜂′𝛿/2, 𝑟𝑛 + 1 is 𝛿-far from being a clone
of any ℓ ∈ [𝑟𝑛] under 𝜙𝑛, and defining the set of tuples 𝐿𝑛 as in the statement of the lemma, we have∑

(𝑥1 ,...,𝑥𝑘1−1) ∈𝐿𝑛
𝛼𝑛,𝑥1 . . . 𝛼𝑛,𝑥𝑘1−1 < 1

𝑛 . Note that we may assume that 𝑟𝑛 ≤ 2𝑠𝑟∗𝑛 as 𝑟𝑛 + 1 has at most 2𝑠

different attachments to parts in each𝑉𝑛,𝑖 inV𝑛, so if |𝑉𝑛,𝑖 | > 2𝑠𝑟∗𝑛 , at least two of its parts are clones under
𝜙∗𝑛, and we can merge them. As usual, we may assume that 𝑟∗𝑛 = 𝑟∗ and 𝜙∗𝑛 = 𝜙∗, and thus also 𝑟𝑛 = 𝑝,
𝜙𝑛 = 𝜓 and V𝑛 = V . Choose a convergent subsequence 𝜶∗

𝑖1
,𝜶∗

𝑖2
, . . . of 𝜶∗

1,𝜶
∗
2, . . . with limit 𝜷∗, and a

convergent subsequence 𝜶𝑖 𝑗1
,𝜶𝑖 𝑗2

, . . . of 𝜶𝑖1 ,𝜶𝑖2 , . . . with limit 𝜷. The function ext(𝜓, ·) is continuous,
so ext(𝜓, 𝜷) ≥ 𝑄(𝒌) − 𝜂′𝛿/2. Also, writing 𝜷V to be such that 𝜷 =V 𝜷V , we have ‖𝜷V − 𝜷∗‖1 ≤ 𝜂′𝛿/2.
Let 𝐿𝑐 be the set of sets (𝑥1, . . . , 𝑥𝑘1−1) ∈

( [𝑝]
𝑘1−1

)
, such that 𝜓−1 (𝑐) [{𝑝 + 1, 𝑥1, . . . , 𝑥𝑘1−1}] ⊇ 𝐾𝑘𝑐 . Note

that by our assumption above, 𝐿𝑐 does not change with n. We have
∑

(𝑥1 ,...,𝑥𝑘1−1) ∈𝐿𝑐
𝛽𝑥1 . . . 𝛽𝑥𝑘1−1 = 0.

Thus, the density of 𝐾𝑘𝑐 containing 𝑝 + 1 is 0, and we can remove parts of size 0 from [𝑝] to obtain a
set (without loss of generality [𝑝′]), such that 𝜓−1 (𝑐) [{𝑝 + 1} ∪ [𝑝′]] is 𝐾𝑘𝑐 -free for all 𝑐 ∈ [𝑠]. Thus
𝜓 ∈ Φ0({𝑝 + 1} ∪ [𝑝′]; 𝒌), that is the attachment of 𝑝 + 1 under 𝜓 is feasible. Lemma 2.11 implies that
ext(𝜓, 𝜷) ≤ 𝑄(𝒌) − 𝜂′𝛿, a contradiction.

Thus, there exists 𝑁 ∈ N, such that the required sum of tuples is always at least 1/𝑁 . We can now
take 𝜂 to be the minimum of 𝜂′/2 and 1/𝑁 . �

3. Stability of optimal solutions

The aim of this section is to prove the following lemma, which forms the core of our proof of Theorem
1.4. Roughly speaking, it says that Problem 𝑄0 is stable, in the sense that both the vertex-weighting and
the colour pattern of an almost 𝑄0-optimal solution are close to that of a 𝑄0-optimal solution (which
can in turn be described in terms of a 𝑄2-optimal solution by Lemma 1.3). To prove Theorem 1.4, we
will later ‘transfer’ this result to an almost optimal graph G.
Lemma 3.1 (Stability of optimal solutions). Let 𝑠 ∈ N, and let 𝒌 = (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠 have the
extension property, where 𝑘1 ≥ . . . ≥ 𝑘𝑠 . Let 𝜈 > 0. Then there exists 𝜀 > 0, such that for every
(𝑟, 𝜙,𝜶) ∈ feas0 (𝒌) with

𝑞(𝜙,𝜶) > 𝑄(𝒌) − 2𝜀,

there is (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and a partition [𝑟] = 𝑌0 ∪ . . . ∪ 𝑌𝑟∗ , such that, defining 𝛽𝑖 :=
∑

𝑖′ ∈𝑌𝑖 𝛼𝑖′

for all 𝑖 ∈ [𝑟∗], the following holds.
(i) ‖𝜷 − 𝜶∗‖1 < 𝜈 (and, in particular,

∑
𝑖′ ∈𝑌0 𝛼𝑖′ < 𝜈).

(ii) For all 𝑖 𝑗 ∈
( [𝑟∗ ]

2
)
, 𝑗 ′ ∈ 𝑌 𝑗 and 𝑖′ ∈ 𝑌𝑖 , we have 𝜙(𝑖′ 𝑗 ′) ⊆ 𝜙∗(𝑖 𝑗).

(iii) For all 𝑖 ∈ [𝑟∗] and every 𝑖′ 𝑗 ′ ∈
(𝑌𝑖

2
)
, we have 𝜙(𝑖′ 𝑗 ′) ⊆ {1}.

Note that the density of pairs (that is, the sum of the 𝛼𝑖𝛼 𝑗 ) where the inclusion 𝜙(𝑖′ 𝑗 ′) ⊆ 𝜙∗(𝑖 𝑗) in
(ii) is strict is 𝑂 (𝜈).

Proof. We will apply a version of symmetrisation to the graph ([𝑟], 𝐸), where E is the set of
pairs 𝑖 𝑗 on which 𝜙 has size at least two. That is, at each step, we will consider two vertices 𝑗 , 𝑗 ′

with |𝜙( 𝑗 𝑗 ′) | ≤ 1 and replace one of them with a clone of the other, where the cloned vertex is the
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one which contributes the most to q. In the first part of the proof, we will perform this ‘forwards
symmetrisation’.

Let 𝜇 be the output of Lemma 2.8 applied to 𝒌, so 𝛼∗
𝑗 > 𝜇 for all (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝑗 ∈ [𝑟∗].

Choose additional constants 𝜀, 𝛾, 𝜂, 𝛿, such that 𝜀 � 𝛾 � 𝜂 � 𝛿 � 𝜇, 𝜈 where
√
𝛿 is at most the output

of Lemma 2.9, 𝜂 is at most the output of Lemma 2.12, and 𝜀1/4 is at most the output of Lemma 2.3 with
𝛾 playing the role of 𝛿.

Now let (𝑟, 𝜙,𝜶) ∈ feas0(𝒌) satisfy 𝑞(𝜙,𝜶) > 𝑄(𝒌) − 2𝜀. Add all i with 𝛼𝑖 = 0 to 𝑌0. We can take
𝜏 � 𝜀,min𝑖∈[𝑟 ] 𝛼𝑖 ≤ 1/𝑟 so that, subdividing each part, we can remove subparts of total size at most
𝑟𝜏 so that every other subpart has size exactly 𝜏. Since we can put the removed parts into 𝑌0, we may
assume, without loss of generality, that all 𝛼𝑖 are equal to each other (and 𝜙 takes the value ∅ between
parts obtained from subdividing a single original part). So we may assume that 𝛼𝑖 = 1/𝑟 � 𝜀 for all
𝑖 ∈ [𝑟]. Altogether, we have

𝛼1 = . . . = 𝛼𝑟 = 1/𝑟 � 𝜀 � 𝛾 � 𝜂 � 𝛿 � 𝜇, 𝜈.

3.1. The forwards symmetrisation procedure

Let X0 := {{1}, . . . , {𝑟}} and 𝜙0 := 𝜙.

Claim 3.1.1. There is 𝑓 ∈ N, such that, after relabelling [𝑟], for all 𝑖 = 0, . . . , 𝑓 , there is a partition X𝑖

of [𝑟] and colour pattern 𝜙𝑖 ∈ Φ0(𝑟; 𝒌), such that the following hold.

(i) There is a single 𝑥𝑖 ∈ [𝑟], such that X𝑖 consists of the same elements as X𝑖−1, except that 𝑥𝑖 has
moved from one part to another.

(ii) 𝜙𝑖 =X𝑖 𝜓𝑖 where 𝜓𝑖 = 𝜙|( [𝑟𝑖 ]2 ) , and 𝜓 𝑓 ∈ Φ2(𝑟 𝑓 ; 𝒌) for some 2 ≤ 𝑟 𝑓 ≤ . . . ≤ 𝑟0 = 𝑟 .
(iii) 𝑞(𝜙𝑖 ,𝜶) − 𝑞(𝜙𝑖−1,𝜶) ≥ 0 (where 𝜙−1 := 𝜙0).

Proof of Claim. Let 𝑊0 := [𝑟], 𝜙0 = 𝜓0 := 𝜙, and let 𝑉0,𝑥 := 𝑋0,𝑥 := {𝑥} for all 𝑥 ∈ [𝑟]. Let
V0 := {{𝑥} : 𝑥 ∈ [𝑟]} and 𝜷0 := 𝜶. Initialise 𝑖1 := 0.

Inductively for 𝑗 ≥ 0, perform forwards superstep 𝑗 +1 by defining𝑊 𝑗+1, 𝜓 𝑗+1, V 𝑗+1 := {𝑉 𝑗+1,𝑥 : 𝑥 ∈
𝑊 𝑗+1}, 𝜷 𝑗+1 as follows. Choose a pair 𝑝 𝑗 𝑡 𝑗 ∈

(𝑊𝑗

2
)

with |𝜓 𝑗 (𝑝 𝑗 𝑡 𝑗 ) | ≤ 1, labelled so that 𝑡 𝑗 has larger
attachment under 𝜙 𝑗 ; that is∑

𝑦𝑡 𝑗 ∈(𝑊𝑗
2 ):

𝜓𝑗 (𝑦𝑡 𝑗 )≠∅

𝛽 𝑗 ,𝑦 log |𝜓 𝑗 (𝑦𝑡 𝑗 ) | ≥
∑

𝑦𝑝 𝑗 ∈(𝑊𝑗
2 ):

𝜓𝑗 (𝑦𝑝 𝑗 )≠∅

𝛽 𝑗 ,𝑦 log |𝜓 𝑗 (𝑦𝑝 𝑗 ) |. (3.1)

If there is no such pair, terminate the iteration. Otherwise, let 𝑊 𝑗+1 := 𝑊 𝑗 \ {𝑝 𝑗 }. Obtain V 𝑗+1 from
V 𝑗 by replacing 𝑉 𝑗 , 𝑝 𝑗 , 𝑉 𝑗 ,𝑡 𝑗 with their union, so 𝑉 𝑗+1,𝑡 𝑗 := 𝑉 𝑗 ,𝑡 𝑗 ∪ 𝑉 𝑗 , 𝑝 𝑗 and 𝑉 𝑗+1,𝑥 := 𝑉 𝑗 ,𝑥 for all
𝑥 ∈ 𝑊 𝑗+1 \ {𝑡 𝑗 }. For all 𝑥 ∈ 𝑊 𝑗+1, let 𝛽 𝑗+1,𝑥 := |𝑉 𝑗+1,𝑥 |/𝑟 . Let 𝜓 𝑗+1 := 𝜓 𝑗 |(𝑊𝑗+1

2 ) . Note that∑
𝑥𝑦∈(𝑊𝑗+1

2 ):
𝜓𝑗+1 (𝑥𝑦)≠∅

𝛽 𝑗+1,𝑥𝛽 𝑗+1,𝑦 log |𝜓 𝑗+1 (𝑥𝑦) | −
∑

𝑥𝑦∈(𝑊𝑗
2 ):

𝜓𝑗 (𝑥𝑦)≠∅

𝛽 𝑗 ,𝑥𝛽 𝑗 ,𝑦 log |𝜓 𝑗 (𝑥𝑦) |

= 𝛽 𝑗 , 𝑝 𝑗

�������
∑

𝑦𝑡 𝑗 ∈(𝑊𝑗
2 ):

𝜓𝑗 (𝑦𝑡 𝑗 )≠∅

𝛽 𝑗 ,𝑦 log |𝜓 𝑗 (𝑦𝑡 𝑗 ) | −
∑

𝑦𝑝 𝑗 ∈(𝑊𝑗
2 ):

𝜓𝑗 (𝑦𝑝 𝑗 )≠∅

𝛽 𝑗 ,𝑦 log |𝜓 𝑗 (𝑦𝑝 𝑗 ) |

�������
(3.1)
≥ 0. (3.2)

Now we will symmetrise each part in 𝑉 𝑗 , 𝑝 𝑗 one by one, defining 𝜙𝑖+1 :
( [𝑟 ]

2
)
→ 2[𝑠] for 𝑖 𝑗 ≤ 𝑖 <

𝑖 𝑗+1 where 𝑖 𝑗+1 := 𝑖 𝑗 + |𝑉 𝑗 , 𝑝 𝑗 |. Let 𝑦∗ ∈ 𝑉 𝑗 ,𝑡 𝑗 be arbitrary. Let 𝑠 𝑗+1 := |𝑉 𝑗 , 𝑝 𝑗 |, and write 𝑉 𝑗 , 𝑝 𝑗 :=
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{𝑣1, . . . , 𝑣𝑠 𝑗+1 }. We will perform 𝑠 𝑗+1 forwards steps, as follows. Inductively for 𝑖 ≥ 𝑖 𝑗 , obtain X𝑖+1
from X𝑖 by moving 𝑣𝑖 from 𝑋𝑖, 𝑝 𝑗 to 𝑋𝑖,𝑡 𝑗 . That is, for 𝑖 𝑗 ≤ 𝑖 < 𝑖 𝑗+1 − 1, let 𝑋𝑖+1,𝑡 𝑗 := 𝑋𝑖,𝑡 𝑗 ∪ {𝑣𝑖},
𝑋𝑖+1, 𝑝 𝑗 := 𝑋𝑖, 𝑝 𝑗 \ {𝑣𝑖} and 𝑋𝑖+1,𝑥 := 𝑋𝑖,𝑥 for all 𝑥 ∈ 𝑊 𝑗+1 \ {𝑡 𝑗 }; if 𝑖 = 𝑖 𝑗+1 − 1, we do the same but
instead discard the (empty) 𝑝 𝑗 -th part, so |X𝑖+1 | = |𝑊 𝑗 | for 𝑖 𝑗 ≤ 𝑖 < 𝑖 𝑗+1, while |X𝑖 𝑗+1 | = |𝑊 𝑗+1 |. Let 𝑣𝑖
become a strong clone of 𝑦∗ in 𝜙𝑖+1; that is, for distinct 𝑥, 𝑦 ∈ [𝑟], define

𝜙𝑖+1(𝑥𝑦) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜙𝑖 (𝑥𝑦) if 𝑥, 𝑦 ≠ 𝑣𝑖

𝜙𝑖 (𝑦∗𝑧) if {𝑥, 𝑦} = {𝑣𝑖 , 𝑧} and 𝑧 ≠ 𝑦∗

∅ if {𝑥, 𝑦} = {𝑣𝑖 , 𝑦∗}.

After defining 𝜙𝑖+1 and X𝑖+1 for all 𝑖 𝑗 ≤ 𝑖 < 𝑖 𝑗+1, we proceed with superstep 𝑗 + 2.
The iteration will run until some forwards step 𝑖 = 𝑓 (for final) when |𝜙 𝑓 (𝑥𝑦) | ≥ 2 for all 𝑥, 𝑦 in

different parts of X 𝑓 . The process terminates in a finite number of steps since |𝑊 𝑗 | is strictly decreasing
(so there are finitely many supersteps j), and there are finitely many steps 𝑠 𝑗 at each superstep j.

Let 𝑟𝑖 := |X𝑖 |. By relabelling the elements of [𝑟], for all supersteps j, we can assume that
𝑊 𝑗 is always an initial segment of [𝑟] so we have 𝜓 𝑗 = 𝜙|( [|𝑊𝑗 | ]

2 ) . Let 𝜶𝑖 := (𝛼𝑖,1, . . . , 𝛼𝑖,𝑟𝑖 ) :=
(|𝑋𝑖,1 |/𝑟, . . . , |𝑋𝑖,𝑟𝑖 |/𝑟) ∈ Δ𝑟𝑖 . We have shown that for each 𝑖 ∈ [ 𝑓 ], we can obtain a function 𝜙𝑖 , and
sets X𝑖 , such that Claim 3.1.1(i) and Claim 3.1.1(ii) hold.

We still need to prove Claim 3.1.1(iii). It is true by definition for 𝑖 = 0. Equation (3.1) implies that
𝑞𝑡 𝑗 (𝜓 𝑗 , 𝜷 𝑗 ) − 𝑞𝑝 𝑗 (𝜓 𝑗 , 𝜷 𝑗 ) ≥ 0. At step 𝑖 + 1 during the 𝑗 + 1 superstep, we change the attachment of
a single vertex 𝑣𝑖 , and we have |𝜙𝑖 (𝑣𝑖𝑦) | ≤ 1 for all 𝑦 ∈ 𝑉 𝑗 , 𝑝 𝑗 ∪ 𝑉 𝑗 ,𝑡 𝑗 . Thus, the only change to 𝑞𝑣𝑖
is for pairs 𝑣𝑖𝑥 with 𝑥 ∈ 𝑉 𝑗 , 𝑗′ for 𝑗 ′ ∈ 𝑊 𝑗+1 \ {𝑡 𝑗 }. Thus, 𝑞𝑣𝑖 (𝜙𝑖+1,𝜶) − 𝑞𝑣𝑖 (𝜙𝑖 ,𝜶) is the difference
of the left- and right-hand sides of (3.1). The required statement follows since 𝑞(𝜙𝑖+1,𝜶) − 𝑞(𝜙𝑖 ,𝜶) =
𝛼𝑣𝑖 (𝑞𝑣𝑖 (𝜙𝑖+1,𝜶) − 𝑞𝑣𝑖 (𝜙𝑖 ,𝜶)). �

Since 𝜙 𝑓 =X 𝑓 𝜓 𝑓 ∈ Φ2(𝑟 𝑓 ; 𝒌) by definition, we also have that

(𝑟 𝑓 , 𝜓 𝑓 ,𝜶 𝑓 ) ∈ feas2 (𝒌) and 𝑞(𝜙 𝑓 ,𝜶) = 𝑞(𝜓 𝑓 ,𝜶 𝑓 ). (3.3)

Moreover, Claim 3.1.1(iii) implies that

𝑄(𝒌) ≥ 𝑞(𝜓 𝑓 ,𝜶 𝑓 ) ≥ 𝑞(𝜓 𝑓 −1,𝜶 𝑓 −1) ≥ . . . ≥ 𝑞(𝜓0,𝜶0) ≥ 𝑄(𝒌) − 2𝜀. (3.4)

Note that Lemma 2.3 implies that there is some vertex weighting 𝜷 close to 𝜶 𝑓 such that (𝑟 𝑓 , 𝜓 𝑓 , 𝜷)
is optimal (but it could have zero parts). So ‘forwards symmetrisation’ has allowed us to pass from our
original feasible solution (𝑟, 𝜙,𝜶) to a new feasible solution (𝑟 𝑓 , 𝜓 𝑓 ,𝜶 𝑓 ), which is very close to a 𝑄2-
optimal solution (both in terms of vertex weighting and colour pattern). But our eventual aim is to show
that (𝑟, 𝜙,𝜶) itself is close to this optimal solution. So we need to show that few ‘significant’ changes
were made during the forwards symmetrisation procedure. To this end, our next step will be to follow
the procedure backwards, using the partitions X𝑖 of [𝑟] at each step, to form a new partition U𝑖 of [𝑟],
which records how the solution at each step differs from (𝑟 𝑓 , 𝜙 𝑓 ,𝜶 𝑓 ).

It will be convenient to define some normalised versions 𝑞, 𝑞𝑥 of 𝑞, 𝑞𝑥 (for 𝑥 ∈ [𝑟]). Here we recall
that 𝛼1 = . . . = 𝛼𝑟 = 1/𝑟 which makes the normalisation simpler. Given (𝑟, 𝜙,𝜶) ∈ Φ0(𝑟; 𝒌) and
𝑃 ⊆ [𝑟], write

𝑞(𝑃, 𝜙) := 2
∑

𝑥𝑦∈(𝑃2 ):
𝜙 (𝑥𝑦)≠∅

𝛼𝑥𝛼𝑦 | log 𝜙(𝑥𝑦) | and 𝑞𝑥 (𝑃, 𝜙) :=
∑

𝑦∈𝑃\{𝑥 }:
𝜙 (𝑥𝑦)≠∅

𝛼𝑦 | log 𝜙(𝑥𝑦) |, and

𝑞(𝑃, 𝜙) :=
(
𝑟

|𝑃 |

)2
· 𝑞(𝑃, 𝜙) and 𝑞𝑥 (𝑃, 𝜙) :=

𝑟

|𝑃 | · 𝑞𝑥 (𝑃, 𝜙),
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so that ∑
𝑥∈𝑃

𝑞𝑥 (𝑃, 𝜙) = |𝑃 |𝑞(𝑃, 𝜙) and 𝑞(𝑃, 𝜙) ≤ 𝑄(𝒌) (3.5)

(if this inequality were not true, then setting 𝛽𝑥 := 1/|𝑃 | for 𝑥 ∈ 𝑃 and 𝛽𝑥 := 0 otherwise gives
𝑞(𝜙, 𝜷) > 𝑄(𝒌)).

3.2. The backwards symmetrisation procedure

The forwards symmetrisation procedure ended with (𝑟 𝑓 , 𝜓 𝑓 ,𝜶 𝑓 ) ∈ feas2(𝒌) which is very close
to optimal. We now want to go backwards through each forwards step i in turn, each time defining
a partition of [𝑟] into 𝑟 𝑓 sets 𝑈1, . . . ,𝑈𝑟 𝑓 corresponding to the vertices of 𝜓 𝑓 as well as a small
exceptional set 𝑈0. The desired conclusion is that, at the end of this process, the final sets 𝑈1, . . . ,𝑈𝑟 𝑓 ,
that is, those corresponding to the original 𝜙 we started with, have sizes roughly 𝛼′

1𝑟, . . . , 𝛼
′
𝑟 𝑓 𝑟 for some

vertex weighting 𝜶′ where (𝑟 𝑓 , 𝜓 𝑓 ,𝜶
′) ∈ opt2 (𝒌) (so 𝜶′ could differ significantly from 𝜶 𝑓 and could

have zero parts, but is nevertheless optimal). Thus the exceptional set together with the ‘extra’ parts
outside of the support of 𝜶′ are small. This will mean that between parts, 𝜙𝑖 resembles 𝜓 𝑓 throughout
the process, but the sizes of the parts 𝑈1, . . . ,𝑈𝑟 𝑓 could change during the process. Thus 𝜙 resembles
𝜓 𝑓 on the support of 𝜶′ in the required sense.

At each forwards step i, we modified the solution 𝜙𝑖−1 to obtain a new solution 𝜙𝑖 by changing the
attachment at a single vertex 𝑥𝑖 , so that q did not decrease. Now, in the corresponding backwards step,
initially no vertex is exceptional. Then, we reconsider the attachment at 𝑥𝑖: if it was small in 𝜙𝑖 we
remove it into the exceptional set 𝑈0. If any other vertex y also has small attachment in 𝜙𝑖 we also
remove it to 𝑈0. If 𝑥𝑖 was not removed, we assign it to the part 𝑈 𝑗 where 𝑥𝑖 looks most like a 𝜓 𝑓 -clone
of j in 𝜙𝑖 , and similarly assign vertices which are no longer exceptional.

The extension property guarantees that any vertex which was not moved into the exceptional set,
and therefore has large attachment, looks similar to a 𝜓 𝑓 -clone. There cannot be too many exceptional
vertices since they all have small attachment, whereas q is large.

We now formally describe the i-th backwards step. Define U 𝑓 := {𝑈0
𝑓 , . . . ,𝑈

𝑟 𝑓
𝑓 } by setting 𝑈

𝑗
𝑓 :=

𝑋 𝑓 , 𝑗 for all 𝑗 ∈ [𝑟 𝑓 ] and 𝑈0
𝑓 := ∅. For each 𝑖 = 𝑓 − 1, . . . , 0, define 𝑈𝑖 and U𝑖 := {𝑈0

𝑖 , . . . ,𝑈
𝑟 𝑓
𝑖 }

inductively as follows. Initially, 𝑈𝑖 = [𝑟] and 𝑈0
𝑖 = ∅. If 𝑞𝑥𝑖 (𝑈𝑖 , 𝜙𝑖) < 𝑄(𝒌) −

√
𝜀, move 𝑥𝑖 from 𝑈𝑖

into 𝑈0
𝑖 . Next, if there is 𝑦 ∈ 𝑈𝑖 such that 𝑞𝑦 (𝑈𝑖 , 𝜙𝑖) < 𝑄(𝒌) −

√
𝜀, move y into 𝑈0

𝑖 (we also include the
special vertex 𝑥𝑖 here, if at some point its attachment becomes too small). Update 𝑈𝑖 and repeat until
there are no such vertices left in 𝑈𝑖 .

Next, for each 𝑗 ∈ [𝑟 𝑓 ], let 𝑈
𝑗
𝑖 be the restriction of 𝑈

𝑗
𝑖+1 to 𝑈𝑖 \ {𝑥𝑖}. For each 𝑧 ∈ 𝐵𝑖 :=

(𝑈0
𝑖+1 ∪ {𝑥𝑖}) ∩ 𝑈𝑖 , add z to the part 𝑈 𝑗

𝑖 such that z looks most like a 𝜓 𝑓 -clone of j under 𝜙𝑖 |𝑈𝑖 ;
that is, choose the index 𝑗 ∈ [𝑟 𝑓 ] such that

���
∑

𝑗′ ∈ [𝑟 𝑓 ]\{ 𝑗 }
|{𝑦 ∈ 𝑈

𝑗′

𝑖 : 𝜙𝑖 (𝑦𝑧) ≠ 𝜓 𝑓 ( 𝑗 ′ 𝑗)}|
��� + |{𝑦 ∈ 𝑈

𝑗
𝑖 : |𝜙𝑖 (𝑦𝑧) | ≥ 2}|

is minimal (breaking ties arbitrarily). This completes backwards step i; now move on to backwards step
𝑖 − 1.

We show that the exceptional set 𝑈0
𝑖 is always small.

Claim 3.1.2. For all 𝑖 = 𝑓 , . . . , 0, we have |𝑈0
𝑖 | ≤ 2

√
𝜀𝑟 .

Proof of Claim. Let 𝑦1, . . . , 𝑦ℓ be the vertices which are moved into 𝑈0
𝑖 at step i, in this order. So

|𝑈0
𝑖 | = ℓ.
Given distinct 𝑥, 𝑦 ∈ [𝑟], write 𝑑𝑖 (𝑥𝑦) := log |𝜙𝑖 (𝑥𝑦) | if 𝜙𝑖 (𝑥𝑦) ≠ ∅ and 𝑑𝑖 (𝑥𝑦) := 0 otherwise.

For 1 ≤ 𝑘 ≤ ℓ, the vertex 𝑦𝑘 is moved to 𝑈0
𝑖 due to 𝑞𝑦𝑘 (𝑈𝑖,𝑘 , 𝜙𝑖) < 𝑄(𝒌) −

√
𝜀, where 𝑈𝑖,𝑘 :=

[𝑟] \ {𝑦1, . . . , 𝑦𝑘−1}. Note that 𝑞𝑦𝑘 (𝑈𝑖,𝑘 , 𝜙𝑖) |𝑈𝑖,𝑘 | =
∑

𝑥∈𝑈𝑖,𝑘+1 𝑑𝑖 (𝑥𝑦𝑘 ). We have
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𝑄(𝒌) (𝑟 − ℓ)2

2
(3.5)
≥ 𝑞(𝑈𝑖 , 𝜙𝑖)

|𝑈𝑖 |2
2

=
∑

𝑥𝑦∈(𝑈𝑖
2 )

𝑑𝑖 (𝑥𝑦) =
∑

𝑥𝑦∈( [𝑟 ]2 )
𝑑𝑖 (𝑥𝑦) −

∑
𝑘∈[ℓ ]

𝑞𝑦𝑘 (𝑈𝑖,𝑘 , 𝜙𝑖) |𝑈𝑖,𝑘 |

≥
∑

𝑥𝑦∈( [𝑟 ]2 )
𝑑𝑖 (𝑥𝑦) −

∑
𝑘∈[ℓ ]

(𝑄(𝒌) −
√
𝜀) (𝑟 − 𝑘 + 1)

= 𝑞(𝜙𝑖 ,𝜶)
𝑟2

2
− (𝑄(𝒌) −

√
𝜀)

(
𝑟ℓ −

(
ℓ

2

))
(3.4)
≥ (𝑄(𝒌) − 2𝜀) 𝑟

2

2
− (𝑄(𝒌) −

√
𝜀)

(
(𝑟 − ℓ)ℓ +

(
ℓ + 1

2

))
.

Rearranging, we have
√
𝜀((𝑟 − ℓ)ℓ +

(ℓ+1
2

)
) ≤ 𝜀𝑟2 + 𝑄(𝒌)ℓ/2 < 3𝜀𝑟2/2. But if 2

√
𝜀𝑟 ≤ ℓ ≤ 𝑟/2, we

have
√
𝜀(𝑟 − ℓ)ℓ ≥

√
𝜀(1− 2

√
𝜀) · 2

√
𝜀𝑟2 > 3𝜀𝑟2/2. Thus, at the moment when 2

√
𝜀𝑟 vertices are added

to 𝑈0
𝑖 , we obtain a contradiction. �

Every 𝑥 ∈ 𝑈𝑖 satisfies 𝑞𝑥 (𝑈𝑖 , 𝜙𝑖) ≥ 𝑄(𝒌) −
√
𝜀. Let 𝑛 := |𝑈𝑖 | and let 𝐺𝑖 be the complete graph

with vertex set 𝑈𝑖 whose edges are coloured red (for missing), blue (for extra) or green (for perfect) as
follows. For each 𝑥 ∈ 𝑈𝑖 , let 𝑗𝑥 ∈ [𝑟 𝑓 ] be such that 𝑥 ∈ 𝑈

𝑗𝑥
𝑖 . For each 𝑥𝑦 ∈ 𝐸 (𝐺𝑖),

◦ 𝑥𝑦 is red if 𝑗𝑥 ≠ 𝑗𝑦 and 𝜙𝑖 (𝑥𝑦) � 𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦), so there are missing colours.
◦ 𝑥𝑦 is blue if either 𝑗𝑥 ≠ 𝑗𝑦 and 𝜙𝑖 (𝑥𝑦) \ 𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) ≠ ∅, or 𝑗𝑥 = 𝑗𝑦 and 𝜙𝑖 (𝑥𝑦) � {1}, so there are

extra colours.
◦ 𝑥𝑦 is green otherwise.

Recall that we defined

𝐵𝑖 = (𝑈0
𝑖+1 ∪ {𝑥𝑖}) ∩𝑈𝑖 , and that |𝐵𝑖 | ≤ 3

√
𝜀𝑟 (3.6)

by Claim 3.1.2. The colouring of 𝐺𝑖 − 𝐵𝑖 depends only on the previous partition U𝑖+1 and the colour
pattern 𝜙𝑖+1 since every vertex in 𝑈𝑖 \ 𝐵𝑖 lies in 𝑈

𝑗
𝑖+1 ∩𝑈

𝑗
𝑖 for some 𝑗 ∈ [𝑟 𝑓 ], and the colour patterns

𝜙𝑖 and 𝜙𝑖+1 only differ at 𝑥𝑖 . Also,

𝑛 = 𝑟 − |𝑈0
𝑖 | ≥ (1 − 2

√
𝜀)𝑟.

Write 𝜷𝑖 := (|𝑈1
𝑖 |, . . . , |𝑈

𝑟 𝑓
𝑖 |)/|𝑈𝑖 | ∈ Δ𝑟 𝑓 .

Claim 3.1.3. For all 𝑖 = 𝑓 , . . . , 0, 𝐺𝑖 has no blue edges.

Proof of Claim. We prove this by backwards induction for 𝑖 = 𝑓 , . . . , 0. The claim is true for 𝑖 = 𝑓 ,
as every edge in 𝐺 𝑓 is green. Suppose it is true for all backwards steps 𝑓 , . . . , 𝑖 + 1. The induction
hypothesis and the fact that 𝜙𝑖 differs from 𝜙𝑖+1 only at 𝑥𝑖 implies that only vertices in 𝐵𝑖 can be incident
with blue edges in 𝐺𝑖 .

First we show that 𝐺𝑖 contains few red edges and 𝜷𝑖 is close to an optimal vertex weighting. Indeed,

𝑄(𝒌) −
√
𝜀 ≤

∑
𝑥∈𝑈𝑖

𝑞𝑥 (𝑈𝑖 , 𝜙𝑖)/|𝑈𝑖 | = 𝑞(𝑈𝑖 , 𝜙𝑖)

≤
(

𝑟

|𝑈𝑖 |

)2�����
2
𝑟2

∑
𝑥𝑦∈𝐸 (𝐺𝑖)
𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦 )≠∅

log |𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) | −
2
𝑟2

∑
𝑥𝑦 red

log
( |𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) |
|𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) | − 1

)
+ 2 log 𝑠

𝑟
|𝐵𝑖 |

�����
≤ 𝑞(𝜓 𝑓 , 𝜷𝑖) − 2 log

( 𝑠

𝑠 − 1

) 𝑒red(𝐺𝑖)
𝑛2 + 2𝑟 log 𝑠 |𝐵𝑖 |

𝑛2

≤ 𝑄(𝒌) − 2 log
( 𝑠

𝑠 − 1

) 𝑒red(𝐺𝑖)
𝑛2 + 7

√
𝜀 log 𝑠.
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Thus

𝑒red(𝐺𝑖) ≤ 𝜀1/3𝑛2 (3.7)

and additionally, from the penultimate inequality, 𝑞(𝜓 𝑓 , 𝜷𝑖) ≥ 𝑄(𝒌) − 𝜀1/4. Lemma 2.3 applied with
parameters 𝑠, 𝒌, 𝛾 implies that there exists 𝜶′

𝑖 ∈ Δ𝑟 𝑓 such that (𝑟 𝑓 , 𝜓 𝑓 ,𝜶
′
𝑖) ∈ opt2 (𝒌) and

‖𝜷𝑖 − 𝜶′
𝑖 ‖1 < 𝛾 � 𝜂𝛿. (3.8)

Without loss of generality, suppose the nonzero entries of 𝜶′
𝑖 form an initial segment of length 𝑟𝑖 , and

let �̃�𝑖 be this initial segment. Let 𝜙𝑖 := 𝜓 𝑓 |( [�̃�𝑖 ]2 ) . Then (𝑟𝑖 , 𝜙𝑖 , �̃�𝑖) ∈ opt∗(𝒌). We claim that

𝑞 𝑗 (𝜓 𝑓 ,𝜶
′
𝑖) ≤ 𝑄(𝒌) for all 𝑗 ∈ [𝑟 𝑓 ] . (3.9)

Indeed, if 𝑗 ∈ [𝑟𝑖], then Proposition 2.1 implies that 𝑞 𝑗 (𝜓 𝑓 ,𝜶
′
𝑖) = 𝑞 𝑗 (𝜙𝑖 , �̃�𝑖) = 𝑄(𝒌). If 𝑟𝑖 < 𝑗 ≤ 𝑟 𝑓 ,

then Proposition 2.6 implies the bound 𝑞 𝑗 (𝜓 𝑓 ,𝜶
′
𝑖) = ext(𝜓 𝑓 |( [�̃�𝑖 ]∪{ 𝑗}2 ) , �̃�𝑖) ≤ 𝑄(𝒌).

Next we claim that every 𝑧 ∈ 𝐵𝑖 is 𝛿-close under 𝜙𝑖 |(𝑈𝑖
2 ) to being a 𝜓 𝑓 -clone of some 𝑗 ∈ [𝑟𝑖] ⊆ [𝑟 𝑓 ],

which will follow from an application of Lemma 2.12. Suppose not. To apply the lemma, let 𝑈 ′
𝑖 :=⋃

𝑗∈[𝑟𝑖 ] 𝑈
𝑗
𝑖 and 𝑈𝑧

𝑖 := {𝑧} ∪ (𝑈 ′
𝑖 \ 𝐵𝑖) and 𝑡 := |𝑈 ′

𝑖 \ 𝐵𝑖 |. Let �̃�𝑖 := (|𝑈1
𝑖 \ 𝐵𝑖 |, . . . , |𝑈𝑟𝑖

𝑖 \ 𝐵𝑖 |)/|𝑈 ′
𝑖 \ 𝐵𝑖 |,

so ‖ �̃�𝑖 − �̃�𝑖 ‖1 ≤ 2𝛾 by (3.8). Let 𝜙′ :
(𝑈 𝑧

𝑖
2
)
→ 2[𝑠] be obtained from 𝜙𝑖 as follows. Let 𝜙′(𝑧𝑦) := 𝜙𝑖 (𝑧𝑦)

for all 𝑦 ∈ 𝑈𝑧
𝑖 \ {𝑧}, and let 𝜙′ agree with 𝜙 𝑓 elsewhere, that is, 𝜙′(𝑥𝑦) := 𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) whenever 𝑗𝑥 ≠ 𝑗𝑦 ,

and 𝜙′(𝑥𝑦) := ∅ if 𝑗𝑥 = 𝑗𝑦 . Let 𝜶𝑡 be the length-t vector which is identically 1/𝑡. We have

ext(𝜙′,𝜶𝑡 ) = 𝑞𝑧 (𝜙𝑖 |(𝑈
𝑧
𝑖

2 )
, ( 1

𝑡 , . . . ,
1
𝑡 , 0)) ≥

1
𝑡
(|𝑈𝑖 |𝑞𝑧 (𝑈𝑖 , 𝜙𝑖) − (log 𝑠) (|𝐵𝑖 | + 𝛾𝑟)) > 𝑄(𝒌) − 2(log 𝑠)𝛾.

We can apply Lemma 2.12 with (𝑟𝑖 , 𝜙𝑖 , �̃�𝑖), (𝑈 𝑗
𝑖 \ 𝐵𝑖 : 𝑗 ∈ [𝑟𝑖]), 𝜶𝑡 , 𝜷𝑖 , 𝑧 playing the roles of

(𝑟∗, 𝜙∗,𝜶∗),V ,𝜶, 𝜷, 𝑟 +1 to see that, writing L for the set of sets {𝑦1, . . . , 𝑦𝑘1−1} ∈
(𝑈 ′

𝑖 \𝐵𝑖

𝑘1−1
)

(i.e. (𝑘1 −1)-
subsets of vertices of 𝐺𝑖 [𝑈 ′

𝑖 ] − 𝐵𝑖) such that (𝜙′)−1(𝑐) [{𝑧, 𝑦1, . . . , 𝑦𝑘1−1}] ⊇ 𝐾𝑘𝑐 for some 𝑐 ∈ [𝑠], we
have |𝐿 | ≥ 𝜂𝑛𝑘1−1.

For every {𝑦1, . . . , 𝑦𝑘1−1} ∈ 𝐿, there are ℓ, ℓ′ ∈ [𝑘1 − 1] such that 𝑦ℓ 𝑦ℓ′ is red (recalling that these
edges are either red or green), otherwise 𝜙𝑖 is identical to 𝜙′ on all pairs of these vertices, and thus
𝜙−1
𝑖 (𝑐) contains a copy of 𝐾𝑘𝑐 for some c. Each pair appears in at most 𝑛𝑘1−3 sets in L, so the number

of red edges in 𝐺𝑖 is at least 𝜂𝑛𝑘1−1/𝑛𝑘1−3 = 𝜂𝑛2 > 2𝜀1/3𝑛2, a contradiction to (3.7). Thus z is 𝛿-close
to being a 𝜓 𝑓 -clone of some 𝑗 ∈ [𝑟𝑖] under 𝜙𝑖 |(𝑈

𝑧
𝑖

2 )
.

During backwards symmetrisation we added z to the part 𝑈 𝑗𝑧
𝑖 such that z was closest to a 𝜓 𝑓 -clone

of 𝑗𝑧 under 𝜙𝑖 , so

𝑑red(𝑧) + 𝑑blue(𝑧) ≤
∑

𝑗′ ∈ [𝑟 𝑓 ]\{ 𝑗𝑧 }
|{𝑦 ∈ 𝑈

𝑗′

𝑖 : 𝜙𝑖 (𝑧𝑦) ≠ 𝜓 𝑓 ( 𝑗𝑧 𝑗𝑦)}| + |{𝑦 ∈ 𝑈
𝑗𝑧
𝑖 : |𝜙𝑖 (𝑧𝑦) | ≥ 2}|

≤
∑

𝑗′ ∈ [𝑟 𝑓 ]\{ 𝑗 }
|{𝑦 ∈ 𝑈

𝑗′

𝑖 : 𝜙𝑖 (𝑧𝑦) ≠ 𝜓 𝑓 ( 𝑗 𝑗𝑦)}| + |{𝑦 ∈ 𝑈
𝑗
𝑖 : |𝜙𝑖 (𝑧𝑦) | ≥ 2}|

≤ 𝛿𝑡 + |𝐵𝑖 | ≤ 2𝛿𝑛.

Therefore the green degree of z in 𝐺𝑖 is

𝑑green(𝑧) ≥ (1 − 2𝛿)𝑛 for all 𝑧 ∈ 𝐵𝑖 . (3.10)
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Thus

𝑄(𝒌) −
√
𝜀 ≤ 𝑞𝑧 (𝑈𝑖 , 𝜙𝑖) ≤

𝑟

|𝑈𝑖 |

�����
1
𝑟

∑
𝑦∈𝑈𝑖

𝜓 𝑓 ( 𝑗𝑧 𝑗𝑦 )≠∅

log |𝜓 𝑓 ( 𝑗𝑧 𝑗𝑦) | +
log 𝑠

𝑟
(𝑛 − 1 − 𝑑green(𝑧))

�����
≤ 𝑞 𝑗𝑧 (𝜓 𝑓 , 𝜷𝑖) + 3𝛿 log 𝑠 ≤ 𝑞 𝑗𝑧 (𝜓 𝑓 ,𝜶

′
𝑖) + 2(log 𝑠)‖𝜶′

𝑖 − 𝜷𝑖 ‖1 + 3𝛿 log 𝑠

(3.8)
≤ 𝑞 𝑗𝑧 (𝜓 𝑓 ,𝜶

′
𝑖) + 4𝛿 log 𝑠

and therefore

𝑞 𝑗𝑧 (𝜓 𝑓 ,𝜶
′
𝑖) ≥ 𝑄(𝒌) −

√
𝛿 for all 𝑧 ∈ 𝐵𝑖 . (3.11)

(By the optimality of (𝑟 𝑓 , 𝜓 𝑓 ,𝜶
′
𝑖) this is automatically true for nonzero parts.) Next, we show the

number of red edges incident to a vertex x in 𝑈𝑖 \ 𝐵𝑖 is

𝑑red(𝑥) ≤
√
𝛾𝑛 and hence 𝑑green(𝑥) ≥ (1 − 2√𝛾)𝑛 for all 𝑥 ∈ 𝑈𝑖 \ 𝐵𝑖 . (3.12)

Indeed, the second part follows from the first since every edge incident to x in 𝐺𝑖 − 𝐵𝑖 is either green or
red. To prove the first part, let 𝑥 ∈ 𝑈𝑖 \ 𝐵𝑖 . Since x can have blue neighbours only in 𝐵𝑖 , we have

𝑄(𝒌) −
√
𝜀 ≤ 𝑞𝑥 (𝑈𝑖 , 𝜙𝑖)

≤ 𝑟

|𝑈𝑖 |

�����
1
𝑟

∑
𝑦∈𝑈𝑖\𝐵𝑖

𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦 )≠∅

log |𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) | −
1
𝑟

∑
𝑦∈𝑁red (𝑥)

log
( |𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) |
|𝜓 𝑓 ( 𝑗𝑥 𝑗𝑦) | − 1

)
+ log 𝑠

𝑟
|𝐵𝑖 |

�����
≤ 𝑞 𝑗𝑥 (𝜓 𝑓 , 𝜷𝑖) − log

( 𝑠

𝑠 − 1

) 𝑑red(𝑥)
𝑛

+ 4 log 𝑠
√
𝜀

≤ 𝑞 𝑗𝑥 (𝜓 𝑓 ,𝜶
′
𝑖) −

𝑑red(𝑥)
𝑠𝑛

+ 3𝛾 log 𝑠

≤ 𝑄(𝒌) − 𝑑red(𝑥)
𝑠𝑛

+ 3𝛾 log 𝑠, (3.13)

where the final inequality follows from (3.9). Therefore, 𝑑red(𝑥) ≤
√
𝛾𝑛 , as required, and the penultimate

inequality implies that 𝑞 𝑗𝑥 (𝜓 𝑓 ,𝜶
′
𝑖) ≥ 𝑄(𝒌) − 𝛾1/3.

Combined with (3.11), we have shown that 𝑞 𝑗𝑦 (𝜓 𝑓 ,𝜶
′
𝑖) ≥ 𝑄(𝒌) −

√
𝛿 for all 𝑦 ∈ 𝑈𝑖 . We will now

show that this means that 𝜷𝑖 has the same support as 𝜶′
𝑖; that is, either 𝑟𝑖 = 𝑟 𝑓 , or for all 𝑟𝑖 < 𝑗 ≤ 𝑟 𝑓 , we

have 𝛽𝑖, 𝑗 = 0. Suppose not; then without loss of generality there is some 𝑥 ∈ 𝑈𝑟𝑖+1
𝑖 (so 𝑗𝑥 = 𝑟𝑖 + 1). We

have ext(𝜓 𝑓 |( [�̃�𝑖+1]
2 ) , �̃�𝑖) = 𝑞𝑟𝑖+1(𝜓 𝑓 , (𝛼′

𝑖,1, . . . , 𝛼
′
𝑖,𝑟𝑖

, 0)) ≥ 𝑄(𝒌) −
√
𝛿. Thus Lemma 2.10 implies that

𝑟𝑖 + 1 is a 𝜓 𝑓 -clone of some 𝑗∗ ∈ [𝑟𝑖] under 𝜓 𝑓 , which is a contradiction since |𝜓 𝑓 ({𝑟𝑖 + 1, 𝑗∗}) | ≥ 2
for all 𝑗∗ ∈ [𝑟𝑖]. Thus 𝑈 𝑗

𝑖 = ∅ for all 𝑟𝑖 < 𝑗 ≤ 𝑟 𝑓 , so (3.8) implies that

𝛽𝑖, 𝑗 ≥ �̃�𝑖, 𝑗 − 𝛾 ≥ 𝜇 − 𝛾 ≥ 𝜇/2 for all 𝑗 ∈ [𝑟𝑖], and 𝑈𝑖 =
⋃
𝑗∈[𝑟𝑖 ]

𝑈
𝑗
𝑖 . (3.14)

We can now complete the claim, comparing 𝜙𝑖 and the partition
⋃

𝑗∈[𝑟𝑖 ] 𝑈
𝑗
𝑖 of 𝑈𝑖 to (𝑟𝑖 , 𝜙𝑖 , �̃�𝑖) ∈

opt∗(𝒌). Suppose for a contradiction that there is a blue edge 𝑧𝑦, so 𝑧 ∈ 𝐵𝑖 and 𝑦 ∈ 𝑈𝑖 (where y could
also be in 𝐵𝑖). Let 𝑗1 := 𝑗𝑧 and 𝑗2 := 𝑗𝑦 , so { 𝑗1, 𝑗2} ⊆ [𝑟𝑖] by (3.14). By definition, either
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(i) 𝑗1 ≠ 𝑗2 and there is 𝑐 ∈ 𝜙𝑖 (𝑧𝑦) \ 𝜙𝑖 ( 𝑗1 𝑗2), or
(ii) 𝑗1 = 𝑗2 and there is some 1 ≠ 𝑐 ∈ 𝜙𝑖 (𝑧𝑦).
We claim that, in both cases, there exist 𝑗3, . . . , 𝑗𝑘𝑐 ∈ [𝑟𝑖] \ { 𝑗1, 𝑗2} such that 𝑐 ∈ 𝜙𝑖 ( 𝑗ℓ 𝑗ℓ′ ) for all pairs
among { 𝑗1, . . . , 𝑗𝑘𝑐 } except 𝑗1 𝑗2 if they are distinct. Indeed, suppose (i) holds. By Lemma 2.5(i), the
graph ([𝑟𝑖], (𝜙𝑖)−1(𝑐)) is maximally 𝐾𝑘𝑐 -free. Since it is not complete, we are done. Suppose (ii) holds.
By Lemma 2.5(ii), (1 + 𝒆 𝑗1) (𝜙𝑖)−1(𝑐) contains a copy of 𝐾𝑘𝑐 as 𝑐 ≠ 1.

We say that a subset {𝑦3, . . . , 𝑦𝑘𝑐 } with 𝑦ℓ ∈ 𝑈
𝑗ℓ
𝑖 for 3 ≤ ℓ ≤ 𝑘𝑐 is bad if 𝑧𝑦ℓ , 𝑦𝑦ℓ and 𝑦ℓ 𝑦ℓ′ for every

ℓℓ′ ∈
( [𝑘𝑐 ]

2
)

are green. Since 𝑐 ∈ 𝜙𝑖 (𝑧𝑦), there can be no bad subsets in 𝐺𝑖 since then 𝑐 ∈ 𝜙𝑖 (𝑥𝑦) for
every pair 𝑥𝑦 among vertices in the subset, contradicting 𝐾𝑘𝑐 ∉ 𝜙−1

𝑖 (𝑐) ( [𝑟𝑖]). On the other hand, at least,
say,

∏
3≤ℓ≤𝑘𝑐 (|𝑈

𝑗ℓ
𝑖 |/2) subsets are bad. Indeed, (3.14) implies that |𝑈 𝑗

𝑖 | = 𝛽𝑖, 𝑗𝑛 ≥ 𝜇𝑛/2 for all 𝑗 ∈ [𝑟𝑖].
Also, (3.12) and (3.10) imply that every vertex has at most 2𝛿𝑛 nongreen neighbours. Thus, choosing
𝑦3, . . . , 𝑦𝑘𝑐 sequentially, among the vertices in 𝑈

𝑗ℓ
𝑖 , there are at most 2(ℓ − 1)𝛿𝑛 < 𝜇𝑛/4 < |𝑈 𝑗ℓ

𝑖 |/2
vertices forbidden for 𝑦ℓ due to not being a green neighbour of every 𝑦1, . . . , 𝑦ℓ−1, as required. This
contradiction implies that z is not incident to any blue edges, and thus 𝐺𝑖 contains no blue edges. This
finishes the proof of Claim 3.1.3. �

As before, let us assume that nonzero entries of 𝜶′
0 are indexed by [𝑟0]. So Lemma 3.1 holds when we

set𝑌0 := 𝑈0
0 ∪

⋃
𝑟0+1≤ 𝑗≤𝑟 𝑓 𝑈

𝑗
0 and𝑌 𝑗 := 𝑈

𝑗
0 for all 𝑗 ∈ [𝑟0] and (𝑟0, 𝜙0, �̃�0) plays the role of (𝑟∗, 𝜙∗,𝜶∗).

This completes the proof of Lemma 3.1.

4. Stability of asymptotically extremal graphs

4.1. Tools for large graphs

One of our main tools is Szemerédi’s regularity lemma, which allows us to discretise a large edge-
coloured graph and thus approximate it by a feasible solution to Problem 𝑄0. We will need the following
definitions relating to regularity.

Definition 4.1 (Edge density, regularity of pairs and partitions). Given a graph G and disjoint nonempty
sets 𝐴, 𝐵 ⊆ 𝑉 (𝐺), we define the edge density between A and B to be

𝑑𝐺 (𝐴, 𝐵) :=
𝑒𝐺 (𝐴, 𝐵)
|𝐴| |𝐵 | .

Given 𝜀, 𝑑 > 0, the pair (𝐴, 𝐵) is called

◦ 𝜀-regular, if for every 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 with |𝑋 | ≥ 𝜀 |𝐴| and |𝑌 | ≥ 𝜀 |𝐵 |, we have that |𝑑 (𝑋,𝑌 ) −
𝑑 (𝐴, 𝐵) | ≤ 𝜀.

◦ (𝜀, 𝑑)-regular, if (𝐴, 𝐵) is 𝜀-regular and 𝑑𝐺 (𝐴, 𝐵) = 𝑑 ± 𝜀.
◦ (𝜀, ≥ 𝑑)-regular, if it is 𝜀-regular and has density at least 𝑑 − 𝜀.

An equitable partition of a set V is a partition of V into parts 𝑉1, . . . , 𝑉𝑚, such that | |𝑉𝑖 | − |𝑉 𝑗 | | ≤ 1 for
all 𝑖, 𝑗 ∈ [𝑚]. An equitable partition of𝑉 (𝐺) into parts𝑉1, . . . , 𝑉𝑚 is called 𝜀-regular if |𝑉𝑖 | ≤ 𝜀 |𝑉 (𝐺) |
for every 𝑖 ∈ [𝑚], and all but at most 𝜀

(𝑚
2
)

of the pairs (𝑉𝑖 , 𝑉 𝑗 ) are 𝜀-regular.

We use the following multicolour version of Szemerédi’s regularity lemma [27]. This version can be
deduced from the original (see, for example, Theorems 1.8 and 1.18 in Komlós and Simonovits [19]).

Theorem 4.2 (Multicolour regularity lemma). For every 𝜀 > 0 and 𝑠 ∈ N, there exists 𝑀 ∈ N, such
that for any graph G on 𝑛 ≥ 𝑀 vertices and any edge s-colouring 𝜒 : 𝐸 (𝐺) → [𝑠], there is an equitable
partition 𝑉 (𝐺) = 𝑉1 ∪ . . . ∪ 𝑉𝑚 with 1/𝜀 ≤ 𝑚 ≤ 𝑀 , which is 𝜀-regular simultaneously with respect to
all graphs (𝑉 (𝐺), 𝜒−1(𝑖)), with 𝑖 ∈ [𝑠]. �

Our first tool states that a subgraph of a regular pair is still regular, provided both parts are not too
small.
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Proposition 4.3 [24, Proposition 9]. Let 𝜀, 𝛿 be such that 0 < 2𝛿 ≤ 𝜀 < 1. Suppose that (𝑋,𝑌 ) is a
𝛿-regular pair, and let 𝑋 ′ ⊆ 𝑋 and 𝑌 ′ ⊆ 𝑌 . If

min
{
|𝑋 ′ |
|𝑋 | ,

|𝑌 ′ |
|𝑌 |

}
≥ 𝛿

𝜀
,

then (𝑋 ′, 𝑌 ′) is 𝜀-regular. �

The next proposition states that, given a set of edge-disjoint subgraphs 𝐺1, . . . , 𝐺𝑠 of a bipartite
graph, if at least one of the graphs 𝐺𝑖 is not regular of density 𝑠−1, then there is a 𝐺 𝑗 whose density on
a pair of large sets is reduced.

Proposition 4.4. Let 𝐴, 𝐵 be disjoint sets of vertices, 𝑠 ∈ N, and let 𝜀 > 0 be a constant with
1/|𝐴|, 1/|𝐵 | � 𝜀 � 1/𝑠. Let 𝐺1, . . . , 𝐺𝑠 be pairwise edge-disjoint subgraphs of 𝐾 [𝐴, 𝐵]. Suppose that
not all of 𝐺1, . . . , 𝐺𝑠 are (𝜀, 𝑠−1)-regular graphs. Then there exists 𝑐 ∈ [𝑠] and 𝑋 ⊆ 𝐴, 𝑌 ⊆ 𝐵 with
|𝑋 | = �𝜀 |𝐴|� and |𝑌 | = �𝜀 |𝐵 |�, such that

𝑑𝐺𝑐 (𝑋,𝑌 ) ≤
1
𝑠

(
1 − 𝜀

2

)
.

Proof. Given 𝑐 ∈ [𝑠], 𝑋 ⊆ 𝐴,𝑌 ⊆ 𝐵, let

diff𝑐 (𝑋,𝑌 ) := 𝑠−1 |𝑋 | |𝑌 | − 𝑒𝐺𝑐 (𝑋,𝑌 ).

If 𝐺𝑐 is not (𝜀, 𝑠−1)-regular, then either

(i) |diff𝑐 (𝐴, 𝐵) | > 𝜀
2 |𝐴| |𝐵 |; or

(ii) there is some 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵 with |𝑋 | ≥ 𝜀 |𝐴| and |𝑌 | ≥ 𝜀 |𝐵 |, such that���� 𝑒𝐺𝑐 (𝑋,𝑌 )
|𝑋 | |𝑌 | −

𝑒𝐺𝑐 (𝐴, 𝐵)
|𝐴| |𝐵 |

���� > 𝜀;

or both (the immediate implication from the definition of (𝜀, 𝑠−1)-regular would have (i) replaced by
|diff𝑐 (𝐴, 𝐵) | > 𝜀 |𝐴| |𝐵 |, which is stronger than the statement of (i)). To prove the proposition, it is
enough to exhibit 𝑐∗ ∈ [𝑠], 𝑋 ′ ⊆ 𝐴 and 𝑌 ′ ⊆ 𝐵 with |𝑋 ′ | ≥ 𝜀 |𝐴| and |𝑌 ′ | ≥ 𝜀 |𝐵 | so that

diff𝑐∗ (𝑋 ′, 𝑌 ′) ≥ 𝜀

2𝑠
|𝑋 ′ | |𝑌 ′ |. (4.1)

Indeed, if we can find such 𝑐∗, 𝑋 ′, 𝑌 ′, then, setting 𝑘1 := �𝜀 |𝐴|� and 𝑘2 := �𝜀 |𝐵 |�, we have that∑
𝑋⊆𝑋′
|𝑋 |=𝑘1

∑
𝑌⊆𝑌 ′
|𝑌 |=𝑘2

diff𝑐∗ (𝑋,𝑌 ) =
(
|𝑋 ′ |
𝑘1

) (
|𝑌 ′ |
𝑘2

)
𝑠−1𝑘1𝑘2 −

(
|𝑋 ′ | − 1
𝑘1 − 1

) (
|𝑌 ′ | − 1
𝑘2 − 1

)
𝑒𝐺𝑐∗ (𝑋

′, 𝑌 ′)

=

(
|𝑋 ′ | − 1
𝑘1 − 1

) (
|𝑌 ′ | − 1
𝑘2 − 1

)
diff𝑐∗ (𝑋 ′, 𝑌 ′);

so, by averaging, there is some 𝑋 ⊆ 𝑋 ′ and 𝑌 ⊆ 𝑌 ′ with |𝑋 | = 𝑘1, |𝑌 | = 𝑘2, such that

diff𝑐∗ (𝑋,𝑌 ) ≥ diff𝑐∗ (𝑋 ′, 𝑌 ′) · 𝑘1𝑘2
|𝑋 ′ | |𝑌 ′ | =

𝜀

2𝑠
|𝑋 | |𝑌 |,

as required. So we will now concentrate on finding 𝑐∗, 𝑋 ′, 𝑌 ′ so that (4.1) holds. Suppose first that (i)
holds for some 𝑐 ∈ [𝑠]. If diff𝑐 (𝐴, 𝐵) > 0, then we are done by setting 𝑐∗ := 𝑐, 𝑋 ′ := 𝐴 and 𝑌 ′ := 𝐵. So
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we may assume that diff𝑐 (𝐴, 𝐵) < 0. Observe that∑
𝑖∈[𝑠]

diff𝑖 (𝐴, 𝐵) ≥ 0.

So
∑

𝑖∈[𝑠]\{𝑐 } diff𝑖 (𝐴, 𝐵) ≥ 𝜀 |𝐴| |𝐵 |/2. By averaging, there is some 𝑐′ ∈ [𝑠], such that

diff𝑐′ (𝐴, 𝐵) ≥
𝜀 |𝐴| |𝐵 |
2(𝑠 − 1) ≥ 𝜀

2𝑠
|𝐴| |𝐵 |.

So we are done by setting 𝑐∗ := 𝑐′, 𝑋 ′ := 𝐴 and 𝑌 ′ := 𝐵.
Suppose instead that (ii) holds for some 𝑐 ∈ [𝑠]. So there are 𝑋 ⊆ 𝐴, 𝑌 ⊆ 𝐵 with |𝑋 | ≥ 𝜀 |𝐴|,

|𝑌 | ≥ 𝜀 |𝐵 |, such that

𝜀 <

����diff𝑐 (𝑋,𝑌 )
|𝑋 | |𝑌 | − diff(𝐴, 𝐵)

|𝐴| |𝐵 |

���� < |diff𝑐 (𝑋,𝑌 ) |
|𝑋 | |𝑌 | + 𝜀

2
.

Therefore, |diff𝑐 (𝑋,𝑌 ) | > 𝜀 |𝑋 | |𝑌 |/2. Again, we may assume that diff𝑐 (𝑋,𝑌 ) < 0, or we are done. Then
an almost identical argument to the one above yields 𝑐′ ∈ [𝑠], such that diff𝑐′ (𝑋,𝑌 ) ≥ 𝜀 |𝐴| |𝐵 |/2𝑠. This
completes the proof. �

The next proposition states that regular pairs are robust under small perturbations; the version stated
here is a slight variation of Proposition 8 in [5].

Proposition 4.5. Let (𝐴, 𝐵) be an (𝜀, 𝑑)-regular pair, and let (𝐴′, 𝐵′) be a pair, such that |𝐴′ � 𝐴| ≤
𝛼 |𝐴′ | and |𝐵′ � 𝐵 | ≤ 𝛼 |𝐵′ | for some 0 ≤ 𝛼 ≤ 1. Then (𝐴′, 𝐵′) is an (𝜀 + 7

√
𝛼, 𝑑)-regular pair.

We will also frequently use the following standard embedding lemma (see, for example, Theorem
2.1 in [19]).

Lemma 4.6 (Embedding lemma). For every 𝜂 > 0 and integer 𝑘 ≥ 2, there exist 𝜀 > 0 and 𝑚0 ∈ N,
such that the following holds. Suppose that G is a graph with a partition 𝑉 (𝐺) = 𝑉1 ∪ . . . ∪ 𝑉𝑘 , such
that |𝑉𝑖 | ≥ 𝑚0 for all 𝑖 ∈ [𝑘], and every pair (𝑉𝑖 , 𝑉 𝑗 ) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 is (𝜀, ≥ 𝜂)-regular. Then G
contains 𝐾𝑘 .

4.1.1. Binomial tails
In order to prove Part (ii) of Theorem 1.4, we will need Corollary 4.8 below, which is a simple
consequence of the Chernoff inequality. The combinatorial interpretation of this fact is that almost
every partition of [𝑛] into k parts is such that every part has size roughly 𝑛/𝑘 . Write 𝑋 ∼ Bin(𝑛, 𝑝) if a
random variable X is binomially distributed with parameters 𝑛 ∈ N, 𝑝 ∈ (0, 1).

Proposition 4.7 [18, Theorem 2.1]. Suppose 𝑋 ∼ Bin(𝑛, 𝑝) where 0 < 𝑝 < 1. Let 𝑘 ≤ 𝑛𝑝. Then

P(𝑋 ≤ 𝑘) ≤ exp
(
−(𝑛𝑝 − 𝑘)2

2𝑛𝑝

)
.

Corollary 4.8. Let 𝑛, 𝑘 ∈ N and 𝛿 ∈ R, where 0 < 1/𝑛 � 𝛿 � 1/𝑘 . Then


 (𝑘−1−𝛿)𝑛�∑
𝑖=0

(
𝑛

𝑖

)
(𝑘 − 1)𝑛−𝑖 ≤ 𝑒−𝛿

2𝑘𝑛/3 · 𝑘𝑛.

Proof. Let 𝑋 ∼ Bin(𝑛, 𝑘−1) be a binomial random variable. Then Proposition 4.7 implies that

P(𝑋 ≤ 
(𝑘−1 − 𝛿)𝑛�) ≤ exp
(
−(𝑛/𝑘 − 
(𝑘−1 − 𝛿)𝑛�)2

2𝑛/𝑘

)
≤ 𝑒−𝛿

2𝑘𝑛/3.
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But

P(𝑋 ≤ 
(𝑘−1 − 𝛿)𝑛�) =

 (𝑘−1−𝛿)𝑛�∑

𝑖=0

(
𝑛

𝑖

) (
1
𝑘

) 𝑖 (
1 − 1

𝑘

)𝑛−𝑖
= 𝑘−𝑛 ·

(𝑘−1−𝛿)𝑛�∑
𝑖=0

(
𝑛

𝑖

)
(𝑘 − 1)𝑛−𝑖 ,

as required. �

We will also need the following simple bound, which we state without proof. Let 𝑛 ∈ N and 𝜀, 𝛿 > 0,
such that 0 < 1/𝑛 � 𝜀 � 𝛿 < 1. Then (

𝑛

≤ 𝜀𝑛

)
≤ 2𝛿𝑛, (4.2)

where for integers 𝑚 ≥ 𝑡, we write
(𝑚
≤𝑡

)
:=

∑
0≤𝑖≤𝑡

(𝑚
𝑖

)
.

4.2. Preparation for the proof of Theorem 1.4

We define a hierarchy of constants and assume that these relations hold throughout the remainder of
this section. Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 , and let 𝛿 > 0. In what follows, whenever we assume that a constant
is sufficiently small, it is because a larger constant gives a weaker conclusion. Let 𝜇 > 0 be such that
𝛼∗
𝑖 ≥ 𝜇 for all (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) and 𝑖 ∈ [𝑟∗] (which exists by Lemma 2.8). We may assume that

𝛿 � 𝜇, 1/𝑠, 1/𝑅(𝒌). Choose 𝛾3, . . . , 𝛾6 ∈ R, such that 0 < 𝛾3 � . . . � 𝛾6 � 𝛿. In particular, we may
assume that 𝛾4 ≤ 𝛾5/2𝑀𝛾5 , where 𝑀𝛾5 is the integer output of Theorem 4.2 applied with parameter 𝛾5;
and 𝛾5 is at most the output of Lemma 4.6 applied with parameter 𝛾6. Let 0 < 𝜈 � 𝛾3. Let 𝜀 > 0 be
such that 8𝜀 is the output of Lemma 2.3 applied with 2𝜈; we may assume that 𝜀 � 𝜈. Choose 𝛾2 ∈ R,
such that 0 < 𝛾2 � 𝜀. Let 𝛾1 > 0 be the minimum constant obtained when Lemma 4.6 is applied with
𝛾2 playing the role of 𝜂, and with 𝑘1, . . . , 𝑘𝑐 playing the role of k. We may assume that 0 < 𝛾1 � 𝛾2.
Apply Theorem 4.2 with parameter 𝛾1 to obtain 𝑀 ∈ N, such that the conclusions of the theorem hold.
We may assume that 1/𝑀 � 𝛾1. Now let 𝑛0 ∈ N be such that 1/𝑛0 � 1/𝑀 . We have the hierarchy

0 <
1
𝑛0

� 1
𝑀

� 𝛾1 � 𝛾2 � 𝜀 � 𝜈 � 𝛾3 � 𝛾4 � 𝛾5 � 𝛾6 � 𝛿 � 𝜇 � 1
𝑅(𝒌) . (4.3)

We need the following somewhat technical definition of ‘popular vectors’ from [25], which allows
us to choose colourings 𝜒 of G whose coloured regularity partition is a witness of many other valid
colourings of G.

Definition 4.9 (Popular vectors). Let G be a graph on 𝑛 ≥ 𝑛0 vertices and 𝜒 : 𝐸 (𝐺) → [𝑠] be an s-edge
colouring of G which is 𝒌-valid. Apply Theorem 4.2 to the pair (𝐺, 𝜒) with parameter 𝛾1 to obtain an
equitable partition 𝑉 (𝐺) = 𝑈1 ∪ . . . ∪𝑈𝑟 with 1/𝛾1 ≤ 𝑟 ≤ 𝑀 , which is 𝛾1-regular simultaneously with
respect to all graphs (𝑉 (𝐺), 𝜒−1(𝑐)), with 𝑐 ∈ [𝑠]. Let

𝜙(𝑖 𝑗) := {𝑐 ∈ [𝑠] : 𝜒−1(𝑐) [𝑈𝑖 ,𝑈 𝑗 ] is (𝛾1, ≥𝛾2)-regular}.

Let U := {𝑈𝑖 : 𝑖 ∈ [𝑟]}. We define the function RL by setting

RL(𝜒) := (𝑟, 𝜙,U )

(where we arbitrarily fix a single output if there is more than one choice of (𝑟, 𝜙,U )). We say that
(𝑟, 𝜙,U ) is popular if

|RL−1((𝑟, 𝜙,U )) | ≥ 𝐹 (𝐺; 𝒌) · 2−3𝜀𝑛2
,
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and unpopular otherwise. Let Pop(𝐺) be the set of popular (𝑟, 𝜙,U ), and let Col(𝐺) be the set of
𝒌-valid colourings 𝜒 of G, such that RL(𝜒) ∈ Pop(𝐺).

As the following proposition shows, almost every colouring 𝜒 maps to a popular vector.

Proposition 4.10. For all graphs G on 𝑛 ≥ 𝑛0 vertices,

|Col(𝐺) | ≥ (1 − 2−2𝜀𝑛2 ) · 𝐹 (𝐺; 𝒌).

Proof. Let M be the integer output of Theorem 4.2 applied with parameter 𝛾1. Let 𝑛 ≥ 𝑀 , and let G be
a graph on n vertices. The function RL is well-defined. Then the number of outputs (𝑟, 𝜙,U ) is at most

𝑀 ·
(
2(

𝑀
2 )

)𝑠
· 𝑛𝑀 = 2𝑂 (log 𝑛) .

Now, ∑
(𝑟 ,𝜙,U) ∈Pop(𝐺)

|RL−1 ((𝑟, 𝜙,U )) | = 𝐹 (𝐺; 𝒌) −
∑

(𝑟 ,𝜙,U)∉Pop(𝐺)
|RL−1((𝑟, 𝜙,U )) |

≥
(
1 − 2𝑂 (log 𝑛) · 2−3𝜀𝑛2

)
𝐹 (𝐺; 𝒌) ≥ (1 − 2−2𝜀𝑛2 )𝐹 (𝐺; 𝒌),

as required. �

4.3. The proof of Theorem 1.4

Using Lemma 3.1, we can now prove Theorem 1.4. Although this lemma is really the heart of the proof,
there are still many steps required to ‘transfer’ its conclusion to the graph setting. For this reason, we
split the proof into a series of claims, and continue to use the constants defined in (4.3).

Proof of Theorem 1.4. Suppose that G is a graph on 𝑛 ≥ 𝑛0 vertices, and

log 𝐹 (𝐺; 𝒌)(𝑛
2
) ≥ 𝑄(𝒌) − 𝜀. (4.4)

We will show that the conclusion of Theorem 1.4 holds with parameter 𝛿. If we decrease 𝛿, then
the conclusion of Theorem 1.4 becomes only stronger, so we can assume that 𝛿 satisfies (4.3). Let
(𝑟, 𝜙,U ) ∈ Pop(𝐺). That is,

|RL−1 ((𝑟, 𝜙,U )) | ≥ 2−3𝜀𝑛2 · 𝐹 (𝐺; 𝒌). (4.5)

We will (for now) suppress the dependence of what follows on (𝑟, 𝜙,U ). Thus, there is an equitable
partition𝑉 (𝐺) = 𝑈1 ∪ . . .∪𝑈𝑟 , where 1/𝛾1 ≤ 𝑟 ≤ 𝑀 , which is, for all 𝜒 ∈ RL−1((𝑟, 𝜙,U )), 𝛾1-regular
simultaneously with respect to all graphs (𝑉 (𝐺), 𝜒−1(𝑐)), with 𝑐 ∈ [𝑠]. Furthermore, for each 𝑖 𝑗 ∈

( [𝑟 ]
2
)

and 𝑐 ∈ [𝑠], we have that 𝑐 ∈ 𝜙(𝑖 𝑗) if and only if 𝜒−1 (𝑐) [𝑈𝑖 ,𝑈 𝑗 ] is (𝛾1, ≥ 𝛾2)-regular. Lemma 4.6 and
our choice of parameters in (4.3) imply that 𝜙−1(𝑐) is 𝐾𝑘𝑐 -free for all 𝑐 ∈ [𝑠].

The next claim shows that G gives rise to a feasible solution (𝑟, 𝜙,𝜶) of Problem 𝑄0 which is almost
optimal. Moreover, 𝜶 is a good approximation of the structure of G, and because (𝑟, 𝜙,U ) is popular, 𝜙
is a good approximation of many valid colourings of G.

Claim 4.1. Let 𝜶 := (|𝑈1 |/𝑛, . . . , |𝑈𝑟 |/𝑛). Then (𝑟, 𝜙,𝜶) ∈ feas0(𝒌) and

𝑞(𝜙,𝜶) ≥ 𝑄(𝒌) − 8𝜀 + 2
∑

𝑖 𝑗∈( [𝑟 ]2 )
|𝜙 (𝑖 𝑗) |≥2

(
𝑒(𝐺 [𝑈𝑖 ,𝑈 𝑗 ])

𝑛2

)
.
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Moreover, for every 𝜒 ∈ RL−1((𝑟, 𝜙,U )), we have∑
𝑖 𝑗∈( [𝑟 ]2 )

|𝜙 (𝑖 𝑗) |≥2

𝑒(𝐺 [𝑈𝑖 ,𝑈 𝑗 ])
𝑛2 ≤ 4𝜀, (4.6)

and there are at most 𝑠𝛾2𝑛
2 edges 𝑥𝑦 ∈ 𝐸 (𝐺) where 𝑥 ∈ 𝑈𝑖 and 𝑦 ∈ 𝑈 𝑗 , such that either 𝑖 = 𝑗 , or 𝑖 ≠ 𝑗

and 𝜒(𝑥𝑦) ∉ 𝜙(𝑖 𝑗).

Proof of Claim. Consider the following procedure for producing colourings of G whose image under
RL is (𝑟, 𝜙,U ).

4.4. Standard colouring procedure

1. Colour ‘atypical’ edges as follows:
(i) Assign arbitrary colours to all edges of G that lie inside some part 𝑈𝑖 .

(ii) Select at most 𝑠𝛾1
(𝑟
2
)

elements of
( [𝑟 ]

2
)

and, for each selected pair 𝑖 𝑗 , assign colours to𝐺 [𝑈𝑖 ,𝑈 𝑗 ]
arbitrarily.

(iii) For every colour 𝑐 ∈ [𝑠] and every 𝑖 𝑗 ∈
( [𝑟 ]

2
)
, colour an arbitrary subset of edges of 𝐺 [𝑈𝑖 ,𝑈 𝑗 ]

of size at most 𝛾2 |𝑈𝑖 | |𝑈 𝑗 | by colour c.
2. Colour most edges according to 𝜙: for every edge 𝑖 𝑗 ∈

( [𝑠]
2
)

and 𝑥 ∈ 𝑈𝑖 , 𝑦 ∈ 𝑈 𝑗 where 𝑥𝑦 ∈ 𝐸 (𝐺)
and 𝑥𝑦 is not yet coloured, pick an arbitrary colour from the set 𝜙(𝑖 𝑗). If 𝜙(𝑖 𝑗) = ∅, colour 𝑥𝑦 with
colour 1.

This procedure will generate every 𝜒 ∈ RL−1((𝑟, 𝜙,U )) (as well as some further colourings, which may
not even be 𝒌-valid). Indeed, this follows from Theorem 4.2, and the statement that 𝜙−1(𝑐) is 𝐾𝑘𝑐 -free
for all 𝑐 ∈ [𝑠].

Let 𝑆1 be the number of choices in step 1. We will call those edges which are not coloured according
to 𝜙 (i.e. not coloured in step 2) the atypical edges. The number of these is at most

𝑟
⌈𝑛
𝑟

⌉2
+ 𝑠𝛾1

(
𝑟

2

)⌈𝑛
𝑟

⌉2
+ 𝑠 ·

(
𝑟

2

)
· 𝛾2

⌈𝑛
𝑟

⌉2
< 𝑠𝛾2𝑛

2,

proving the second part of the claim. This also implies that

𝑆1 ≤
( (𝑛

2
)

≤ 𝑠𝛾2𝑛2

)
𝑠𝑠𝛾2𝑛

2 (4.2)
< 2𝜀𝑛2/3.

Let 𝑆2 be the number of choices in step 2 given a fixed choice at step 1. Since (𝑟, 𝜙,U ) is popular, we
have that

log 𝑆2
(4.5)
≥ log

(
2−3𝜀𝑛2 · 𝐹 (𝐺; 𝒌)

)
− log 𝑆1

(4.4)
≥

(
𝑛

2

)
(𝑄(𝒌) − 𝜀) − 𝜀𝑛2

3
− 3𝜀𝑛2. (4.7)

We would now like to bound 𝑆2 from above. For each 𝑖 𝑗 ∈
( [𝑟 ]

2
)
, define 𝛿𝑖 𝑗 by setting

𝛿𝑖 𝑗𝑛
2 := 𝑒(𝐺 [𝑈𝑖 ,𝑈 𝑗 ]) = |𝑈𝑖 | |𝑈 𝑗 | − 𝑒(𝐺 [𝑈𝑖 ,𝑈 𝑗 ]).

Now,

𝑆2 ≤
∏

𝑖 𝑗∈( [𝑟 ]2 )
(max{1, |𝜙(𝑖 𝑗) |}) |𝑈𝑖 | |𝑈 𝑗 |−𝛿𝑖 𝑗𝑛2

. (4.8)
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So

log 𝑆2 ≤
∑

𝑖 𝑗∈( [𝑟 ]2 )
𝜙 (𝑖 𝑗)≠∅

(
|𝑈𝑖 | |𝑈 𝑗 | − 𝛿𝑖 𝑗𝑛

2
)

log |𝜙(𝑖 𝑗) | = 𝑛2
∑

𝑖 𝑗∈( [𝑟 ]2 )
𝜙 (𝑖 𝑗)≠∅

(
𝛼𝑖𝛼 𝑗 − 𝛿𝑖 𝑗

)
log |𝜙(𝑖 𝑗) |

=
𝑛2

2
𝑞(𝜙,𝜶) − 𝑛2

∑
𝑖 𝑗∈( [𝑟 ]2 )

|𝜙 (𝑖 𝑗) |≥2

𝛿𝑖 𝑗 log |𝜙(𝑖 𝑗) |. (4.9)

Combining this with (4.7), we have that

𝑞(𝜙,𝜶) ≥ 𝑄(𝒌) − 8𝜀 + 2
∑

𝑖 𝑗∈( [𝑟 ]2 )
|𝜙 (𝑖 𝑗) |≥2

𝛿𝑖 𝑗 ,

proving the first part of the claim. Every edge that the second part of the claim counts is atypical, and
by construction, there are at most 𝑠𝛾2𝑛

2 of these. The final part of the claim follows from (4.7), (4.8)
and (4.9). �

Apply Lemma 3.1 with parameter 2𝜈 to (𝑟, 𝜙,𝜶) to obtain (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌), such that the
following hold: there is a partition [𝑟] = 𝑉0 ∪ . . . ∪𝑉𝑟∗ where for all 𝑖 ∈ [𝑟∗], we have

‖𝒙 − 𝜶∗‖1 < 2𝜈 where 𝑥𝑖 :=
∑
𝑗∈𝑉𝑖

𝛼 𝑗 ; (4.10)

for all 𝑖 𝑗 ∈
( [𝑟∗ ]

2
)
, 𝑖′ ∈ 𝑉𝑖 and 𝑗 ′ ∈ 𝑉 𝑗 , we have that 𝜙(𝑖′ 𝑗 ′) ⊆ 𝜙∗(𝑖 𝑗); and for all 𝑖 ∈ [𝑟∗] and every

𝑖′ 𝑗 ′ ∈
(𝑉𝑖

2
)
, we have 𝜙(𝑖′ 𝑗 ′) ⊆ {1}.

We would like to transfer this partition to G itself. So for all 0 ≤ 𝑖 ≤ 𝑟∗, let

𝑋𝑖 :=
⋃
𝑗∈𝑉𝑖

𝑈 𝑗 , so 𝑉 (𝐺) = 𝑋0 ∪ . . . ∪ 𝑋𝑟∗ . (4.11)

Then it is easy to see that

𝒙 =

(
|𝑋1 |
𝑛

, . . . ,
|𝑋𝑟∗ |
𝑛

)
. (4.12)

Now (4.3) and (4.10) imply that, for all 𝑖 ∈ [𝑟∗],

|𝑋𝑖 | ≥ (𝛼∗
𝑖 − 2𝜈)𝑛 ≥ 𝜇𝑛/2 and (4.13)

2𝜈 > ‖𝜶∗ − 𝒙‖1 ≥
����‖𝜶∗‖1 − ‖𝒙‖1

���� = ����1 −
(
1 − |𝑋0 |

𝑛

)���� = |𝑋0 |
𝑛

. (4.14)

Note that 𝒙, (𝑟∗, 𝜙∗), [𝑟] = 𝑉0 ∪ . . . ∪ 𝑉𝑟∗ , 𝑋0, . . . , 𝑋𝑟∗ are fixed for every 𝜒 ∈ RL−1((𝑟, 𝜙,U )). Claim
4.1 implies that ∑

𝑖∈[𝑟∗ ]
(𝑒𝐺 (𝑋𝑖) − |𝜒−1 (1) [𝑋𝑖] |) < 3𝜈𝑛2 for all 𝜒 ∈ RL−1((𝑟, 𝜙,U )). (4.15)

Say that 𝜒 ∈ RL−1((𝑟, 𝜙,U )) is good if

◦ 𝜒−1 (𝑐) [𝑋𝑖 , 𝑋 𝑗 ] is (𝛾3, |𝜙∗(𝑖 𝑗) |−1)-regular for all 𝑖 𝑗 ∈
( [𝑟∗ ]

2
)

and 𝑐 ∈ 𝜙∗(𝑖 𝑗).
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Say that 𝜒 is bad otherwise. Let G = G (𝑟, 𝜙,U ) be the set of good colourings 𝜒 ∈ RL−1((𝑟, 𝜙,U )). We
will show that almost every 𝜒 is good. The idea here is that, in every bad colouring 𝜒, there is a pair
(𝑋𝑖∗ , 𝑋 𝑗∗ ) in which some colour graph of 𝜒 is not regular of the correct density. Lemma 4.4 implies that
there must be some colour c and large sets 𝑋 ⊆ 𝑋𝑖∗ and 𝑌 ⊆ 𝑋 𝑗∗ between which 𝜒−1(𝑐) has density
which is significantly smaller than expected. So there are significantly fewer choices for colouring the
edges between this pair, a loss which is quantified by Corollary 4.8.

Consider the following procedure for generating a set of colourings of G which (as we will show)
includes every bad colouring.

4.5. Bad colouring procedure

1. Choose at most 3𝜈𝑛2 edges of G and colour them arbitrarily. For each 𝑖 ∈ [𝑟∗], colour every remaining
edge in 𝐺 [𝑋𝑖] with colour 1.

2. Pick 𝑖∗ 𝑗∗ ∈
( [𝑟∗ ]

2
)
; 𝑐∗ ∈ 𝜙∗(𝑖∗ 𝑗∗) and subsets 𝑋 ⊆ 𝑋𝑖∗ and 𝑌 ⊆ 𝑋 𝑗∗ of size �𝛾3 |𝑋𝑖∗ |�, �𝛾3 |𝑋 𝑗∗ |�,

respectively.
3. Choose at most (|𝜙∗(𝑖∗ 𝑗∗) |−1 − 𝛾3/2𝑠) |𝑋 | |𝑌 | edges in 𝐺 [𝑋,𝑌 ] and colour them with colour 𝑐∗.

Arbitrarily colour the remaining edges in 𝐺 [𝑋,𝑌 ] with colours from 𝜙∗(𝑖∗ 𝑗∗) \ {𝑐∗}.
4. Arbitrarily colour the remaining edges in 𝐺 [𝑋𝑖∗ , 𝑋 𝑗∗ ] with colours from 𝜙∗(𝑖∗ 𝑗∗).
5. For all 𝑖 𝑗 ∈

( [𝑟∗ ]
2

)
\ {𝑖∗ 𝑗∗}, arbitrarily colour all remaining edges in 𝐺 [𝑋𝑖 , 𝑋 𝑗 ] using colours from

𝜙∗(𝑖 𝑗).

Let 𝑆𝑝1...𝑝2 be the number of choices in steps 𝑝1–𝑝2, having fixed choices in previous steps, where
[𝑝1, 𝑝2] ⊆ [5].

Claim 4.2. The number of bad 𝜒 ∈ RL−1 ((𝑟, 𝜙,U )) is at most 𝑆1...5.

Proof of Claim. It suffices to show that for any bad 𝜒 ∈ RL−1((𝑟, 𝜙,U )), there is a set of choices in the
bad colouring procedure which generates it. So fix such a 𝜒. Say that an edge 𝑥𝑦 is contrary if one of
the following holds:

(a) at least one of 𝑥, 𝑦 is in 𝑋0;
(b) 𝜒(𝑥𝑦) ∉ 𝜙∗(𝑖 𝑗), where 𝑖 ≠ 𝑗 and 𝑥 ∈ 𝑋𝑖 and 𝑦 ∈ 𝑋 𝑗 ;
(c) 𝑥, 𝑦 ∈ 𝑋𝑖 and 𝑥𝑦 is not coloured with colour 1.

By (4.14), the number of edges of type (a) is at most |𝑋0 |𝑛 ≤ 2𝜈𝑛2. By Claim 4.1, there at most 𝑠𝛾2𝑛
2

edges 𝑥𝑦 with 𝑥 ∈ 𝑈𝑖 , 𝑦 ∈ 𝑈 𝑗 , such that either 𝑖 = 𝑗 , or 𝑖 ≠ 𝑗 and 𝜒(𝑥𝑦) ∉ 𝜙(𝑖 𝑗). Combining this with
Lemma 3.1(iii), we see that the number of edges of types (b) and (c) is at most 𝑠𝛾2𝑛

2. Therefore, there
are at most 3𝜈𝑛2 contrary edges in G. We colour these edges in step 1.

Since 𝜒 is bad, there is some 𝑖∗ 𝑗∗ ∈
( [𝑟∗ ]

2
)

and 𝑐 ∈ [𝑠], such that 𝜒−1(𝑐) [𝑋𝑖∗ , 𝑋 𝑗∗ ] is not
(𝛾3, |𝜙∗(𝑖∗ 𝑗∗) |−1)-regular. Proposition 4.4 applied with |𝜙∗(𝑖∗ 𝑗∗) |, 𝑋𝑖∗ , 𝑋 𝑗∗ , 𝜒

−1(𝑐) [𝑋𝑖∗ , 𝑋 𝑗∗ ], 𝛾3 play-
ing the roles of 𝑟, 𝐴, 𝐵, 𝐺𝑐 , 𝜀 implies that there exists 𝑐∗ ∈ [𝑠], such that there are 𝑋 ⊆ 𝑋𝑖∗ , 𝑌 ⊆ 𝑋 𝑗∗

with |𝑋 | = �𝛾3 |𝑋𝑖∗ |�, |𝑌 | = �𝛾3 |𝑋 𝑗∗ |� where

𝑑 (𝜒−1(𝑐) (𝑋,𝑌 )) ≤ |𝜙∗(𝑖∗ 𝑗∗) |−1
(
1 − 𝛾3

2

)
≤ |𝜙∗(𝑖∗ 𝑗∗) |−1 − 𝛾3

2𝑠
.

So in step 2, we can take 𝑖∗ 𝑗∗ ∈
( [𝑟∗ ]

2
)
, 𝑐∗ ∈ [𝑠] and 𝑋 ⊆ 𝑋𝑖∗ , 𝑌 ⊆ 𝑋 𝑗∗ and choose a suitable colouring

in steps 3 and 4, which will generate 𝜒[𝑋𝑖∗ , 𝑋 𝑗∗ ]. The only uncoloured edges are noncontrary edges
in (𝑋𝑖 , 𝑋 𝑗 ) for 𝑖 𝑗 ∈

( [𝑟∗ ]
2

)
\ {𝑖∗ 𝑗∗}, which can only use colours allowed by 𝜙, which form a subset

of the colours allowed by 𝜙∗, by Lemma 3.1. So we can colour them as in 𝜒 in step 5. This proves
that the bad colouring procedure will generate 𝜒. Since 𝜒 was an arbitrary bad colouring, the claim is
proved. �
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Therefore, we can give an upper bound for the number of bad colourings by counting the number of
steps in the bad colouring procedure.

Claim 4.3. |G | ≥ (1 − 2−𝛾5
3𝑛

2 ) | RL−1((𝑟, 𝜙,U )) |.

Proof of Claim. By the previous claim, it suffices to bound 𝑆1...5 from above. Then

𝑆12 ≤
(

𝑛2

≤ 3𝜈𝑛2

)
· 𝑠3𝜈𝑛2 ·

(
𝑟∗

2

)
· 𝑠 ·

(
|𝑋𝑖∗ |

≤ �𝛾3 |𝑋𝑖∗ |�

) (
|𝑋 𝑗∗ |

≤ �𝛾3 |𝑋 𝑗∗ |�

)
(4.2)
≤ 2𝛾

6
3𝑛

2
.

Let 𝑋 ⊆ 𝑋𝑖∗ and 𝑌 ⊆ 𝑋 𝑗∗ be chosen at step 2. Now, (4.13) implies that |𝑋 |, |𝑌 | ≥ 𝛾3𝜇𝑛/2. Using
𝑒(𝐺 [𝑋,𝑌 ]) ≤ |𝑋 | |𝑌 |, we have

𝑆3 ≤

( |𝜙∗ (𝑖∗ 𝑗∗) |−1−𝛾3/2𝑠) |𝑋 | |𝑌 | �∑

𝑖=0

(
|𝑋 | |𝑌 |

𝑖

)
( |𝜙∗(𝑖∗ 𝑗∗) | − 1) |𝑋 | |𝑌 |−𝑖

≤ 𝑒−𝛾
2
3 |𝑋 | |𝑌 |/12𝑠2 · |𝜙∗(𝑖∗ 𝑗∗) | |𝑋 | |𝑌 | ≤ 𝑒−𝛾

4
3 𝜇

2𝑛2/48𝑠2 · |𝜙∗(𝑖∗ 𝑗∗) | |𝑋 | |𝑌 | .

where, in the second inequality, we used Corollary 4.8 with |𝑋 | |𝑌 |, |𝜙∗(𝑖∗ 𝑗∗) |, 𝛾3/2𝑠 playing the roles
of 𝑛, 𝑘, 𝛿. Therefore

𝑆34 ≤ 𝑆3 · |𝜙∗(𝑖∗ 𝑗∗) | |𝑋𝑖∗ | |𝑋 𝑗∗ |−𝑒 (𝐺 [𝑋,𝑌 ]) (4.6)
≤ 𝑒−𝛾

4
3 𝜇

2𝑛2/48𝑠2 · 𝑠4𝜀𝑛2 |𝜙∗(𝑖∗ 𝑗∗) | |𝑋𝑖∗ | |𝑋 𝑗∗ | .

Let B be the number of bad 𝜒. Then, by Claim 4.2,

log 𝐵 ≤ log 𝑆1...5 ≤ log
����2𝛾

6
3𝑛

2 · 𝑒−𝛾4
3 𝜇

2𝑛2/48𝑠2 · 𝑠4𝜀𝑛2 ∏
𝑖 𝑗∈( [𝑟∗ ]2 )

|𝜙∗(𝑖 𝑗) | |𝑋𝑖 | |𝑋 𝑗 |
����

≤ 𝛾6
3𝑛

2 −
log 𝑒 · 𝛾4

3𝜇
2𝑛2

48𝑠2 + log 𝑠 · 4𝜀𝑛2 +
∑

𝑖 𝑗∈( [𝑟∗ ]2 )
|𝑋𝑖 | |𝑋 𝑗 | log |𝜙∗(𝑖 𝑗) |

(4.12)
≤ −4𝛾5

3𝑛
2 + 𝑞(𝜙∗, 𝒙)𝑛2

2
≤ −4𝛾5

3𝑛
2 + (𝑞(𝜙∗,𝜶∗) + 2 log 𝑠‖𝒙 − 𝜶∗‖1)

𝑛2

2
(4.10)
≤ 𝑄(𝒌)

(
𝑛

2

)
− 3𝛾5

3𝑛
2,

where the penultimate inequality follows from Proposition 2.2 (here, we also define 𝑞(𝜙∗, 𝒙) as in (1.4)
even though 𝑥1 + . . . + 𝑥𝑟∗ ≤ 1, as opposed to equal to 1). Therefore

log 𝐵 ≤ 𝑄(𝒌)
(
𝑛

2

)
− 3𝛾5

3𝑛
2 (4.4)

≤
(
log 𝐹 (𝐺; 𝒌) + 𝜀

(
𝑛

2

))
− 3𝛾5

3𝑛
2

≤ log 𝐹 (𝐺; 𝒌) − 2𝛾5
3𝑛

2 (4.5)
≤ log |RL−1((𝑟, 𝜙,U )) | − 𝛾5

3𝑛
2.

The claim now follows. �

We would now like to adjust our partition𝑉 (𝐺) = 𝑋0 ∪ . . .∪ 𝑋𝑟∗ so that 𝑋0 = ∅ and | |𝑋𝑖 | −𝛼∗
𝑖 𝑛 | ≤ 1

for all 𝑖 ∈ [𝑟∗], and the other properties we have proved are maintained (with slightly weaker parameters).
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Clearly

‖𝜶∗ − 𝒙‖1 =
∑
𝑥𝑖<𝛼∗

𝑖

(𝛼∗
𝑖 − 𝑥𝑖) +

∑
𝑥𝑖≥𝛼∗

𝑖

(𝑥𝑖 − 𝛼∗
𝑖 ). (4.16)

For each 𝑖 ∈ [𝑟∗], let𝑤𝑖 := min{𝛼∗
𝑖 , 𝑥𝑖} (recall from (4.12) that 𝑥𝑖 = |𝑋𝑖 |/𝑛). Choose |𝑋𝑖 |−
𝑤𝑖𝑛� vertices

from each 𝑋𝑖 with 𝑖 ∈ [𝑟∗], and choose every vertex in 𝑋0. Distribute them among the remainders of the
𝑋 𝑗 , 𝑗 ∈ [𝑟∗], to create a new partition 𝑉 (𝐺) = 𝑌1 ∪ . . . ∪𝑌𝑟∗ , such that | |𝑌𝑖 | − 𝛼∗

𝑖 𝑛 | ≤ 1 for all 𝑖 ∈ [𝑟∗].
This partition satisfies Theorem 1.4(i).

Recall Definition 4.9. For every (𝑟 ′, 𝜙′,U ′) ∈ Pop(𝐺), define G (𝑟 ′, 𝜙′,U ′) in analogy with G (defined
with respect to (𝑟, 𝜙,U )). Since (𝑟, 𝜙,U ) ∈ Pop(𝐺) chosen at the beginning of the proof was arbitrary,∑

(𝑟 ′,𝜙′,U ′) ∈Pop(𝐺)
|G (𝑟 ′, 𝜙′,U ′) | ≥

(
1 − 2−𝛾

5
3𝑛

2
) ∑
(𝑟 ′,𝜙′,U ′) ∈Pop(𝐺)

|RL−1((𝑟 ′, 𝜙′,U ′)) |

=
(
1 − 2−𝛾

5
3𝑛

2
)
|Col(𝐺) | ≥

(
1 − 2−𝛾

5
3𝑛

2
)
(1 − 2−2𝜀𝑛2) · 𝐹 (𝐺; 𝒌)

≥
(
1 − 2−𝜀𝑛

2
)
· 𝐹 (𝐺; 𝒌),

where we used Claim 4.3 and Proposition 4.10 in the first and third inequalities, respectively. Therefore,
to prove the remainder of Theorem 1.4, it suffices to show that every 𝜒 ∈ G satisfies (ii) and (iii).

So we will now fix 𝜒 ∈ G. Then the number of vertices which do not lie in 𝑋𝑖 ∩𝑌𝑖 for any 𝑖 ∈ [𝑟∗] is

𝑛 −
∑

𝑖∈[𝑟∗ ]
|𝑋𝑖 ∩ 𝑌𝑖 | ≤ 𝑛 −

∑
𝑥𝑖<𝛼∗

𝑖

|𝑋𝑖 | −
∑
𝑥𝑖≥𝛼∗

𝑖


𝛼∗
𝑖 𝑛�

≤ 𝑛 +
∑
𝑥𝑖<𝛼∗

𝑖

(𝛼∗
𝑖 𝑛 − |𝑋𝑖 |) +

∑
𝑥𝑖≥𝛼∗

𝑖

(|𝑋𝑖 | − 𝛼∗
𝑖 𝑛) −

∑
𝑥𝑖<𝛼∗

𝑖

𝛼∗
𝑖 𝑛 −

∑
𝑥𝑖≥𝛼∗

𝑖

|𝑋𝑖 | + 𝑅(𝒌)

(4.16)
≤ 𝑛 + ‖𝜶∗ − 𝒙‖1𝑛 −

∑
𝑖∈[𝑟∗ ]

𝛼∗
𝑖 𝑛 + 𝑅(𝒌)

(4.10)
≤ 2𝜈𝑛 + 𝑅(𝒌) ≤ 3𝜈𝑛.

Therefore ∑
𝑖∈[𝑟∗ ]

|𝑋𝑖 � 𝑌𝑖 | =
∑

𝑖∈[𝑟∗ ]
( |𝑋𝑖 | + |𝑌𝑖 | − 2|𝑋𝑖 ∩ 𝑌𝑖 |) ≤ 6𝜈𝑛. (4.17)

So, for all 𝑖 ∈ [𝑟∗], our choice of 𝜇 in (4.3) implies that |𝑋𝑖 � 𝑌𝑖 | ≤ 6𝜈𝑛 ≤ 7𝜈 |𝑌𝑖 |/𝜇. Now Proposition
4.5 implies that 𝜒−1(𝑐) [𝑌𝑖 , 𝑌 𝑗 ] is (𝛾4, |𝜙∗(𝑖 𝑗) |−1)-regular. So 𝜒 satisfies Theorem 1.4(ii).

We will now show that 𝜒 satisfies Theorem 1.4(iii). Assume that∑
𝑖∈[𝑟∗ ]

𝑒𝐺 (𝑌𝑖) > 𝛿𝑛2 >
√
𝛾6𝑛

2. (4.18)

We have that∑
𝑖∈[𝑟∗ ]

(𝑒𝐺 (𝑌𝑖) − |𝜒−1 (1) [𝑌𝑖] |) =
∑

𝑖∈[𝑟∗ ]
(𝑒𝐺 (𝑌𝑖) − 𝑒𝐺 (𝑋𝑖)) (4.19)

+
∑

𝑖∈[𝑟∗ ]
(𝑒𝐺 (𝑋𝑖) − |𝜒−1 (1) [𝑋𝑖] |) +

∑
𝑖∈[𝑟∗ ]

( |𝜒−1 (1) [𝑋𝑖] | − |𝜒−1 (1) [𝑌𝑖] |)

(4.15) , (4.17)
≤ 2 · 6𝜈𝑛 · 𝑛 + 3𝜈𝑛2 = 15𝜈𝑛2.
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For each 𝑖 ∈ [𝑟∗], do the following (independently). Let 𝑀𝛾5 be the integer output of Theorem 4.2
applied with 𝛾5, 1, 1 playing the roles of 𝜀, 𝑠, 𝑀 ′. Recall that |𝑌𝑖 | ≥ 𝜇𝑛/2 > 𝑀𝛾5 . Apply Theorem
4.2 to the monochromatic graph 𝜒−1(1) [𝑌𝑖], with parameter 𝛾5. Thus, obtain an equitable partition
𝑌𝑖 = 𝑍𝑖,1 ∪ . . . ∪ 𝑍𝑖,𝑛𝑖 with 1/𝛾5 ≤ 𝑛𝑖 ≤ 𝑀𝛾5 which is 𝛾5-regular with respect to 𝜒−1(1) [𝑌𝑖]. For
each 𝑖 ∈ [𝑟∗] and 𝑗 ∈ [𝑛𝑖], we have that |𝑍𝑖, 𝑗 |/|𝑌𝑖 | ≥ 𝑀−1

𝛾5
/2 ≥ 𝛾4/𝛾5. Proposition 4.3 now implies

that, whenever 1 ∈ 𝜙∗(𝑖𝑖′), we have that 𝜒−1(1) [𝑍𝑖, 𝑗 , 𝑍𝑖′, 𝑗′ ] is (𝛾5, |𝜙∗(𝑖𝑖′) |−1)-regular. Now, for each
𝑖 ∈ [𝑟∗], we will remove any edge 𝑥𝑦 from 𝜒−1 (1) [𝑌𝑖] with 𝑥 ∈ 𝑍𝑖, 𝑗 and 𝑦 ∈ 𝑍𝑖, 𝑗′ , such that either
𝜒−1 (1) [𝑍𝑖, 𝑗 , 𝑍𝑖, 𝑗′ ] is not (𝛾5, ≥ 𝛾6)-regular; or 𝑗 = 𝑗 ′. Let 𝐺 ′ [𝑌𝑖] be the graph obtained after these
removals. Now,∑

𝑖∈[𝑟∗ ]
(𝑒𝐺 (𝑌𝑖) − 𝑒𝐺′ (𝑌𝑖))

(4.19)
≤ 15𝜈𝑛2 +

∑
𝑖∈[𝑟∗ ]

𝛾5

(
𝑛𝑖
2

)⌈
|𝑌𝑖 |
𝑛𝑖

⌉2
+

∑
𝑖∈[𝑟∗ ]

𝛾6

(
𝑛𝑖
2

)⌈
|𝑌𝑖 |
𝑛𝑖

⌉2

+
∑

𝑖∈[𝑟∗ ]

⌈
|𝑌𝑖 |
𝑛𝑖

⌉2

≤ 15𝜈𝑛2 + 𝛾5𝑛
2/2 + 𝛾6𝑛

2/2 + 𝛾5𝑛
2 ≤ 𝛾6𝑛

2. (4.20)

Observe that for every 𝑖 ∈ [𝑟∗], every edge in 𝐺 ′ [𝑌𝑖] is coloured with colour 1 by 𝜒, and lies in a
(𝛾5, ≥ 𝛾6)-regular pair. Let 𝐽𝑖 be the graph on vertex set [𝑛𝑖] in which 𝑗 𝑗 ′ is an edge if and only if
𝜒−1 (1) [𝑍𝑖, 𝑗 , 𝑍𝑖, 𝑗′ ] is a (𝛾5, ≥ 𝛾6)-regular pair. Let 𝜔𝑖 := 𝜔(𝐽𝑖) be the size of a maximal clique in 𝐽𝑖 ,
and let 𝝎 := (𝜔1, . . . , 𝜔𝑟∗ ).

Claim 4.4. 𝝎 ∈ {1} ∪ {ℓ ∈ N𝑟∗ : ‖ℓ‖1 ≤ 𝑘1 − 1}.

Proof of Claim. Without loss of generality, we may suppose that, for each 𝑖 ∈ [𝑟∗], 𝑍𝑖,1, . . . , 𝑍𝑖,𝜔𝑖 span
a clique in 𝐽𝑖 . Let H be the graph with vertex set {(𝑖, 𝑗) : 𝑖 ∈ [𝑟∗], 𝑗 ∈ [𝜔𝑖]} in which {(𝑖, 𝑗), (𝑖′, 𝑗 ′)}
is an edge if 𝑖 = 𝑖′; or 𝑖 ≠ 𝑖′ and 1 ∈ 𝜙∗(𝑖𝑖′). Then (recalling Definition 2.4)

𝐻 = (𝜔1, . . . , 𝜔𝑟∗ ) (𝜙∗)−1(1).

Suppose that H contains a copy of 𝐾𝑘1 . Observe that, for every {(𝑖, 𝑗), (𝑖′, 𝑗 ′)} ∈ 𝐸 (𝐻), we have
that 𝜒−1(1) [𝑍𝑖, 𝑗 , 𝑍𝑖′, 𝑗′ ] is (𝛾5, ≥ 𝛾6)-regular. Lemma 4.6 and our choice of parameters implies that 𝐺 ′

contains a 𝐾𝑘1 of colour 1, a contradiction. Therefore, (𝜔1, . . . , 𝜔𝑟∗ ) ∈ Cap((𝜙∗)−1(1), 𝑘1), and Lemma
2.5 proves the claim. �

For each 𝑖 ∈ [𝑟∗], let ℓ𝑖 be such that 𝐺 [𝑌𝑖] is 𝛿-far from being 𝐾ℓ𝑖 -free. Then, by (4.20), 𝐺 ′[𝑌𝑖] is
(𝛿/2)-far from being 𝐾ℓ𝑖 -free. So we can remove 𝛿 |𝑌𝑖 |2/3 edges from 𝐺 ′ [𝑌𝑖], and there will still be
a copy T of 𝐾ℓ𝑖 . But, by the definition of 𝐺 ′ [𝑌𝑖], every edge in T lies in a pair (𝑍𝑖, 𝑗 , 𝑍𝑖, 𝑗′ ) which is
(𝛾5, ≥𝛾6)-regular. Thus, 𝐽𝑖 contains a copy of 𝐾ℓ𝑖 , and so ℓ𝑖 ≤ 𝜔𝑖 . Therefore ℓ = 1, or ‖ℓ‖1 ≤ 𝑘1 − 1.

We claim that our assumption (4.18) means that the first alternative cannot hold. Indeed, (4.18)
and (4.20) imply that

∑
𝑖∈[𝑟∗ ] 𝑒𝐺′ (𝑌𝑖) ≥ (√𝛾6 − 𝛾6)𝑛2. So there is some 𝑖 ∈ [𝑟∗] with 𝑒𝐺′ (𝑌𝑖) ≥

(√𝛾6 − 𝛾6)𝑛2/𝑅(𝒌) > 0. Thus, 𝐽𝑖 contains at least one edge, and so 𝜔𝑖 ≥ 2. We have proved that
‖ℓ‖1 ≤ 𝑘1 − 1 as required. This together with Lemma 2.9 further implies that 𝒌 does not have the strong
extension property. This completes the proof that 𝜒 satisfies Theorem 1.4(iii). �

We end this section with a proof of Corollary 1.5, a stability theorem for 𝒌 with the strong extension
property.

Proof of Corollary 1.5. Let 𝛿 > 0. Let 𝜀 be the output of Theorem 1.4 applied with parameter 𝛿′ ≤
𝛿/(5𝑠), 𝜇/10, where 𝜇 is the output of Lemma 2.8. Now let G be a graph on 𝑛 ≥ 𝑛0 vertices, such that
log 𝐹 (𝐺; 𝒌)/

(𝑛
2
)
≥ 𝑄(𝒌) − 𝜀.

Let (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌) be such that at least one of the specified (1−2−𝜀𝑛2 ) ·𝐹 (𝑛; 𝒌) colourings is
associated with this triple by Theorem 1.4. Let𝑌1, . . . , 𝑌𝑟∗ be the partition of𝑉 (𝐺) given by (i). Writing
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𝐾𝜶∗ (𝑛) for the n-vertex complete partite graph whose ith part has size 𝛼∗
𝑖 𝑛 ± 1, we have

𝑑edit(𝐺, 𝐾𝜶∗ (𝑛)) ≤
∑

𝑖 𝑗∈( [𝑟∗ ]2 )
𝑒(𝐺 [𝑉𝑖 , 𝑉 𝑗 ]) +

∑
𝑖∈[𝑟∗ ]

𝑒(𝐺 [𝑉𝑖]). (4.21)

Now, Part (ii) of Theorem 1.4 implies that, for all 𝑖 𝑗 ∈
( [𝑟∗ ]

2
)
, we have that

𝑒(𝐺 [𝑉𝑖 , 𝑉 𝑗 ]) ≥
∑

𝑐∈𝜙∗ (𝑖 𝑗)
|𝜒−1 (𝑐) [𝑉𝑖 , 𝑉 𝑗 ] | ≥

∑
𝑐∈𝜙∗ (𝑖 𝑗)

(
𝜙∗(𝑖 𝑗)−1 − 𝛿′

)
|𝑉𝑖 | |𝑉 𝑗 | ≥ (1 − 𝑠𝛿′) |𝑉𝑖 | |𝑉 𝑗 |.

So ∑
𝑖 𝑗∈( [𝑟∗ ]2 )

𝑒(𝐺 [𝑉𝑖 , 𝑉 𝑗 ]) ≤
𝛿

5
·

∑
𝑖 𝑗∈( [𝑟∗ ]2 )

|𝑉𝑖 | |𝑉 𝑗 | ≤
𝛿𝑛2

10
.

Finally, by Part (iii) of Theorem 1.4,
∑

𝑖∈[𝑟∗ ] 𝑒(𝐺 [𝑉𝑖]) ≤ 𝛿𝑛2/(5𝑠). Together with (4.21), we have
𝑑edit(𝐺, 𝐾𝜶∗ (𝑛)) ≤ 𝛿𝑛2/5. Suppose (𝑟, 𝜙,𝜶) is another triple associated with one of the specified
colourings. Then ‖𝜶 − 𝜶∗‖1 · 𝑛2/2 + 𝑜(𝑛2) ≤ 𝑑edit(𝐾𝜶 (𝑛), 𝐾𝜶∗ (𝑛)) ≤ 2𝛿𝑛2/5. Moreover, each entry
of 𝜶 and 𝜶∗ is at least 𝜇 by Lemma 2.8, and the above inequality can only be satisfied if 𝑟 = 𝑟∗. This
completes the proof. �

5. Applications

5.1. Recovering some previous results

Previous works [1, 25] have (implicitly) solved the optimisation problem by solving a linear program
with real variables 𝒙 = (𝑥1, . . . , 𝑥𝑡 ), such that any (𝑟, 𝜙,𝜶) ∈ feas∗(𝒌) corresponds to some feasible
𝒙 (but not necessarily vice versa). If, for every optimal 𝒙, there is some (𝑟, 𝜙,𝜶) ∈ feas∗(𝒌) which
corresponds to it, then this triple is a basic optimal solution. Unfortunately, for all but a few small cases,
the optimal solutions of the linear program do not correspond to a feasible triple.

We define a ‘basic’ linear program, to which we will then add extra constraints.

Problem L: Given a sequence 𝒌 := (𝑘1, . . . , 𝑘𝑠) ∈ N𝑠 of natural numbers, determine ℓmax(𝒌) :=
max𝒅∈𝐷 (𝒌) ℓ(𝒅), the maximum value of

ℓ(𝒅) :=
∑

2≤𝑡≤𝑠
log 𝑡 · 𝑑𝑡

over the set 𝐷 (𝒌) of tuples 𝒅 = (𝑑2, . . . , 𝑑𝑠), such that 0 ≤ 𝑑𝑡 ≤ 1 for all 2 ≤ 𝑡 ≤ 𝑠, and
∑

2≤𝑡≤𝑠 𝑡𝑑𝑡 ≤∑
𝑐∈[𝑠]

(
1 − (𝑘𝑐 − 1)−1) .

Say that 𝒅 which is feasible for Problem L is realisable if there is some (𝑟, 𝜙,𝜶) ∈ feas∗(𝒌) with

𝑑𝑡 = 2
∑

𝑖 𝑗∈( [𝑟 ]2 ): |𝜙 (𝑖 𝑗) |=𝑡

𝛼𝑖𝛼 𝑗 for all 2 ≤ 𝑡 ≤ 𝑠 (5.1)

and call such a feasible triple a realisation (of 𝒅).

Lemma 5.1. Let 𝑠 ∈ N and 𝒌 ∈ N. Then 𝑄(𝒌) ≤ max𝒅∈𝐷 (𝒌) ℓ(𝒅). Moreover, the following is true.
Suppose that at least one optimal solution 𝒅 to Problem L is realisable. Then max𝒅∈𝐷 (𝒌) ℓ(𝒅) = 𝑄(𝒌)
and opt∗(𝒌) is the set of all (𝑟, 𝜙,𝜶) ∈ feas∗(𝒌) which are realisations of some optimal (realisable) 𝒅.
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Proof. Let (𝑟, 𝜙,𝜶) ∈ opt∗(𝒌). For all 𝐿 ⊆ [𝑠], let 𝑓𝐿 := 2
∑

𝑖 𝑗∈( [𝑟 ]2 ):𝜙 (𝑖 𝑗)=𝐿 𝛼𝑖𝛼 𝑗 , and for all 2 ≤ 𝑡 ≤ 𝑠,
let 𝑑𝑡 :=

∑
|𝐿 |=𝑡 𝑓𝐿 . Then 𝑞(𝜙,𝜶) = ℓ(𝒅). We have∑

2≤𝑡≤𝑠
𝑡𝑑𝑡 =

∑
𝐿⊆[𝑠]

|𝐿 | 𝑓𝐿 =
∑
𝑐∈[𝑠]

∑
𝐿⊆[𝑠]\𝑐

𝑓𝐿∪{𝑐 },

so it suffices to show that
∑

𝐿⊆[𝑠]\{𝑐 } 𝑓𝐿∪{𝑐 } ≤ 1 − (𝑘𝑐 − 1)−1 for all 𝑐 ∈ [𝑠]. For this, let 𝑛 ∈ N and
let 𝐻𝑐 := 𝐻𝑛

𝑐 (𝜙,𝜶) be the graph on n vertices with vertex classes 𝑋1, . . . , 𝑋𝑟 where | |𝑋𝑖 | − 𝛼𝑖𝑛 | ≤ 1
for all 𝑖 ∈ [𝑟] and 𝑥𝑦 ∈ 𝐸 (𝐻𝑐) for 𝑥 ∈ 𝑋𝑖 , 𝑦 ∈ 𝑋 𝑗 if and only if 𝑐 ∈ 𝜙(𝑖 𝑗). Then 𝐻𝑐 is 𝐾𝑘𝑐 -free since
𝜙−1(𝑐) is. Therefore, Turán’s Theorem [28] implies that 𝑒(𝐻𝑐) ≤ (1− (𝑘𝑐 − 1)−1)𝑛2/2. Let 𝑐 ∈ [𝑠]. So

𝑛2

2

∑
𝐿⊆[𝑠]\{𝑐 }

𝑓𝐿∪{𝑐 } =
∑

𝐿⊆[𝑠]\{𝑐 }

∑
𝑖 𝑗∈( [𝑟 ]2 )

𝜙 (𝑖 𝑗)=𝐿∪{𝑐 }

𝛼𝑖𝑛 · 𝛼 𝑗𝑛 ≤
∑

𝐿⊆[𝑠]\{𝑐 }

∑
𝑖 𝑗∈( [𝑟 ]2 )

𝜙 (𝑖 𝑗)=𝐿∪{𝑐 }

|𝑋𝑖 | |𝑋 𝑗 | + 2𝑠2𝑛

=
∑

𝑖 𝑗∈( [𝑟 ]2 )
𝑐∈𝜙 (𝑖 𝑗)

|𝑋𝑖 | |𝑋 𝑗 | + 2𝑠2𝑛 = 𝑒(𝐻𝑐) + 2𝑠2𝑛 ≤
(
1 − 1

𝑘𝑐 − 1

)
𝑛2

2
+ 2𝑠2𝑛.

Dividing through by 𝑛2/2 and taking the limit as 𝑛 → ∞ gives the required inequality. �

We wish to add more constraints to Problem L. Indeed, without additional constraints, Problem L
only yields realisable solutions in some very special cases, for example, 𝒌 = (𝑘, 𝑘) or 𝒌 = (𝑘, 𝑘, 𝑘). A
constraint is valid if every 𝒅 which has a realisation (𝑟, 𝜙,𝜶) ∈ opt∗(𝒌) must satisfy the constraint. We
use I for a set of constraints, each of the type

∑
𝑡 ∈𝑇 𝑑𝑡 ≤ 1 − 1

𝑘−1 for some 𝑇 ⊆ {2, . . . , 𝑠} and integer
𝑘 ≥ 3. We call this constraint a (𝑇, 𝑘)-constraint. Let Problem (𝐿, 𝐼) be Problem L with the constraints
in I added to it, and let ℓmax

𝐼 (𝒌) be the optimal solution of Problem (𝐿, 𝐼). We will still discuss realisable
solutions 𝒅 and realisations of 𝒅 for Problem (𝐿, 𝐼) without referring to I when it is clear from the
context.

For our purposes, it suffices to consider constraints as follows. Let 𝑇 ⊆ {2, . . . , 𝑠}. Next, given
(𝑟, 𝜙,𝜶) ∈ feas∗(𝒌), let

𝐻𝜙 (𝑇) :=
{
𝑖 𝑗 ∈

(
[𝑟]
2

)
: |𝜙(𝑖 𝑗) | ∈ 𝑇

}
. (5.2)

Suppose that 𝐻𝜙 (𝑇) is 𝐾𝑘 -free for all (𝑟, 𝜙,𝜶) ∈ feas∗(𝒌). Then∑
𝑡 ∈𝑇

𝑑𝑡 ≤ 1 − 1
𝑘 − 1

is a valid constraint. This follows as in the proof of Lemma 5.1 from defining 𝐻𝑛
𝑇 (𝜙,𝜶) to be the n-vertex

𝜶-blow-up of 𝐻𝜙 (𝑇) (in analogy with 𝐻𝑛
𝑐 (𝜙,𝜶)) and using the observation that

𝑒(𝐻𝑛
𝑇 (𝜙,𝜶)) =

(∑
𝑡 ∈𝑇

𝑑𝑡

)
𝑛2

2
+𝑂 (𝑛).

Lemma 5.2. Let 𝑠 ∈ N and 𝒌 ∈ N. Let I be a set of valid (𝑇, 𝑘)-constraints, where each 𝑇 ⊆ {2, . . . , 𝑠}
and 𝑘 ≥ 3 is an integer. Then 𝑄(𝒌) ≤ ℓmax

𝐼 (𝒌). Moreover, the following is true. Suppose that at least
one optimal solution 𝒅 to Problem (𝐿, 𝐼) is realisable. Then ℓmax

𝐼 (𝒌) = 𝑄(𝒌) and opt∗(𝒌) is the set of
all (𝑟, 𝜙,𝜶) ∈ feas∗(𝒌) which are realisations of some optimal (realisable) 𝒅. �

The following lemma will enable us to prove that many of the sequences 𝒌 for which Problem 𝑄2
has been solved do indeed have the strong extension property.
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Lemma 5.3. Let 𝑠 ∈ N and 𝒌 ∈ N𝑠 . Suppose that, for all (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌), we have that

(i) (𝜙∗)−1(𝑐) � 𝑇𝑘𝑐−1(𝑟∗) and (𝑘𝑐 − 1) |𝑟∗ for all 𝑐 ∈ [𝑠];
(ii) | |𝜙∗(𝑖 𝑗) | − |𝜙∗(𝑖′ 𝑗 ′) | | ≤ 1 for all 𝑖 𝑗 , 𝑖′ 𝑗 ′ ∈

( [𝑟∗ ]
2

)
and 𝜶∗ is uniform;

(iii) every solution 𝒕 := (𝑡1, . . . , 𝑡𝑟∗ ) ∈ [𝑠]𝑟∗ of∏
𝑖∈[𝑟∗ ]

𝑡
𝛼∗
𝑖

𝑖 = 2𝑄 (𝒌) (5.3)

is such that 𝑡𝑖 = 1 for exactly one value 𝑖 ∈ [𝑟∗].
Then 𝒌 has the strong extension property.

Proof. Let 𝑟∗ + 1 be a new vertex, and let 𝜙 :
( [𝑟∗+1]

2
)
→ 2[𝑠] be such that 𝜙|( [𝑟∗ ]2 ) = 𝜙∗ and

ext(𝜙,𝜶∗) = 𝑄(𝒌). (5.4)

Since (𝜙∗)−1(𝑐) � 𝑇𝑘𝑐−1(𝑟∗) for each 𝑐 ∈ [𝑠], we have equally sized sets 𝑃𝑐
1 , . . . , 𝑃

𝑐
𝑘𝑐−1 which partition

[𝑟∗] and which are the vertex classes of (𝜙∗)−1(𝑐). Let 𝜙′ be obtained from 𝜙 by maximally enlarging
the values on the pairs that contain 𝑟∗ + 1 so that (𝜙′)−1(𝑐) still does not contain a clique on 𝑘𝑐 vertices.
Clearly, for each colour c, this can be done independently of the other colours, and every maximal 𝐾𝑘𝑐 -
free attachment of a new vertex to (𝜙∗)−1(𝑐) � 𝑇𝑘𝑐−1(𝑟∗) is to connect the vertex to all but one part
of the Turán graph. Thus, for each 𝑐 ∈ [𝑠], there is 𝑗𝑐 ∈ [𝑘𝑐 − 1], such that 𝑐 ∉ 𝜙′({𝑥, 𝑟∗ + 1}) if and
only if 𝑥 ∈ 𝑃𝑐

𝑗𝑐
. For each 𝑥 ∈ [𝑟∗], let 𝑖𝑐 (𝑥) be the unique member of [𝑘𝑐 − 1], such that 𝑥 ∈ 𝑃𝑐

𝑖𝑐 (𝑥) . So
𝑐 ∉ 𝜙′({𝑦, 𝑟∗ + 1}) if and only if 𝑖𝑐 (𝑦) = 𝑗𝑐 . Then ext(𝜙′,𝜶∗) ≥ ext(𝜙,𝜶∗) = 𝑄(𝒌), so by Proposition
2.6, ext(𝜙′,𝜶∗) = ext(𝜙,𝜶∗) = 𝑄(𝒌), so 𝜙(𝑥𝑦) ≠ 𝜙′(𝑥𝑦) only if |𝜙′(𝑥𝑦) | = 1. Observe that 𝜙′ is
determined completely by 𝜙∗ and { 𝑗1, . . . , 𝑗𝑠}.

Define 𝒕 ∈ N𝑟∗ by setting 𝑡𝑖 := max{|𝜙′({𝑖, 𝑟∗ + 1}) |, 1}. Exponentiating (5.4) implies that∏
𝑖∈[𝑟∗ ] 𝑡

𝛼∗
𝑖

𝑖 = 2𝑄 (𝒌) . So, by our hypothesis (iii), there exists 𝑥∗ ∈ [𝑟∗], such that |𝜙′({𝑥∗, 𝑟∗ + 1}) | ≤ 1
and |𝜙′({𝑖, 𝑟∗ + 1}) | ≥ 2 for all 𝑖 ∈ [𝑟∗] \ {𝑥∗}. Suppose first that 𝜙′({𝑥∗, 𝑟∗ + 1}) = ∅. Then 𝑗𝑐 = 𝑖𝑐 (𝑥∗)
for all 𝑐 ∈ [𝑠], and so 𝑟∗ + 1 is a twin of 𝑥∗, as required.

Therefore, we may assume that 𝜙′({𝑥∗, 𝑟∗ + 1}) = {𝑐∗} for some 𝑐∗ ∈ [𝑠]. Note that 𝑗𝑐 = 𝑖𝑐 (𝑥∗) for
all 𝑐 ∈ [𝑠] \ {𝑐∗}. So the attachment of 𝑟∗ + 1 is almost the same as that of 𝑥∗, and we will compare
them to obtain a contradiction. Without loss of generality, assume that 𝑖𝑐∗ (𝑥∗) = 1 and 𝑗𝑐∗ = 2. Now,
for 𝑖 ∈ [𝑘𝑐∗ − 1] and 𝑦 ∈ 𝑃𝑐∗

𝑖 \ {𝑥∗}, we have that

𝜙′({𝑦, 𝑟∗ + 1}) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜙∗(𝑥∗𝑦) ∪ {𝑐∗} if 𝑖 = 1.
𝜙∗(𝑥∗𝑦) \ {𝑐∗} if 𝑖 = 2.
𝜙∗(𝑥∗𝑦) if 3 ≤ 𝑖 ≤ 𝑘𝑐∗ − 1.

Since ext(𝜙′,𝜶∗) = 𝑄(𝒌) = 𝑞𝑥∗ (𝜙∗,𝜶∗) =
∑

𝑥∈[𝑟∗ ] 𝛼
∗
𝑥 log |𝜙∗(𝑥∗𝑥) | by Lemma 2.1, we have that∑

𝑦∈𝑃𝑐∗
1 ∪𝑃𝑐∗

2 \{𝑥∗ }

𝛼∗
𝑖 log |𝜙∗(𝑥∗𝑦) | =

∑
𝑦∈𝑃𝑐∗

1

𝛼∗
𝑖 log(|𝜙∗(𝑥∗𝑦) | − 1) +

∑
𝑦∈𝑃𝑐∗

2 \{𝑥∗ }

𝛼∗
𝑖 log(|𝜙∗(𝑥∗𝑦) | + 1).

(5.5)

Let 𝑝 ∈ N be such that |𝜙∗(𝑥𝑦) | ∈ {𝑝, 𝑝 + 1} for all 𝑥𝑦 ∈
( [𝑟∗ ]

2
)

(which exists by (ii)). Note that 𝑝 ≥ 2.
Since (𝑘𝑐∗ − 1) |𝑟∗, we may write |𝑃𝑐∗

1 | = |𝑃𝑐∗

2 | = 𝑟∗/(𝑘𝑐 − 1) =: 𝑟 . Suppose ℓ ≤ 𝑟 − 1 and 𝑘 ≤ 𝑟 are
such that |𝜙∗(𝑥∗𝑦) | = 𝑝 for ℓ elements y in 𝑃𝑐∗

1 and |𝜙∗(𝑥∗𝑦) | = 𝑝 for k elements y in 𝑃𝑐∗

2 . Then, since
𝜶∗ is uniform, exponentiating (5.5) gives

𝑝ℓ (𝑝 + 1)𝑟−1−ℓ 𝑝𝑘 (𝑝 + 1)𝑟−𝑘 = (𝑝 + 1)ℓ (𝑝 + 2)𝑟−1−ℓ (𝑝 − 1)𝑘 𝑝𝑟−𝑘 ,
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that is 𝑝ℓ+2𝑘−𝑟 (𝑝 + 1)2𝑟−1−𝑘−ℓ = (𝑝 + 2)𝑟−1−ℓ (𝑝 − 1)𝑘 . But 𝑝, 𝑝 − 1 are coprime, and so are 𝑝 + 1, 𝑝 + 2.
So 𝑝 | (𝑝 + 2) and (𝑝 − 1) |(𝑝 + 1). Therefore, 𝑝 = 2, giving

2ℓ+2𝑘−𝑟32𝑟−1−𝑘−2ℓ = 22𝑟−2−2ℓ .

So ℓ + 2𝑘 − 𝑟 = 2𝑟 − 2 − 2ℓ and 2𝑟 − 1 − 𝑘 − 2ℓ = 0, and, hence, 3(𝑘 + 1) = 6(𝑟 − ℓ) = 4(𝑘 + 1), which
implies 𝑘 = −1, a contradiction.

Therefore, 𝜙′({𝑥∗, 𝑟∗ + 1}) = ∅, and 𝜙′({𝑥, 𝑟∗ + 1}) = 𝜙∗(𝑥∗𝑥) for all 𝑥 ∈ [𝑟∗] \ {𝑥∗}. By our earlier
observation, 𝜙 ≡ 𝜙′. Therefore, 𝑟∗ + 1 is a twin of 𝑥∗, as required. �

Proof of Theorem 1.7. First we must solve Problem 𝑄2 for all specified 𝒌. This was implicitly done in
[1, 25], but we repeat the arguments here for completeness, and to demonstrate that the arguments are
much cleaner and shorter when one is working with optimal solutions rather than regularity partitions
of large graphs. We will solve Problem 𝑄2 by solving Problem L, sometimes with some additional valid
constraints I, and then applying Lemma 5.2. First, we make some general observations. Suppose 𝒅 is
a feasible solution of Problem L with additional constraints I, each constraint corresponding to some
(𝑇, 𝑘), and 𝒅 has realisation (𝑟, 𝜙,𝜶).
◦ Let 𝑇 ⊆ {2, . . . , 𝑠} and 𝑘 ≥ 3 be such that the (𝑇, 𝑘)-constraint is valid and in I. Suppose further that∑

𝑡 ∈𝑇 𝑑𝑡 = 1 − 1
𝑘−1 (that is, there is equality in the (𝑇, 𝑘)-constraint). Then there is a partition of [𝑟]

into parts 𝐴1, . . . , 𝐴𝑘−1, such that
∑

𝑖∈𝐴𝑖′ 𝛼𝑖 = 1
𝑘−1 for all 𝑖′ ∈ [𝑘 − 1], and 𝑖 𝑗 ∈ 𝐻𝜙 (𝑇) if and only if

𝑖, 𝑗 lie in different parts 𝐴𝑖′ , 𝐴 𝑗′ (recall that 𝐻𝜙 (𝑇) was defined in (5.2)).
◦ If 𝑆 ⊆ [𝑟] has |𝑆 | ≤ 𝑘 , then 2

∑
𝑖 𝑗∈(𝑆2) 𝛼𝑖𝛼 𝑗 ≤

∑
𝑖∈𝑆 𝛼𝑖

(
1 − 1

𝑘−1

)
.

These follow as in the proof of Lemma 5.1 by taking 𝜶-weighted blow-ups of 𝐻𝜙 (𝑇) and 𝜙|(𝑆2) ,
respectively. For the first assertion, apply the stability theorem of Erdős [6] and Simonovits [26] for the
Turán problem, which states that any large n-vertex 𝐾𝑘 -free graph with density close to 1 − 1

𝑘−1 must
be close in edit distance to 𝑇𝑘−1 (𝑛). For the second, apply Turán’s theorem.

For ease of notation, we will write 𝐻𝜙 (𝑡1, . . . , 𝑡ℓ) for 𝐻𝜙 ({𝑡1, . . . , 𝑡ℓ }) below.

The cases 𝒌 = (𝒌, 𝒌) and 𝒌 = (𝒌, 𝒌, 𝒌)

We omit 𝒌 = (𝑘, 𝑘) since it is similar to 𝒌 = (𝑘, 𝑘, 𝑘). Problem L for 𝒌 = (𝑘, 𝑘, 𝑘) is to maximise
𝑑2+ log 3 ·𝑑3 subject to 𝒅 ≥ 0 and 2𝑑2+3𝑑3 ≤ 3(1− 1

𝑘−1 ). It is easy to see that the maximum is 𝑘−2
𝑘−1 log 3

with unique optimal solution (𝑑2, 𝑑3) = (0, 1 − 1
𝑘−1 ). Now, if (𝑟, 𝜙,𝜶) ∈ opt∗(𝒌) is a realisation of 𝒅,

then 𝐻𝜙 (3) � 𝜙−1(𝑐) for all colours c, so 𝐻𝜙 (3) is 𝐾𝑘 -free. Thus, 𝐻𝜙 (3) is a complete (𝑘 − 1)-partite
graph and the sum of 𝛼𝑖′ over 𝑖′ in a single part is 1

𝑘−1 , and in fact each part is a singleton. So 𝑟 = 𝑘 − 1
and 𝛼𝑖 = 1

𝑘−1 for all 𝑖 ∈ [𝑟], and 𝜙−1(𝑐) = 𝐻𝜙 (3) � 𝐾𝑘−1 for all colours c.

The case 𝒌 = (3, 3, 3, 3)

We use the argument from [25], which requires an additional constraint. Let 𝑇 := {3, 4}. We claim
that 𝐻𝜙 (𝑇) is 𝐾3-free for all (𝑟, 𝜙,𝜶) ∈ feas∗(𝒌). Indeed, if it contained a triangle 𝑖1𝑖2𝑖3, then there is at
most one colour in [4] missing from each 𝜙(𝑖𝑠𝑖𝑡 ), and, thus, there is one colour in [4] which appears on
every edge, a contradiction. Thus, the ({3, 4}, 3)-constraint is valid. So adding this constraint to Problem
L, we seek to maximise 𝑑2 + log 3 · 𝑑3 + 2𝑑4 subject to 𝒅 ≥ 0, 2𝑑2 + 3𝑑3 + 4𝑑4 ≤ 2 and 𝑑3 + 𝑑4 ≤ 1

2 . This
has maximum 1

4 + 1
2 log 3 with unique optimal solution (𝑑2, 𝑑3, 𝑑4) = ( 1

4 ,
1
2 , 0). Thus, if (𝑟, 𝜙,𝜶) is a

realisation of 𝒅, there is a partition of [𝑟] into 𝐴, 𝐵, such that 𝐻𝜙 (3, 4) = 𝐻𝜙 (3) is a complete bipartite
graph with parts 𝐴, 𝐵, and

∑
𝑖∈𝐴 𝛼𝑖 =

∑
𝑖∈𝐵 𝛼𝑖 = 1

2 . Since 𝑑4 = 0, for distinct 𝑖, 𝑗 ∈ 𝐴 or 𝑖, 𝑗 ∈ 𝐵, we
have |𝜙(𝑖 𝑗) | = 2, and, because 𝐻𝜙 (2) is disjoint from 𝐻𝜙 (3),

1
4
= 𝑑2

(5.1)
= 2

∑
𝑖 𝑗∈(𝐴2)

𝛼𝑖𝛼 𝑗 + 2
∑

𝑖 𝑗∈(𝐵2 )
𝛼𝑖𝛼 𝑗 . (5.6)
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Table 2. Basic optimal solutions. In all these results, every basic optimal (𝑟 , 𝜙, 𝜶) has 𝜙−1 (𝑐) � 𝑇𝑘−1 (𝑟 ) for all 𝑐 ∈ [𝑠]
and 𝜶 is the uniform vector of length r. The figure for 𝑘 = 4, 𝑠 = 4 is the complement of the optimal solution..

𝒌 = (𝑘; 𝑠) 𝐹 (𝒌) basic optimal (𝑟 , 𝜙, 𝜶)

any k 𝑠 = 2 1 − 1
𝑘−1 𝑟 = 𝑘 − 1, |𝜙 | = 𝑠 every 𝜙−1 (𝑐) � 𝐾𝑟

𝑠 = 3 (1 − 1
𝑘−1 ) log 3 𝑟 = 𝑘 − 1, |𝜙 | = 𝑠 every 𝜙−1 (𝑐) � 𝐾𝑟

𝑘 = 3 𝑠 = 4 1
4 + 1

2 log 3 𝑟 = 4, |𝜙 | ∈ {2, 3}

𝑘 = 4 𝑠 = 4 8
9 log 3 𝑟 = 9, |𝜙 | ≡ 3

Without loss of generality, suppose that |𝐴| ≤ |𝐵 |. Next we show that |𝐴| = |𝐵 | = 2 via a series of
claims. Note that |𝐴| + |𝐵 | ≥ 4, otherwise, |𝐴| = 1 and |𝐵 | ≤ 2 and the second bullet point above implies
that 2𝑑2 ≤ 1

2 · 1
2 , a contradiction. The first claim is that |𝐴| ≤ |𝐵 | ≤ 4. If not, then there are 𝑎 ∈ 𝐴

and 𝑏1, . . . , 𝑏5 ∈ 𝐵. Since |𝜙(𝑎𝑏 𝑗 ) | = 3 for all 𝑗 ∈ [5], we may assume that 𝜙(𝑎𝑏1) = 𝜙(𝑎𝑏2). But
then 𝜙(𝑏1𝑏2), of size 2, has nonempty intersection with this set, so {𝑎, 𝑏1, 𝑏2} span a monochromatic
triangle, a contradiction which proves the claim. The second claim is that if |𝐴| ≥ 2, then |𝐴| = |𝐵 | = 2.
If not, then there are 𝑎1, 𝑎2 ∈ 𝐴 and 𝑏1, 𝑏2, 𝑏3 ∈ 𝐵. Let S be the multiset obtained by collecting all
𝜙(𝑎1𝑎2), 𝜙(𝑎𝑖𝑏 𝑗 ), 𝜙(𝑏 𝑗𝑏 𝑗′ ) for 𝑖 ∈ [2], 𝑗 , 𝑗 ′ ∈ [3]. Then |𝑆 | = 6 ·3+4 ·2 = 26. So there is 𝑐 ∈ [4] which
appears in 𝜙 on � 26

4 � = 7 pairs among five vertices, so 𝜙−1(𝑐) contains a triangle by Turán’s theorem.
It remains to rule out the case |𝐴| = 1 and |𝐵 | ≥ 3. Since |𝐵 | ≤ 4, we have 2

∑
𝑖 𝑗∈(𝐵2 ) 𝛼𝑖𝛼 𝑗 ≤ 1

2 · 3
4 , so

𝑑2 ≤ 3
16 , a contradiction. This completes the proof that |𝐴| = |𝐵 | = 2. So 𝑟 = 4, and (5.6) holds if and

only if 𝛼𝑖 = 1
4 for all 𝑖 ∈ [4]. We have

∑
𝑐∈[4] |𝜙−1 (𝑐) | =

∑
𝑖 𝑗∈( [𝑟 ]2 ) |𝜙(𝑖 𝑗) | = 2 · 2 + 4 · 3 = 16 and every

|𝜙−1 (𝑐) | ≤ 4, otherwise, there would be a triangle in colour c. Thus, every |𝜙−1 (𝑐) | = 4 and, moreover,
𝜙−1(𝑐) � 𝐾2,2 = 𝑇2 (4). One can check that, up to relabelling, there is a unique way to choose the 𝜙−1(𝑐)
to attain the given multiplicities (as in Table 2).

The case 𝒌 = (4, 4, 4, 4)

No additional constraints are necessary in this case. Problem L is to maximise 𝑑2 + log 3 · 𝑑3 + 2 · 𝑑4
subject to 𝒅 ≥ 0 and 2𝑑2+3𝑑3+4𝑑4 ≤ 8

3 . This has maximum 8
9 · log 3, attained uniquely by (𝑑2, 𝑑3, 𝑑4) =

(0, 8
9 , 0). Suppose (𝑟, 𝜙,𝜶) ∈ opt∗(𝒌) is a realisation of 𝒅. Since 𝑑3 is the only nonzero entry in 𝒅, we

have 𝐻𝜙 (3) � 𝐾𝑟 . We claim 𝑟 ≤ 9. If not, then∑
𝑐∈[4]

|𝜙−1(𝑐) [[10]] | =
∑

𝑖 𝑗∈( [10]
2 )

|𝜙(𝑖 𝑗) | = 3 ·
(
10
2

)
= 135,
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𝒌 = (𝑘; 𝑠) r 2𝑄 (𝒌 )

any k 𝑠 = 2 𝑘 − 1 2𝑘−2

𝑠 = 3 𝑘 − 1 3𝑘−2

𝑘 = 3 𝑠 = 4 4 2 · 32

𝑘 = 4 𝑠 = 4 9 38

so there is some 𝑐 ∈ [4], such that 𝜙−1(𝑐) has at least � 135
4 � = 34 edges among 10 vertices. But by

Turán’s theorem, 𝜙−1(𝑐) contains a 𝐾4, a contradiction. So 𝐻𝜙 (3) is 𝐾10-free and 𝑑3 = 8
9 , so the first

bullet point implies that 𝐻𝜙 (3) is a complete 9-partite graph and the sum of 𝛼𝑖 over all i in a single
part is 1

9 . But 𝑖 𝑗 ∈ 𝐻𝜙 (3) if and only if 𝜙(𝑖 𝑗) ≠ 0, so 𝑟 = 9 and 𝛼𝑖 = 1
9 for all 𝑖 ∈ [9]. Again, we must

have 𝜙−1(𝑐) � 𝑇3 (9) for all 𝑐 ∈ [4], and one can check that there is a unique way, up to relabelling, so
choose the 𝜙−1(𝑐) to attain the given multiplicities (see Table 2, where the complement of (𝑟, 𝜙,𝜶) is
drawn, that is there is an edge of colour c drawn between i and j if and only if 𝑐 ∉ 𝜙(𝑖 𝑗)).

The strong extension property

Given 𝒌 ∈ N𝑠 , and (𝑟, 𝜙,𝜶) ∈ opt∗(𝒌), and let 𝒕 ∈ [𝑠]𝑟 be such that∏
𝑖∈[𝑟 ]

𝑡𝛼𝑖

𝑖 = 2𝑄 (𝒌) . (5.7)

Using what we have just proved about basic optimal solutions, summarised in Table 2, we have the
following.

We can easily solve all of these using Lemma 5.3. Indeed, in every case, 2𝑄 (𝒌) is a product 𝑝1 . . . 𝑝𝑟−1
of 𝑟 − 1 primes, each larger than

√
𝑠. If 𝑡1 . . . 𝑡𝑟 = 2𝑄 (𝒌) for positive integers 𝑡1, . . . , 𝑡𝑟 , since the 𝑝𝑖 are

prime, each 𝑡𝑖 is a product of 𝑘𝑖 elements of 𝑝1, . . . , 𝑝𝑟−1 for some 𝑘𝑖 . But 𝑝 𝑗 𝑝𝑘 > 𝑠 for any 𝑗 𝑘 ∈
( [𝑟−1]

2
)
,

so 𝑘𝑖 ∈ {0, 1}. By the pigeonhole principle, there is exactly one 𝑖 ∈ [𝑟] with 𝑡𝑖 = 1. Now, every 𝒌 in the
table satisfies the hypotheses of Lemma 5.3. So each of these 𝒌 have the strong extension property. �

5.2. The two colour case

We will now compute 𝑄(𝒌) in the case when 𝑠 = 2. When 𝑘 ≥ ℓ and 𝒌 = (𝑘, ℓ), we will show that
opt∗(𝒌) depends only on ℓ but opt0 (𝒌) depends on both 𝑘, ℓ.

Proof of Lemma 1.8. Let (𝑟∗, 𝜙∗,𝜶∗) ∈ opt∗(𝒌). Since 2 = 𝑠 ≥ |𝜙∗(𝑖 𝑗) | ≥ 2 for all 𝑖 𝑗 ∈
( [𝑟∗ ]

2
)
, we must

have that (𝜙∗)−1(𝑐) � 𝐾𝑟∗ for 𝑐 = 1, 2. Lemma 2.5(iii) implies that 𝑟∗ ≥ ℓ − 1. Therefore, 𝑟∗ = ℓ − 1.
So we have that

𝑞(𝜙∗,𝜶∗) = 2
∑

𝑖 𝑗∈( [ℓ−1]
2 )

𝛼∗
𝑖 𝛼

∗
𝑗 = 1 −

∑
𝑖∈[ℓ−1]

(𝛼∗
𝑖 )2 ≤ 1 − 1

ℓ − 1
,

with equality if and only if 𝛼∗
𝑖 = 1/(ℓ − 1) for all 𝑖 ∈ [ℓ − 1].

Next we show that 𝒌 has the extension property. So suppose we can attach a vertex ℓ and extend 𝜙∗

to 𝜙 as in Definition 1.2. Then

1 − 1
ℓ − 1

= ext(𝜙,𝜶∗) =
∑

𝑖∈[ℓ−1]:𝜙 (𝑖ℓ)≠∅

log |𝜙(𝑖ℓ) |
ℓ − 1

so ∏
𝑖∈[ℓ−1]:𝜙 (𝑖ℓ)≠∅

|𝜙(𝑖ℓ) | = 2ℓ−2.
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The left-hand side is a product of at most ℓ − 1 1-s and 2-s. So there is some 𝑗 ∈ [ℓ − 1], such that
|𝜙(𝑖ℓ) | = 2 for all 𝑖 ∈ [ℓ − 1] \ { 𝑗} and |𝜙(ℓ 𝑗) | ≤ 1. This proves that 𝒌 has the extension property. If
𝑘 = ℓ, then we must have 𝜙(ℓ 𝑗) = ∅. But if 𝑘 > ℓ, we can set 𝜙(ℓ 𝑗) = {1}; then 𝜙−1(1) � 𝐾ℓ and so
𝜙 ∈ Φ1(ℓ; 𝒌). So 𝒌 has the strong extension property if and only if 𝑘 = ℓ. �

Theorem 1.9 follows from combining Lemma 1.8 with Theorem 1.4.

6. Concluding remarks

In this paper, we have proved a stability theorem which roughly says that all almost optimal graphs
for the Erdős-Rothschild problem are similar in structure to the blow-up of a basic optimal solution
with graphs of controlled clique number added inside parts. From this, one can systematically recover
almost all known stability results. Unfortunately, Problem 𝑄2 is difficult to solve in general. It would
be very interesting to see it solved in further cases. Currently, all known solutions have been obtained
by relaxing it to a linear program (which is easy to solve), whose variables are graph densities and
whose constraints essentially replace combinatorial constraints such as some graph being 𝐾𝑘 -free, with
the linear constraint that its density must be at most 1 − 1

𝑘−1 , by Turán’s theorem. For some few cases,
solutions of this linear program correspond to feasible solutions of Problem 𝑄2, but, in general, they do
not. So one possible avenue to solve it in more cases is to add more sophisticated constraints to decrease
the feasible set of the linear program, which is typically much larger than that of Problem 𝑄2.

In [23], we apply our stability theorem to prove an exact result for every 𝒌 with the strong extension
property, proving a part of Conjecture 1.6. Given Theorem 1.7, this will systematically recover most
existing exact results (see Table 1). For the weak extension property, it is harder to obtain an exact result
as there is typically a large family of asymptotically extremal graphs, with similar structures, and these
graphs could have small parts.
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