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We perform a sparse identification of nonlinear dynamics (SINDy) for low-dimensionalized
complex flow phenomena. We first apply the SINDy with two regression methods,
the thresholded least square algorithm and the adaptive least absolute shrinkage and
selection operator which show reasonable ability with a wide range of sparsity constant
in our preliminary tests, to a two-dimensional single cylinder wake at ReD = 100, its
transient process and a wake of two-parallel cylinders, as examples of high-dimensional
fluid data. To handle these high-dimensional data with SINDy whose library matrix is
suitable for low-dimensional variable combinations, a convolutional neural network-based
autoencoder (CNN-AE) is utilized. The CNN-AE is employed to map a high-dimensional
dynamics into a low-dimensional latent space. The SINDy then seeks a governing equation
of the mapped low-dimensional latent vector. Temporal evolution of high-dimensional
dynamics can be provided by combining the predicted latent vector by SINDy with
the CNN decoder which can remap the low-dimensional latent vector to the original
dimension. The SINDy can provide a stable solution as the governing equation of the
latent dynamics and the CNN-SINDy-based modelling can reproduce high-dimensional
flow fields successfully, although more terms are required to represent the transient flow
and the two-parallel cylinder wake than the periodic shedding. A nine-equation turbulent
shear flow model is finally considered to examine the applicability of SINDy to turbulence,
although without using CNN-AE. The present results suggest that the proposed scheme
with an appropriate parameter choice enables us to analyse high-dimensional nonlinear
dynamics with interpretable low-dimensional manifolds.
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1. Introduction

Sparse identification of nonlinear dynamics (SINDy) (Brunton, Proctor & Kutz 2016a)
is one of the prominent data-driven tools to obtain governing equations of nonlinear
dynamics in a form that we can understand. The SINDy algorithm enables us to discover
a governing equation from time-discretized data and identify dominant terms from a
large set of potential terms that are likely to be involved in the model. Recently, the
usefulness of the SINDy has been demonstrated in various fields (Champion, Brunton &
Kutz 2019b; Hoffmann, Fröhner & Noé 2019; Zhang & Schaeffer 2019; Deng et al. 2020).
Here, let us introduce some efforts, especially in the fluid dynamics community. Loiseau,
Noack & Brunton (2018b) utilized SINDy to present general reduced-order modelling
(ROM) framework for experimental data: sensor data and particle image velocimetry data.
The model was investigated using a transient and post-transient laminar cylinder wake.
They reported that the nonlinear full-state dynamics can be modelled with sensor-based
dynamics and SINDy-based estimation for coefficients of ROM. The SINDy which takes
into account control inputs (called SINDYc) was also investigated by Brunton, Proctor &
Kutz (2016b) using the Lorenz equations. Loiseau & Brunton (2018) combined SINDy and
proper orthogonal decomposition (POD) to enforce energy-preserving physical constraints
in the regression procedure toward the development of a new data-driven Galerkin
regression framework. For the time-varying aerodynamics, Li et al. (2019) identified
vortex-induced vibrations on a long-span suspension bridge utilizing the SINDy algorithm
extended to parametric partial differential equations (Rudy et al. 2017). As a novel method
to perform the order reduction of data and SINDy simultaneously, there is a customized
autoencoder (AE) (Champion et al. 2019a) introducing the SINDy loss in the loss function
of deep AE networks. The sparse regression idea has also recently been propagated to
turbulence closure modelling purposes (Beetham & Capecelatro 2020; Schmelzer, Dwight
& Cinnella 2020; Beetham, Fox & Capecelatro 2021; Duraisamy 2021). As reported in
these studies, by employing the SINDy to predict the temporal evolution of a system, we
can obtain ordinary differential equations, which should be helpful to many applications,
e.g. control of a system. In this way, the propagation of the use of SINDy can be seen in
the fluid dynamics community.

We here examine the possibility of SINDy-based modelling of low-dimensionalized
complex fluid flows presented in figure 1. Following our preliminary tests with the
van der Pol oscillator and the Lorenz attractor presented in the Appendices, we
apply the SINDys with two regression methods, (1) thresholded least square algorithm
(TLSA) and (2) adaptive least absolute shrinkage and selection operator (Alasso),
to a two-dimensional cylinder wake at ReD = 100, its transient process, and a wake
of two-parallel cylinders as examples of high-dimensional dynamics. In this study, a
convolutional neural network-based autoencoder (CNN-AE) is utilized to handle these
high dimensional data with SINDy whose library matrix is suitable for low-dimensional
variable combinations (Kaiser, Kutz & Brunton 2018). The CNN-AE here is employed
to map a high-dimensional dynamics into low-dimensional latent space. The SINDy is
then utilized to obtain a governing equation of the mapped low-dimensional latent vector.
Unifying the dynamics of the latent vector obtained via SINDy with the CNN decoder
which can remap the low-dimensional latent vector to the original dimension, we can
present the temporal evolution of high-dimensional dynamics and avoid the issue with
high-dimensional variables as discussed above. The scheme of the present ROM is inspired
by Hasegawa et al. (2019, 2020a,b) who utilized a long short term memory instead of
SINDy in the present ROM framework. The paper is organized as follows. We provide
details of SINDy and CNN-AE in § 2. We present the results for high-dimensional flow
examples with the CNN-AE/SINDy ROM in §§ 3.1, 3.2 and 3.3. In § 3.4, we also discuss
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SINDy onlyCNN-AE/SINDy modeling

Example 1:

single cylinder wake

Example 3: two-parallel

cylinder wake

Example 2: transient wake

Outlook example: nine-equation

turbulent shear flow model

u(x,t) =
 j
�
9

=1
aj (t)uj (x)

Figure 1. Covered examples of fluid flows in the present study.

its applicability to turbulence using the nine-equation turbulent shear flow model, although
without considering the CNN-AE. At last, concluding remarks with outlook are offered
in § 4.

2. Methods

2.1. SINDy
Sparse identification of nonlinear dynamics (Brunton et al. 2016a) is performed to identify
nonlinear governing equations from time series data in the present study. The temporal
evolution of the state x(t) in a typical dynamical system can often be represented in the
form of an ordinary differential equation,

ẋ(t) = f (x(t)). (2.1)

To explain the SINDy algorithm, let x(t) be (x(t), y(t)) hereinafter, although the SINDy
can also handle the dynamics with higher dimensions, as will be considered later. First,
the temporally discretized data of x are collected to arrange a data matrix X ,

X =

⎛
⎜⎜⎜⎝

xT(t1)
xT(t2)
...

xT(tm)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

x(t1) y(t1)
x(t2) y(t2)
...

...

x(tm) y(tm)

⎞
⎟⎟⎠ . (2.2)

We then collect the time series data of the time-differentiated value ẋ(t) to construct a
time-differentiated data matrix Ẋ ,

Ẋ =

⎛
⎜⎜⎜⎝

ẋT(t1)
ẋT(t2)
...

ẋT(tm)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ẋ(t1) ẏ(t1)
ẋ(t2) ẏ(t2)
...

...

ẋ(tm) ẏ(tm)

⎞
⎟⎟⎠ . (2.3)

In the present study, the time-differentiated values are obtained with the second-order
central-difference scheme. Note in passing that results in the present study are not sensitive
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to the differential scheme with appropriate time steps for construction of Ẋ . Then, we
prepare a library matrix Θ(X ) including nonlinear terms of X ,

Θ(X ) =
⎛
⎝ | | | | | |

1 X X P2 X P3 X P4 X P5

| | | | | |

⎞
⎠ , (2.4)

where X Pi is ith-order polynomials constructed by x and y. The set of nonlinear potential
terms here includes up to fifth-order terms, although what terms are included can be
arbitrarily set. We finally determine a coefficient matrix Ξ ,

Ξ = (ξx ξy) =

⎛
⎜⎜⎝
ξ(x, 1) ξ( y, 1)
ξ(x, 2) ξ( y, 2)
...

...

ξ(x, l) ξ( y, l)

⎞
⎟⎟⎠ , (2.5)

in the state equation,
Ẋ (t) = Θ(X )Ξ, (2.6)

using an arbitrary regression method, such as TLSA, least absolute shrinkage and selection
operator (Lasso) and so on. The subscript l in (2.5) denotes the row index of the library
matrix. Once the coefficient matrix Ξ is obtained, the governing equation is identified as

ẋ = Θ(x)ξx, ẏ = Θ( y)ξy. (2.7a,b)

In this study, we use the TLSA used in Brunton et al. (2016a) and the Alasso (Zou 2006)
to obtain the coefficient matrix Ξ following our preliminary tests. Details can be found in
the Appendices.

2.2. CNN-AE
We use a CNN (LeCun et al. 1998) AE (Hinton & Salakhutdinov 2006) for order reduction
of high-dimensional data, as shown in figure 2. As an example, we show the CNN-AE
with three hidden layers. In a training process, the AE F is trained to output the same data
as the input data q such that q ≈ F(q;w), where w denotes the weights of the machine
learning model. The process to optimize the weights w can be formulated as an iterative
minimization of an error function E,

w = argminw[E(q,F(q;w))]. (2.8)

For the use of the AE as a dimension compressor, the dimension of an intermediate space
called the latent space η is smaller than that of the input or output data q as illustrated
in figure 2. When we are able to obtain the output F(q) similar to the input q such that
q ≈ F(q), it can be guaranteed that the latent vector r is a low-dimensional representation
of its input or output q. In an AE, the dimension compressor is called the encoder Fe
(the left-hand part in figure 2) and the counterpart is referred to as the decoder Fd (the
right-hand part in figure 2). Using them, the internal procedure of the AE can be expressed
as

r = Fe(q), q = Fd(r). (2.9a,b)

In the present study, the dimension of the latent space for the problems of a cylinder
wake and its transient process is set to two following our previous work (Murata,
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Latent vector

w = argminw [E(q, F(q; w))]

Number of layers

Number of filters

Channel

K

L

L

H
H

r = Fe(q) q = Fd(r)

F (q) = q(lmax)

r
m

q = q(0) q(2)

Figure 2. Convolutional neural network-based autoencoder.

Fukami & Fukagata 2020). Murata et al. (2020) reported that the flow fields can be
mapped into a low-dimensional latent space successfully while keeping the information
of high-dimensional flow fields. For the example of a two-parallel cylinder wake in § 3.3,
the dimension of the latent space is set to four to handle its quasi-periodicity, accordingly.
For construction of the AE, the L2 norm error is applied as the error function E and the
Adam optimizer (Kingma & Ba 2014) is utilized for updating the weights in the iterative
training process.

Next, let us briefly explain the convolutional neural network. In the scheme of the
convolutional neural network, a filter h, whose size is H × H, is utilized as the weights
w, as shown in figure 3(a). The mathematical expression here is

q(l)ijm = ψ
⎛
⎝K−1∑

k=0

H−1∑
p=0

H−1∑
s=0

h(l)pskmq(l−1)
i+p−C,j+s−C,k + b(l)ijm

⎞
⎠ , (2.10)

where C = floor(H/2), q(l) is the output at layer l, and K is the number of variables in
the data (e.g. K = 1 for black-and-white photos and K = 3 for RGB images). Although
not shown in figure 3, b is a bias added to the results of the filter operation. The
activation function ψ is usually a monotonically increasing nonlinear function. The AE
can achieve more effective dimension reduction than the linear theory-based method, i.e.
POD (Lumley 1967), thanks to the nonlinear activation function (Milano & Koumoutsakos
2002; Fukami et al. 2020b; Murata et al. 2020). In the present study, a hyperbolic
tangent function ψ(a) = (ea − e−a) · (ea + e−a)−1 is adopted for the activation function
following Murata et al. (2020). Moreover, we use the convolutional neural network to
construct the AE because the CNN is good at handling high-dimensional data with lower
computational costs than fully connected models, i.e. multilayer perceptron, thanks to
the filter concept which assumes that pixels of images have no strong relationship with
those of far areas. Recently, the use of CNN has emerged to deal with high-dimensional
problems including fluid dynamics (Fukami, Fukagata & Taira 2019a,b; Fukami et al.
2019c; Fukami, Fukagata & Taira 2020a; Fukami et al. 2021b; Omata & Shirayama 2019;
Morimoto, Fukami & Fukagata 2020a; Fukami, Fukagata & Taira 2021a; Matsuo et al.
2021; Morimoto et al. 2021), although this concept was originally developed in the field
of computer science.
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H

K

H
H

K

H
H

qijk
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(l )
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+bij0
(l )

+bij1
(l )

+bijm
(l )

ψ(∙)

ψ(∙)

ψ(∙)

(a)

(b)

Figure 3. Internal procedure of convolutional neural network: (a) filter operation with activation function
and (b) maximum pooling and upsampling.

2.3. The CNN-SINDy-based ROM
By combining the CNN-AE and SINDy, we present the machine-learning-based ROM
(ML-ROM) as shown in figure 4. The CNN-AE first works to map a high-dimensional
flow field into low-dimensional latent space. The SINDy is then performed to obtain a
governing equation of the mapped low-dimensional latent vector. Unifying the predicted
latent vector by the SINDy with the CNN decoder, we can obtain the temporal evolution
of high-dimensional flow field as presented in figure 4. Moreover, the issue with
high-dimensional variables and SINDy can also be avoided. Note again that the present
ROM is inspired by Hasegawa et al. (2019, 2020a,b) who capitalized on a long short-term
memory instead of SINDy. We apply this framework to a two-dimensional cylinder wake
in § 3.1, its transient process in § 3.2 and a wake of two-parallel cylinders in § 3.3. In this
study, we perform a fivefold cross-validation (Brunton & Kutz 2019) to create all machine
learning models, although only the results of a single case will be presented, for brevity.
The sample code for the present reduced-order model is available from https://github.com/
kfukami/CNN-SINDy-MLROM.

3. Results and discussion

3.1. Example 1: periodic cylinder wake
Here, let us consider a two-dimensional cylinder wake using a two-dimensional direct
numerical simulation (DNS). The governing equations are the incompressible continuity
and Navier–Stokes equations,

∇ · u = 0, (3.1)
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CNN

encoder
CNN

decoder

CNN

decoder

CNN

decoder

Temporal evolution of

flow field is reproduced

Encoded

data (t = 1)

Encoded

data (t = 2)

Encoded

data (t = 3)

SINDy

SINDy

u1,v1 u1,v1

u2,v2

u3,v3

Figure 4. The CNN-SINDy-based ROM for fluid flows.

∂u
∂t
+∇ · (uu) = −∇p+ 1

ReD
∇2u, (3.2)

where u and p represent the velocity vector and pressure, respectively. All quantities
are made dimensionless by the fluid density, the free stream velocity and the cylinder
diameter. The Reynolds number based on the cylinder diameter is ReD = 100. The size
of the computational domain is Lx = 25.6 and Ly = 20.0 in the streamwise (x) and the
transverse (y) directions, respectively. The origin of coordinates is defined at the centre of
the inflow boundary. A Cartesian grid with the uniform grid spacing of�x = �y = 0.025
is used; thus, the number of grid points is (Nx,Ny) = (1024, 800). We use the ghost cell
method (Kor, Badri Ghomizad & Fukagata 2017) to impose the no-slip boundary condition
on the surface of cylinder whose centre is located at (x, y) = (9, 0). In the present study,
we utilize the flows around the cylinder as the training data set, i.e. 8.2 ≤ x ≤ 17.8 and
−2.4 ≤ y ≤ 2.4 with (N∗x ,N∗y ) = (384, 192). The fluctuation components of streamwise
velocity u and transverse velocity v are considered as the input and output attributes
for CNN-AE. The time interval of the flow field data is �t = 0.025 corresponding to
approximately 230 snapshots per a period with the Strouhal number St = 0.172.

As mentioned above, the SINDy is employed to identify the ordinary differential
equations that govern the temporal evolution of the mapped vector obtained by the CNN
encoder. The time history and the trajectory of the mapped latent vector r = (r1, r2) are
shown in figure 5. For the assessment of the candidate models, we integrate the differential
equations to reproduce the time history. Note in passing that the indices based on the
L2 error are not suitable since the slight difference between the period of reproduced
oscillation and that of original one results in large L2 errors for oscillating systems. We
here use the amplitude and the frequency of oscillation to evaluate the similarity between
the reproduced waveform and the original one. Hereafter, the error rate of the amplitude
and the frequency are shown in the figures below for simplicity. The number of terms is
also considered for the parsimonious model selection.

We consider two regression methods for SINDy, i.e. TLSA and Alasso, following our
previous tests. Let us present the results of parameter search utilizing TLSA in figure 6.
Note here that we use 10 000 mapped vectors for the construction of a SINDy model.
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Figure 5. Latent vector dynamics of a periodic shedding case: (a) time history and (b) trajectory.
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= – 31.47 + 46.50y + 111.51x2 + 43.84xy + 113.30y2 + 8.07x3

– 159.21x2y  – 64.91xy2 – 161.25y3 – 99.11x4 – 77.82x3y
– 215.89x2y2  – 78.97xy3 – 101.88y4 – 13.49x5 + 134.12x4y
+100.88x3y2  + 306.65x2y3 + 115.73xy4 + 143.17y5

= 46.21 – 65.21x – 47.33y – 156.75x2 – 70.60xy – 165.10y2

+ 213.25x3  + 266.52x2y + 287.76xy2 + 170.79y3 – 133.16x4
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= 36.00y – 120.79x2y – 48.51xy2 – 121.02y3 + 103.95x4y
+ 87.83x3y2  + 228.10x2y3 + 84.11xy4 + 104.53y5

=  46.21 – 65.21x – 47.33y – 156.75x2 – 70.60xy – 165.10y2

+ 213.25x3  + 266.52x2y + 287.76xy2 + 170.79y3 + 133.16x4

+ 119.23x3y  + 307.13x2y2 + 125.57xy3 + 147.49y4 – 177.03x5

– 313.64x4y – 524.59x3y2 – 497.88x2y3 – 311.64xy4 – 154.68y5

dx
dt —

dy
dt —

dx
dt —

dy
dt —

Figure 6. Results with TLSA for the periodic cylinder example. Parameter search results, examples of obtained
equations, and reproduced trajectories with α = 1 and α = 10 are shown. Colour of amplitude plot indicates
the total number of terms. In the ordinary differential equations, the latent vector components (r1, r2) are
represented by (x, y) for clarity.

Using α = 1, the reproduced trajectory is in excellent agreement with the original one.
However, there are many terms in the ordinary differential equations and some coefficients
are too large, although the oscillation are presented with a shallow range (−1, 1). The
result with the TLSA here is likely because we do not use the data processing, which causes
the large regression coefficients and non-sparse results. On the other hand, the reproduced
trajectory with α = 10 converges to a point around (r1, r2) = (0.6, 0), although the model
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t = 2
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 =
1
0

D
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t = 4 t = 6(a)
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(g) (h) (i)

(b) (c)

Figure 7. Temporally evolved flow fields of DNS and the reproduced flow field with α = 1 and α = 10. With
α = 10, the flow field is frozen after around t = 4 (enhanced using blue colour).

becomes parsimonious. Since the predicted latent vector converges after t ≈ 4 as shown in
the time history of figure 6, the temporal evolution of the flow field by the CNN decoder
is also frozen, as shown in figure 7. Other observation here is that there remains no terms
in the ordinary differential equations with high threshold, i.e. α ≥ 50.

With Alasso as the regression method, we can find the candidate models with low
errors at α = 2× 10−5 and 1× 10−4, as shown in figure 8. At α = 2× 10−5, the ordinary
differential equations consist of four coefficients in total and the reproduced trajectory
gradually converges as shown. On the other hand, by choosing the appropriate sparsity
constant, i.e. α = 1× 10−4, the circle-like oscillating trajectory, which is similar to the
reference, can be represented with only two terms. We then check the reproduced flow field
by the combination of the predicted latent vector by SINDy and CNN decoder, as shown
in figure 9. The temporal evolution of high-dimensional dynamics can be reproduced well
using the proposed model, although the period of the two fields are slightly different.

The quantitative analysis with the probability density function, the mean streamwise
velocity at y = 0, and the time history of ERR is summarized in figure 10. The ERR R is
defined as

R =
∫

S(u
′2
Rep + v′2Rep) dS∫

S(u
′2
DNS + v′2DNS) dS

, (3.3)

where (u′Rep, v
′
Rep) and (u′DNS, v

′
DNS) denote the fluctuation components of the reproduced

velocity and the original velocity, respectively. For the probability density function, the
distribution of the CNN-SINDy model is in excellent agreement with the reference
DNS data. Since the SINDy model of the present case integrates the latent vector via
the CNN-AE which can map a high-dimensional flow field into low-dimensional space
efficiently thanks to the nonlinear activation function (Murata et al. 2020), the SINDy
outperforms POD with two modes as long as the appropriate waveforms can be obtained.
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Figure 8. Results with Alasso of a periodic cylinder example. Parameter search results, examples of obtained
equations, and reproduced trajectories with α = 2× 10−5 and α = 1× 10−4 are shown. Colour of amplitude
plot indicates the total number of terms. In the ordinary differential equations, the latent vector components
(r1, r2) are represented by (x, y) for clarity.

In other words, the obtained equation can be integrated stably. The success of the
CNN-SINDy-based modelling can be also seen with time-averaged velocity and energy
containing rate in figure 10.

3.2. Example 2: transient wake of cylinder flow
As the second example for the combination of CNN and SINDy, we consider the transient
process of a flow around a circular cylinder at ReD = 100. For taking into account the
transient process, the streamwise length of the computational domain and that of the flow
field data are extended to Lx = 51.2 and 8.2 ≤ x ≤ 37, i.e. N∗x = 1152, same set-up with
Murata et al. (2020). The time history and the trajectory in the latent space are shown
in figure 11. Since the trajectory looks like a circle as shown in figure 11(b), we use the
residual sum of error of r2

1 + r2
2 between the original value and the reproduced value as

the evaluation index in this example.
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Figure 9. Time history of the latent vector and temporal evolution of the wake of DNS and the reproduced
field at (a) t = 1025, (b) t = 1026, (c) t = 1027 and (d) t = 1028.

For SINDy, we use the data with t = [60, 160]. The library matrix contains up to
fifth-order terms. Although equations, which can provide the correct temporal evolution of
the latent vector, can be obtained with Alasso by including higher-order terms, the model
here is, of course, not sparse and so difficult to interpret.

The parameter search results with TLSA for transient wake are summarized in figure 12.
Since the trajectory here is simple as shown, we can obtain the governing equations, which
provide the reasonable agreement with the reference, at α = 7× 10−2. With a higher
sparsity constant, i.e. α = 0.7, the equation provides a temporal evolution of the latent
vector with almost no oscillation.

Alasso is also considered, as shown in figure 13. Although the number of terms is larger
than that in the periodic shedding example, the trajectory can be reproduced successfully
at α = 1.2× 10−8. With a higher sparsity constant, e.g. α = 1.2× 10−2, the developing
oscillation is not reproduced due to a lack of number of terms. Noteworthy here is that the
error for frequency is almost negligible in the range of 5× 10−6 ≤ α ≤ 10−3 in spite of
the high error rate regarding x2 + y2. This is because the slight oscillation occurs with a
similar frequency to the solution. Although the identified equation here is more complex
than the well known transient system with a two-dimensional paraboloic manifold (Sipp
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Figure 11. Latent vector dynamics of the transient process: (a) time history and (b) trajectory.

& Lebedev 2007; Loiseau & Brunton 2018; Loiseau, Brunton & Noack 2018a), it is likely
caused by the complexity of captured information inside the AE modes compared with
the POD modes (Murata et al. 2020). This observation enables us to notice the trade-off
relationship between the used information associated with the number of modes and the
sparsity of equation. Hence, taking a constraint for nonlinear AE modes to be useful, e.g.
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Figure 12. Results with TLSA of the transient example. Parameter search results, examples of obtained
equations, and reproduced trajectories with α = 7× 10−2 and α = 0.7 are shown. Colour of amplitude plot
indicates the total number of terms. In the ordinary differential equations, the latent vector components (r1, r2)

are represented by (x, y) for clarity.

orthogonal, may be helpful in identifying more sparse dynamics (Champion et al. 2019a;
Ladjal, Newson & Pham 2019; Jayaraman & Mamun 2020).

The streamwise velocity fields reproduced by the CNN-AE and the integrated latent
variables with the Alasso-based SINDy are presented in figure 14. The present two
sparsity constants here correspond to the results in figure 13. With α = 1.2× 10−8, the
flow field can successfully be reproduced thanks to nonlinear terms in the identified
equations by SINDy. In contrast, it is tough to capture the transient behaviour correctly
by the CNN-SINDy model with α = 1.2× 10−2, which can explicitly be found by the
comparison among (b) (where t = 80) in figure 14. This corresponds to the observation
that the sparse model cannot reproduce the trajectory well in figure 13.

3.3. Example 3: two-parallel cylinders wake
To demonstrate the applicability of the present CNN-SINDy-based ROM to more complex
wake flows, let us here consider a flow around two-parallel cylinders whose radii are
different from each other (Morimoto et al. 2020b, 2021), as presented in figure 1.
Unlike the wake dynamics of two identical circular cylinders as described in Kang
(2003), the coupled wakes behind two side-by-side uneven cylinders exhibits more
complex vortex interactions, due to the mismatch in their individual shedding frequencies.
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Figure 15. Autoencoder-based low-dimensionalization for the wake of the two-parallel cylinders.
(a) Comparison of the reference DNS, the decoded field with nr = 3 and the decoded field with nr = 4. The
values underneath the contours indicate the L2 error norm. (b) Time series of the latent variables with nr = 3
and 4.

Training flow snapshots are prepared with a DNS with the open-source computational fluid
dynamics (known as CFD) toolbox OpenFOAM (Weller et al. 1998), using second-order
discretization schemes in both time and space. We arrange the two circular cylinders
with a size ratio of r and a gap of gD, where g is the gap ratio and D is the diameter
of the lower cylinder. The Reynolds number is fixed at ReD = 100. The two cylinders
are placed 20D downstream of the inlet where a uniform flow with velocity U∞ is
prescribed, and 40D upstream of the outlet with zero pressure. The side boundaries are
specified as slip and are 40D apart. The time steps for the DNS and the snapshot sampling
are, respectively, 0.01 and 0.1. A notable feature of wakes associated with the present
two-cylinder position is complex wake behaviour caused by varying the size ratio r and
the gap ratio g (Morimoto et al. 2020b, 2021). In the present study, the wake with the
combination of {r, g} = {1.15, 2.0}, which is a quasi-periodic in time, is considered for
the demonstration. For the training of both the CNN-AE and the SINDy, we use 2000
snapshots. The vorticity field ω is used as a target attribute in this example.

Prior to the use of SINDy, let us determine the size of latent variables nr of this
example, as summarized in figure 15. We here construct AEs with two nr cases: nr = 3
and nr = 4. As presented in figure 15(a), the recovered flow fields through the AE-based
low-dimensionalization are in reasonable agreement with the reference DNS snapshots.
Quantitatively speaking, the L2 error norms between the reference and the decoded fields
are approximately 14 % and 5 % for each case. Although both models achieve the smooth
spatial reconstruction, we can find the significant difference by focusing on their temporal
behaviours in figure 15(b). While the time trace with nr = 4 shows smooth variations
for all four variables, the curves with nr = 3 exhibit a shaky behaviour despite the
quasi-periodic nature of the flow. This is caused by the higher error level of the nr = 3
case. Furthermore, it is also known that a high-error level due to an overcompression via
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Figure 16. The relationship between the sparsity constant α and the number of terms in identified equations
via SINDys with TLSA and Alasso for the two-parallel cylinder wake example.

AE is highly influential for a temporal prediction of them since there should be exposure
bias (Endo, Tomobe & Yasuoka 2018) occurring by a temporal integration (Hasegawa
et al. 2020a,b; Nakamura et al. 2021). In what follows, we use the AE with nr = 4 for the
SINDy-based ROM.

Let us perform SINDy with TLSA and Alasso for the AE latent variables with nr = 4.
For the construction of a library matrix of this example, we include up to third-order
terms in terms of four latent variables. The relationship between the sparsity constant α
and the number of terms in identified equations is examined in figure 16. Similarly to
the previous two examples with a single cylinder, the trends for TLSA and Alasso are
different from each other. Note that one can only refer to this map to check the sparsity
trend of the identified equation, since there is no model equation. To validate the fidelity
of the equations, we need to integrate identified equations and decode a flow field using
the decoder part of AE.

The identified equations via the TLSA-based SINDy are investigated in figure 17. As
examples, the cases with α = 0.1 and 0.5 are shown. The case with α = 1 which contains
nonlinear terms shows a diverging behaviour at t ≈ 90. The sparse equation obtained
with α = 0.5 can provide stable solutions for r1 and r2; however, its sparseness causes
the unstable integration for r3 and r4. Note in passing that the TLSA-based modelling
cannot identify the stable solution although we have carefully examined the influence on
the sparsity factors for other cases not shown here.

We then use Alasso as a regression function of SINDy, as summarized in figure 18. The
cases with α = 5× 10−7 and 10−6 are shown. The identified equation with α = 5× 10−7

can successfully be integrated and its temporal behaviour is in good agreement with the
reference curve provided by the AE-based latent variables. However, what is notable here
is that the equation with α = 10−6 shows the decaying behaviour with an increasing of
the integration window despite the equation form being very similar to the case with α =
5× 10−7. Some nonlinear terms are eliminated due to the slight increase in the sparsity
constant. These results indicate the importance of the careful choice for both regression
functions and the sparsity constants associated with them.

Based on the results above, the integrated variables with the case of Alasso with
α = 5× 10−7 are fed into the CNN decoder, as presented in figure 19. The reproduced
flow fields are in reasonable agreement with the reference DNS data, although there is a
slight offset due to numerical integration. Hence, the present reduced-order model is able
to achieve a reasonable wake reconstruction by following only the temporal evolution of
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Figure 17. Integration of the identified equations via the TLSA-based SINDy for the two-parallel cylinder
wake example. The cases are (a) TLSA, α = 0.1 and (b) TLSA, α = 0.5.

low-dimensionalized vector and caring the selection of parameters, which is akin to the
observation of single cylinder cases.

3.4. Outlook: nine-equation shear flow model
One of the remaining issues of the present CNN-SINDy model is the applicability to flows
where a lot of spatial modes are required to reconstruct the flow, e.g. turbulence. With
the current scheme for the CNN-AE, it is difficult to compress turbulent flow data while
keeping the information of high-dimensional dynamics (Murata et al. 2020). We have also
recently reported that the difficulty for turbulence low-dimensionalization still remains

926 A10-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.697


K. Fukami, T. Murata, K. Zhang and K. Fukagata

60

0

r4

r3

r2

r1

r4

r3

r2

r1

t

–1.0
–0.5

0.5
1.0

–1.0
–0.5

0.5
1.0

0

–1.0
–0.5

0.5
1.0

0

–1.0
–0.5

0.5
1.0

0

–1.0
–0.5

0.5
1.0

0

–1.0
–0.5

0.5
1.0

0

–1.0
–0.5

0.5
1.0

0

0

–1.0
–0.5

0.5
1.0

0

20 40 60 80 100 120 140
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Figure 18. Integration of the identified equations via the Alasso-based SINDy for the two-parallel cylinder
wake example. The cases are (a) Alasso, α = 5× 10−7 and (b) Alasso, α = 10−6.

D
N

S

t = 10 t = 70 t = 140

C
N

N
-S

IN
D

y

(a) (b) (c)

(d) (e) ( f )

Figure 19. Reproduced fields with the CNN-SINDy-based ROM of the two-parallel cylinders example. The
case of Alasso with α = 5× 10−7 is used for SINDy. The DNS flow fields are also shown for the comparison.
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SINDy with low-dimensionalized flow representations

even if we use a customized AE, although it can achieve the better mapping than that
by conventional AE and POD (Fukami, Nakamura & Fukagata 2020c). In addition, the
number of terms in a coefficient matrix must be drastically increased for the turbulent
case unless the flow can be expressed with a smaller number of modes. Hence, our next
question here is ‘can we also use SINDy if a turbulent flow can be mapped into a smaller
number of modes?’. In this section, let us consider a nine-equation turbulent shear flow
model between infinite parallel free-slip walls under a sinusoidal body force (Moehlis,
Faisst & Eckhardt 2004) as the preliminary example for the application to turbulence with
low number of modes.

In the nine-equation model, various statistics, including mean velocity profile, streaks
and vortex structures, can be represented with only nine Fourier modes uj(x). Analogous
to POD, the flow fields can be mathematically expressed with a superposition of temporal
coefficients and modes such that

u(x, t) =
9∑

j=1

aj(t)uj(x). (3.4)

Here, nine ordinary differential equations for the nine mode coefficients are as follows:

da1

dt
= μ2

Re
− μ

2

Re
a1 −

√
3
2
μγ

κζμγ
a6a8 +

√
3
2
μγ

κμγ
a2a3, (3.5)

da2

dt
= −Re−1

(
4μ2

3
+ γ

)
a2 + 5

√
2

3
√

3

γ 2

κζγ
a4a6 − γ 2

√
6κζγ

a5a7 − ζμγ√
6κζγ κζμγ

a5a8

−
√

3
2
μγ

κμγ
a1a3 −

√
3
2
μγ

κμγ
a3a9, (3.6)

da3

dt
= −μ

2 + γ 2

Re
a3 + 2√

6

ζμγ

κζγ κμγ
(a4a7 + a5a6)

+μ
2(3ζ 2 + γ 2)− 3γ 2(ζ 2 + γ 2)√

6κζγ κμγ κζμγ
a4a8, (3.7)

da4

dt
= −3ζ 2 + 4μ2

3Re
a4 − ζ√

6
a1a5 − 10

3
√

6

ζ 2

κζγ
a2a6

−
√

3
2
ζμγ

κζγ κμγ
a3a7 −

√
3
2

ζ 2μ2

κζγ κμγ κζμγ
a3a8 − ζ√

6
a5a9, (3.8)

da5

dt
= −ζ

2 + μ2

Re
a5 + ζ√

6
a1a4 + ζ 2

√
6κζγ

a2a7

− ζμγ√
6κζγ κζμγ

a2a8 + ζ√
6

a4a9 + 2√
6

ζμγ

κζγ κμγ
a3a6, (3.9)

da6

dt
= −3ζ 2 + 4μ2 + 3γ 2

3Re
a6 + ζ√

6
a1a7 +

√
3
2
μγ

κζμγ
a1a8

+ 10

3
√

6

ζ 2 − γ 2

κζγ
a2a4 − 2

√
2
3
ζμγ

κζγ κμγ
a3a5 + ζ√

6
a7a9 +

√
3
2
μγ

κζμγ
a8a9, (3.10)
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da7

dt
= −ζ

2 + μ2 + γ 2

Re
a7 − ζ√

6
(a1a6 + a6a9)

+ 1√
6

γ 2 − ζ 2

κζγ
a2a5 + 1√

6

ζμγ

κζγ κμγ
a3a4, (3.11)

da8

dt
= −ζ

2 + μ2 + γ 2

Re
a8 + 2√

6

ζμγ

κζγ κζμγ
a2a5 + γ

2(3ζ 2 − μ2 + 3γ 2)√
6κζγ κμγ κζμγ

a3a4, (3.12)

da9

dt
= −9μ2

Re
a9 +

√
3
2
μγ

κμγ
a2a3 − μγ

κζμγ
a6a8, (3.13)

where ζ , μ and γ are constant values, κζγ =
√
ζ 2 + γ 2, κμγ =

√
μ2 + γ 2, κζμγ =√

ζ 2 + μ2 + γ 2. These coefficients are multiplied to corresponding Fourier modes which
have individual roles in reconstructing a flow, e.g. basic profile, streak and spanwise flows.
We refer enthusiastic readers to Moehlis et al. (2004) for details.

In this section, we aim to obtain the coefficient matrix for the simultaneous time
differential equations (3.5) to (3.13) using SINDy. In the following, let us consider
the Reynolds number based on the channel half-height δ and laminar velocity U0
at a distance of δ/2 from the top wall set to Re = 400. The initial condition for
numerical integration of the equations above is (a0

1, a0
1, a0

2, a0
3, a0

4, a0
5, a0

6, a0
7, a0

8, a0
9) =

(1, 0.07066,−0.07076, 0, 0, 0, 0, 0) with a random small perturbation for a4, which is the
same set up as the reference code by Srinivasan et al. (2019). The lengths and the number of
grids of the computational domain are set to (Lx, Ly, Lz) = (4π, 2, 2π) and (Nx,Ny,Nz) =
(21, 21, 21), respectively. The constant values are set to (ζ, μ, γ ) = (2π/Lx,π/2, 2π/Lz)
and the time step is 0.5. Examples of streamwise-averaged velocity ux contour and velocity
uy contour at the midplane with the temporal evolution of the amplitudes ai and the
pairwise correlations of the present nine coefficients are shown in figure 20. The chaotic
nature of the considered problem can be seen. For performing SINDy, we use 10 000
discretized coefficients as the training data.

The SINDy in this section is also performed with TLSA and Alasso following the
discussions above. Since the equations for the temporal coefficients are constructed up
to second-order terms, the coefficient matrix also includes up to second-order terms, as
shown in figure 21(a). The total number of terms considered here is 55. The results
with TLSA and Alasso are summarized in figure 21(b). The matrices located in the
right-hand area correspond to the coefficient matrix in figure 21(a). Similar to the results
above, the model using TLSA has some huge values due to a lack of penalty terms.
Especially, the effects by overfitting can be seen for the low-order portion. On the other
hand, the remarkable ability of the SINDy can be seen with the Alasso. By giving the
appropriate sparsity constant α, the governing equations can be represented successfully.
The details of each magnitude of the coefficients are shown in figure 22. It is striking
that the dominant terms are perfectly captured by using SINDy, although the magnitudes
are slightly different. These noteworthy results indicate that a governing equation of
low-dimensionalized turbulent flows can be obtained from only time series data by using
SINDy with appropriate parameter selections. In other words, we may also be able to
construct a machine-learning-based reduced-order model for turbulent flows with the
interpretable sense as a form of equation, if a well-designed model for mapping into
low-dimensional manifolds can be constructed.

The robustness of SINDy against noisy measurements observed in the training pipeline
for this example is finally assessed in figure 23. We here introduce the Gaussian
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Figure 20. (a) Pairwise correlations of nine coefficients. (b) Example contours of velocity ux and velocity uy
at midplane. (c) Temporal evolution of amplitudes ai.

perturbation for the training data as

f m = f + γmn, (3.14)

where f is a target vector, γ is the magnitude of the noise and n denotes the Gaussian
noise. As the magnitude of noise, four cases γm = {0.05, 0.10, 0.20, 0.40} are considered.
With γ = 0.05, SINDy is still be able to identify the equation accordingly. However,
the first-order terms are eliminated and unnecessary high-order terms are added with
an increasing of the noise magnitude of the training data, although the whole trend of
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Figure 21. The SINDy for the nine-equation shear flow model. (a) Schematic of coefficient matrix β.
(b) Relationship between the sparsity constant α and the number of terms with the obtained coefficient
matrices.
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SINDyReference
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a�4 = –8.85 × 10–3a4 – 0.204a1a5 – 0.304a2a6 a�4 = –8.76 × 10–3a4 – 0.204a1a5 – 0.304a2a6

a�5 = –6.79 × 10–3a5 + 0.204a1a4 + 9.13 × 10–2a2a7 a�5 = –6.77 × 10–3a5 + 0.204a1a4 + 9.08 × 10–2a2a7

a�6 = –1.13 × 10–2a6 + 0.204a1a7 + 0.998a1a8 – 0.913a2a4 a�6 = –1.13 × 10–2a6 + 0.204a1a7 + 0.995a1a8 – 0.910a2a4
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Figure 22. Comparison of the governing equation for temporal coefficients.

coefficient matrix can be captured. These results imply that care should be taken for noisy
observations in training data depending on the problem-setting users handling, although
the SINDy can guarantee its robustness for a slight perturbation.
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Figure 23. Noise robustness of SINDy for the nine-shear turbulent flow example.

4. Conclusion

We performed a SINDy for low-dimensionalized fluid flows and investigated influences
of the regression methods and parameter considered for construction of SINDy-based
modelling. Following our preliminary test, the SINDys with two regression methods, the
TLSA and the Alasso, were applied to the examples of a wake around a cylinder, its
transient process, and a wake of two-parallel cylinders, with a CNN-AE. The CNN-AE
was employed to map high-dimensional flow data into a two-dimensional latent space
using nonlinear functions. Temporal evolution of the latent dynamics could be followed
well by using SINDy with an appropriate parameter selection for both examples, although
the required number of terms for the coefficient matrix are varied with each other due to
the difference in complexity.

Finally, we also investigated the applicability of SINDy to turbulence with
low-dimensional representation using a nine-shear flow model. The governing equation
could be obtained successfully by utilizing Alasso with the appropriate sparsity constant.
The results indicated that ML-ROM for turbulent flows can be perhaps presented in the
interpretable sense in the form of an equation, if a well-designed model for mapping
high-dimensional complex flows into low-dimensional manifolds can be constructed.
With regard to the low-dimensional manifolds of fluid flows, the novel work by Loiseau
et al. (2018a) discussed the nonlinear relationship between lower-order POD modes and
higher-order counterparts of cylinder wake dynamics by relating it to a triadic interaction
among POD modes. We may be able to borrow the concept here to investigate the possible
nonlinear correlations in the data, although it will be tackled in the future since it is not
easy to apply their idea directly to the nine-equation shear flow model which is composed
of more complex relationships among modes. Otherwise, a combination of uncertainty
quantification (Maulik et al. 2020), transfer learning (Guastoni et al. 2020a; Morimoto
et al. 2020b) and Koopman-based frameworks (Eivazi et al. 2021) may also be possible
extensions toward more practical applications.

The current results for CNN-SINDy modelling makes us sceptical about applications of
CNN-AE to the flows where many spatial modes are required to represent the energetic
field, e.g. turbulence, despite that recent several studies have shown its potential for
unsteady laminar flows (Carlberg et al. 2019; Agostini 2020; Taira et al. 2020; Xu &
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Duraisamy 2020; Bukka et al. 2021). Since a few studies have also recently recognized the
challenges of the current form of CNN-AE for turbulence (Brunton, Hemati & Taira 2020;
Fukami et al. 2020c; Glaws, King & Sprague 2020; Nakamura et al. 2021), care should be
taken with the choice of low-dimensionalization tools depending on the flows that users
handle. Hence, the utilization of other well-sophisticated low-dimensionalization tools
such as spectral POD (Towne, Schmidt & Colonius 2018; Abreu et al. 2020), t-distributed
stochastic neighbour embedding (Wu et al. 2017), hierarchical AE (Fukami et al. 2020c)
and locally linear embedding (Roweis & Lawrence 2000; Ehlert et al. 2019) can be
considered to achieve better mapping of flow fields. Taking constraints for coordinates
extracted via AE is also a candidate to promote the combination of AE modes and
conventional flow control tools (Champion et al. 2019a; Gelß et al. 2019; Ladjal et al.
2019; Jayaraman & Mamun 2020). Finally, we believe that the results of our examples,
above, enables us to have a strong motivation for future work and notice the remarkable
potential of SINDy for fluid dynamics.
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Appendix A. Regression methods for SINDy

As introduced in § 1, the regression method used to obtain the coefficient matrix Ξ is
important since the resultant coefficient matrix Ξ may vary with the choice of regression
method. Here, let us consider a typical regression problem,

P = Qβ, (A1)

where P and Q denote the response variables and the explanatory variable, respectively.
In this problem, we aim to obtain the coefficient matrix β representing the relationships
between P and Q. Using the linear regression method, an optimized coefficient matrix β
can be found by minimizing the error between the left-hand and right-hand sides such that

β = argmin ‖P −Qβ‖2 . (A2)

The TLSA, originally used in Brunton et al. (2016a) for performing SINDy, is based on
this formulation in (A2) and obtains the sparse coefficient matrix by substituting zero for
the coefficient below the threshold α. Its algorithm is summarized as algorithm 1:

Although the linear regression method has been widely used due to its simplicity,
Hoerl & Kennard (1970) cautioned that estimated coefficients are sometimes large in
absolute value for the non-orthogonal data. This is known as the overfitting problem. As
a considerable surrogate method, they proposed the Ridge regression (Hoerl & Kennard
1970). In this method, the squared value of the components in the coefficient matrix is
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Algorithm 1 Thresholded least square algorithm

1: α←− a certain value (set threshold)
2: repeat
3: Obtain β = argmin ‖P −Qβ‖2
4: βi ←− 0 where βi < α

5: Change P and Q so that the components which were set to zero in the previous step
will be output as zero.

6: until the estimate β no longer changes.

considered as the constraint of the minimization process such that

β = argmin ‖P −Qβ‖2 + α
∑

j

β2
j , (A3)

where α denotes the weight of the constraint term. For uses of SINDy, the coefficient
matrix β is desired to be sparse, i.e. some components are zero, so as to avoid construction
of a complex model and overfitting. As the sparse regression method, Lasso (Tibshirani
1996) was proposed. With Lasso, the sum of the absolute value of components in the
coefficient matrix is incorporated to determine the coefficient matrix as follows:

β = argmin ‖P −Qβ‖2 + α
∑

j

|βj|. (A4)

If the sparsity constant α is set to a high value, the estimation error becomes relatively
large while the coefficient matrix results in a sparse matrix.

The Lasso algorithm introduced above has, however, two drawbacks and there are
solutions for each: the elastic net (Enet) and the Alasso, as mentioned in the introduction.
Enet (Zou & Hastie 2005) combines L1 and L2 errors, i.e. those of the Ridge regression,
and Lasso. The optimal coefficient β is obtained as

β =
(

1+ α2

n

) ⎧⎨
⎩argmin ‖P −Qβ‖2 + α1

∑
j

|βj| + α2
∑

j

β2
j

⎫⎬
⎭ . (A5)

The following two parameters are set for the Enet: the sparsity constant α = α1 + α2 and
the sparse ratio α1/(α1 + α2), respectively. The property for the sparsity constant α is the
same as that of Lasso: a higher α results in large error and sparse estimation. The sparse
ratio is the ratio of L1 and L2 errors as seen its definition. The sparse model can be obtained
with a high L1 ratio, although the collinearity problem may not be solved. Another
solution, the Alasso (Zou 2006), uses adaptive weights for the penalizing coefficients in
L1 penalty term. In the Alasso, β are given by

β = argmin ‖P −Qβ‖2 + α
∑

j

wj|βj|, (A6)

where wj = (|βj|)−δ denotes the adaptive weight with δ > 0. The use of wj enables us to
avoid the issue of multiple local minima. The weights wj and coefficients β are updated
repeatedly like in algorithm 2:

In general it is necessary to choose the appropriate value for the threshold or the
sparsity constant α in order to obtain a desired equation which is sparse and in an
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Algorithm 2 Adaptive Lasso

1: α←− a certain value (set the sparsity constant)
2: wj ←− 1 (initialization)
3: repeat
4: Q∗∗ ←− Q/wj

5: Solve the Lasso problem: β∗∗ = argmin
∥∥P −Q∗∗β

∥∥2 + α∑
j wj|βj|

6: β ←− β∗∗/wj
7: wj ←− (|βj|)−δ
8: until the estimate β no longer changes.

interpretable form. Hence, we focus on seeking the appropriate α of each regression
method in this study. The algorithm for the parameter search applied to the current study
is described in algorithm 3. Regarding the assessment ways used in procedures 5 and 7

Algorithm 3 Parameter search

1: Prepare data X and Ẋ
2: Prepare the set of sparse parameters α
3: for all α do
4: Perform SINDy to obtain the ordinary differential equation at a certain α.
5: Assess the candidate model with an evaluation index
6: end for
7: Choose the best model by the assessment
8: Model is identified.

in algorithm 3, number of total remaining terms of the obtained equation are utilized as
the evaluation index for the preliminary test. For cylinder examples, the number of total
terms, the error in the amplitudes of obtained waveforms, and the error ratio in the period
between the obtained wave and the solution are assessed.

Appendix B. Preliminary tests with low-dimensional problems

B.1. Pretest 1: van der Pol oscillator
As a preliminary test of performing SINDy, we consider the van der Pol oscillator (Van
der Pol 1934), which has a nonlinear damping. The governing equations are

dx
dt
= y, (B1)

dy
dt
= −x+ κy− κx2y, (B2)

where κ > 0 is a constant parameter and we set κ = 2 in this preliminary test. The
trajectory converges to a stable limit cycle determined by κ under any initial state except
for the unstable point (x = 0, y = 0) as shown in figure 24.

Let us perform SINDy with each of the four regression methods, i.e. TLSA, Lasso, Enet
and Alasso, with various sparsity constants α. Here, we use 20 000 discretized points as
the training data sampled within t = [0, 200] with the time step �t = 1× 10−2, although
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Figure 24. Dynamics of the van der Pol oscillator with κ = 2: (a) time history and (b) trajectory on the x–y
plane. The initial point is set to (x, y) = (−2, 5) in this example.
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Figure 25. Relationship between α and the number of terms, and the examples of obtained equations for four
regression methods.

we will investigate the dependence of SINDy performance on both the length of time step
and the length of training data range later. The library matrix is arranged including up
to the fifth-order terms. In this example, we assess candidate models by using the total
number of terms contained in the obtained ordinary differential equation. As denoted in
(B1) and (B2), the true model has four non-zero terms in total in two governing equations.
The relationship between the total number of terms in the candidate models and α is shown
in figure 25. As shown, the uses of Lasso and Enet cannot reach the true model whose total
number of terms is four. On the other hand, using TLSA or Alasso, the correct governing
equation can be identified. It is striking that we should choose the appropriate parameter
α for the correct model identification, as shown in figure 25. In this sense, the Alasso is
suitable for the problem here since a wide range of α, i.e. 10−9 ≤ α ≤ 10−2, can provide
the correct equation. The difference here is likely due to the scheme of each regression.
The TLSA is unable to discard the components of β with low α values: in other words,
a lot of terms remain through the iterative process. On the other hand, the Alasso can
identify the dominant terms clearly thanks to adaptive weights even if α is relatively low.

To investigate the dependence on the time step of the input data, SINDy is performed
on the data with different time steps: �t = 1× 10−2, 0.1 and 0.2. Here, we consider only
TLSA and Alasso following the aforementioned results. Note that the number of input
data is different due to the time step since the integration time length is fixed to tmax =
200 in all cases. We have checked in our preliminary tests that this difference has no
significant effect on the results. The trajectory, the results for the parameter search, and
the example of obtained equations are summarized in figure 26. With the fine data, i.e.
�t = 1× 10−2, the governing equations are correctly identified with some α for both
methods. The true model can be found even if we use very small α, i.e. α = 1× 10−8 with
Alasso as mentioned before. With increasing �t, i.e. �t = 0.1, the coefficients of terms
are slightly underestimated. Additionally, the range of α where the number of terms is
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Figure 26. Trajectory on the x–y plane, the relationship between α and number of terms, and the examples of
obtained equations for data for different time steps: (a) �t = 1× 10−2, 769 points/period; (b) �t = 0.1, 76.9
points/period; (c) �t = 0.2, 38.5 points/period; (d) �t = 0.5, 15.4 points/period.

correctly identified as four becomes narrower with both methods. With a wider time step,
i.e. �t = 0.2, the dominant terms can be found only with Alasso. On the other hand, the
true model cannot be obtained with further wider time step data, i.e. �t = 0.5, even with
Alasso, due to the temporal coarseness as shown in figure 26(d). It suggests that the data
with the appropriate time step is necessary for the construction of the model. In summary,
Alasso is superior in terms of its ability to correctly identify the dominant terms for a
wider range of sparsity constant.

Let us then investigate the dependence of the performance on the length of training
data range, as demonstrated in figure 27. We here consider three lengths of training data
range as (a) t = [0, 8], (b) t = [0, 12] and (c) t = [0, 200] (baseline), while keeping the
time step �t = 1× 10−2. As shown, the trends of the relationship between the sparsity
constant and the number of terms in the identified equation are similar over the covered
time length. In addition, the SINDys with the TLSA (α = 1× 10−2) and Alasso (α =
1× 10−3) are able to identify the equations successfully for all time length cases. Only
in the case of t = [0, 8], does the model identification not perform well with the Alasso
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Figure 27. The dependence of the performance of SINDy on the length of training data range: (a) t = [0, 8];
(b) t = [0, 12]; (c) t = [0, 200] (baseline).

around α = 1× 10−8. The time length has little effect on the model identification if the
time length is more than one period.

For considering models in which higher-order terms may be dominant due to higher
nonlinearity, it will be valuable to find the way to select the appropriate potential terms that
should be included in the library matrix. From this view, the dependence on the number of
potential terms is investigated using the data with �t = 1× 10−2. In the case where the
maximum order of the potential terms is the fifth, the true model can be found with two
regression methods, i.e. TLSA and Alasso, as shown in figure 26(a). Here, the case with
higher maximum order, i.e. the 15th and 20th, are also investigated as shown in figure 28.
Note that there are 136 and 231 potential terms for each differential equation in these
cases. For both cases with a different number of potential terms, we cannot find the true
model with TLSA while the true model is identified in a wide range of α with Alasso.
Furthermore, in the case including up to the 15th terms, some coefficients in the equation
obtained by TLSA become huge. These large coefficients are due to the different functions
included in the library being almost collinear.

B.2. Pretest 2: Lorenz attractor
As the second preliminary test, we consider the problem of identifying a chaotic trajectory
called the Lorenz attractor (Lorenz 1963). It is written in a form of nonlinear ordinary
differential equations,

dx
dt
= −σx+ σy, (B3)

dy
dt
= ρx− y− xz, (B4)
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Figure 29. Dynamics of the Lorenz attractor: (a) time history and (b) trajectory.

dz
dt
= −ιz+ xy. (B5)

Lorenz (1963) showed that the dynamics governed by the equations above shows chaotic
behaviour with the certain coefficients, i.e. (σ, ρ, ι) = (10, 28, 8/3) with the initial values
(x, y, z) = (−8, 8, 27), as shown in figure 29.

As with the preliminary test of the van der Pol oscillator, we consider four regression
methods: TLSA, Lasso, Enet and Alasso, as shown in figure 30. Note that 10 000
discretized points with �t = 1× 10−2 from the time range of t = [0, 100] are used as
the training data and the potential terms up to fifth order are considered here. Similar to
the van der Pol oscillator, we can obtain the true model whose total number of terms is
seven with TLSA or Alasso, although Lasso or Enet cannot identify the equation correctly.
Comparing the two methods which can obtain the correct model, the range of α, where
the governing equations are identified, is wider using Alasso. We also perform SINDy
with different time steps as shown in figure 31. Note that the considered time range is
not changed depending on the time steps: in other words, the number of training data
is changed per a considered time step, which is the same setting as that for the van der

926 A10-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.697


SINDy with low-dimensionalized flow representations

175

150
N

u
m

b
er

 o
f 

te
rm

s

125

100

75

50

25

0

10–8 10–6 10–4 10–2

TLSA
Lasso
Enet
Alasso

TLSA, α = 0.1

x� = –10x + 10y
y� = 27.7x – 0.9y – xz
z� = –2.7z + xy

x� = –10x + 10y
y� = 27.8x – y – xz
z� = –2.7z + xy

Alasso, α = 0.1

100 102

α

Figure 30. Relationship between α and the total number of terms, with the examples of obtained equations.

102

Parameter search results Examples of equations

101

100

10–8 10–6 10–4 10–2 100 102N
u
m

b
er

 o
f 

te
rm

s

102

101

100

10–8 10–6 10–4 10–2 100 102N
u
m

b
er

 o
f 

te
rm

s

TLSA
Alasso

TLSA, α = 0.1

x� = –9.98x + 9.98y
y� = 27.63x – 0.92y – 0.99xz
z� = –2.66z + 1.00xy

x� = –9.98x + 9.98y
y� = 27.63x – 0.92y – 0.99xz
z� = –2.66z + 1.00xy

Alasso, α = 10–2

TLSA, α = 0.1

x� = –9.91x + 9.91y
y� = 27.04x – 0.81y – 0.97xz
z� = –2.64z + 0.99xy

x� = –9.92x + 9.92y
y� = 27.05x – 0.81y – 0.97xz
z� = –38.19 – 0.78z – 0.69y2

Alasso, α = 10–2

α
–20

–10
0

10
–10

0

20

10

20

30

40

10

–20
–10

0
10

–10
0

20

10

20

30

40

10

(b)

(a)

Figure 31. Trajectory on the x–y plane, the relationship between α and number of terms, and the examples of
obtained equations for data for different time steps: (a) �t = 1× 10−2 and (b) �t = 2× 10−2.

Pol example. Similarly to the case of the van der Pol oscillator, we cannot reach the correct
model using TLSA unless α is fine-tuned, and the coefficients are underestimated using
Alasso with the wider time step data, i.e. �t = 2× 10−2. Moreover, the dependence on
how many orders are considered in the library matrix is investigated in figure 32. There are
286 or 816 potential terms for each differential equation with the case including up to the
10th- or 15th-order terms, respectively. Analogous to the van der Pol oscillator example,
the true model cannot be identified with TLSA; however, we can identify the true equation
using Alasso even if there are as many as 816 potential terms with an appropriate range
of α. Based on these results, TLSA and Alasso are selected as candidate regressions for
high-dimensional complex flow problems.

In addition, we here note that the use of simple data processing (e.g. the standardization
and the normalization) for both AE and SINDy pipelines may help Lasso and Enet to
improve the regression ability, although it highly relies on a problem setting. Taking the
data processing usually limits the model for practical uses because these data processing
can only be successfully employed when we can guarantee an ergodicity, i.e. the statistical
features of training data and test data are common with each other (Guastoni et al. 2020b;
Morimoto et al. 2020b). When we perform the data processing, an inverse transformation
error through the normalization or standardization is usually added since parameters for
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Figure 32. Relationship between α and number of terms, and the examples of obtained equations for data for
different library matrices: (a) including up to the 10th potential terms and (b) including up to the 15th potential
terms.

the processing, e.g. minimum value, maximum value, average value and variance, may be
changed over the training and test phases. Hence, toward practical applications, it is better
to prepare the regression method which is robust for the amplitudes of data oscillations.
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