On some generalisations of Laguerre polynomials
By A. ErDELYIL
(Receitved 16th Januwary, 1940. Read 3rd February, 1940.)

Introduction.

1. The sequence of orthogonal functions derived from Laguerre-
polynomials is known to be complete, and hence closed, in L% (0, o )
if & (a) > — 1. In a recent paper! Dr Kober introduced a generalisa-
tion of this sequence, which enables him to extend the known results
also for £R(a) < — 1. XKober’s guiding principle seems to be the
following omne: The Laguerre orthogonal functions form, for
R(a)> — 1, a complete system of self and skew reciprocal functions
of the Hankel transformation of order «. Now, if £ (a) < — 1, the
ordinary Hankel transform has to be replaced by the so-called cut
Hankel transform. Hence the system of functions which has to replace:
Laguerre orthogonal functions when £ (a) < — 1, should be a com-
plete system of self and skew reciprocal functions of the cut Hankel
transformation of order «, such that it reduces for £ (a) > — 1 (when
the cut Hankel transform reduces to the ordinary one) to the sequence
of Laguerre orthogonal functions. This, of course, is by no means a
unique definition; nevertheless, together with what one would call
the permanence of the Mellin transform, it enabled Kober to find a
sequence of functions {{ 3 which (i) reduces to the sequence of
Laguerre orthogonal functions when R (a)> —1, m =0, (ii) is a
complete set of self and skew reciprocal functions of the cut Hankel
transformation with kernel J, ,, and (iii) has the required qualities of
completeness and closedness.

When reading Kober’s paper, I realised that, at least formally,.
the cut Hankel transform with kernel J, ,, can be derived from the
ordinary Hankel transform of order a 4 2m by partial integration.
Thus it should be possible to derive a system of self and skew
reciprocal functions of the kernel J, ,, directly from the eigen-functions
of the kernel J, 5, 7.e. from Laguerre orthogonal functions of index
a + 2m. I wondered if this process would yield Kober’s functions:

1 H. Kober, Proc. Edinburgh Math. Soc. (2), 6 (1940), 135-146.
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Sf,)m» and if not, whether the system of reciprocal functions obtained
thus is an orthogonal one (Kober’s functions ¢{*, are not orthogonal
to each other). Actually the reduction by partial integration can be
performed in two different ways. Correspondingly I obtained two
-different sets of eigen-functions of the cut Hankel transformation, which
will be denoted in the present paper by {x*™} and {¢{* ™)} respectively
(n=0,1,2, ....). Neither of these two sequences is identical with
Kober’s {§) }; neither of them is an orthogonal set. But in a way
they seem to be the simplest systems of reciprocal functions of the
cut Hankel transform, and their principal feature is, that taken
together they form a biorthogonal system {y ™, ¢ ™},

The sequence {¢{"} 1is especially worth mentioning. Like
Laguerre’s orthogonal set {®} = {¢®} = {x}, (R (a) > — 1, m = 0), it
consists, even in the general case m =0, of functions which, except
for a common factor, are polynomials. These polynomials can be
-expressed by certain polynomials of two variables which I introduced
-a few years ago.

In the second section of the present paper I recall those of the
known properties of the Hanlkel transform [£R (o) > — 1] which are
required and/or generalised in what follows. In section 3 the con-
nection between the ordinary and cut Hankel transform is stated
-only; the proof of the general theorem has been published elsewhere.
For the purposes of the present paper it is sufficient to give the
-application of this theorem to the special sets of reciprocal functions
dealt with in this paper. That the functions defined thus are really
reciprocal in the cut Hankel transform, is readily seen from their
Mellin transforms, given in sections 7 and 9 respectively.

In sections 4-6 the formal properties of the polynomials and of
some slightly generalised polynomials are investigated. Ior the sake
of brevity only those formulae are given which are required in sub-
sequent work. Section 8 contains the corresponding formulae for
certain functions A which are connected in a similar way with {¢{ ™},
In sections 10 and 11 the biorthogonality and completeness of the
system {x{&™), ¢l "} is proved.

The following sections contain a rough sketch of alternative
proofs of some of the results obtained in the first part of the paper.
This sketch is meant to illustrate at the same time some points of the
theory of general transforms. A more exact statement of the results
of this part, as regards the theory of general transforms, and a rigorous
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proof I hope to give in a future paper. In the twelfth section it is
pointed out that from any reciprocal function of a general transform
an infinity of sequences of reciprocal functions can be generated.
The orthogonality, biorthogonality, completeness and closedness of
these sequences can be investigated by the help of the generating
function (section 13). In sections 14 and 15, I point out that
from the generating function an integral operator can be derived
which is of some importance for the transform dealt with.

Hitherto I followed Kober in discussing such generalisations of
Laguerre’s orthogonal set which consist of reciprocal functions of cut
Hankel transforms. So the developments of the main part of the
paper may also be of some interest from the point of view of the cut
Hankel transformation. In the last two sections which form a kind
of appendix and have but little connection with the rest of the paper,
I give a biorthogonal set consisting of Laguerre polynomials (for
&R (a) < — 1) and of what I would call cut Laguerre polynomials, both
multiplied by suitable biorthogonalising factors. The properties of
this set can be derived, also by means of partial integration, from the
corresponding properties of Laguerre’s orthogonal set, or else from
the generating functions. Here I choose the second way.

Throughout the paper I restrict myself to functions of the class
LZ(0, o).

Hankel transforms and their reciprocal functions.

2. Hankel’s transformation of order a I write in the form
v
M) g@=if @ =lim [T @y e (R e>-1

The usual notation is slightly different, namely

g (@) = j (@) (@)l fi @) dy,

probably because this reduces readily to the Fourier sine or cosine
transform when a = =} respectively. It seems, however, that in the

general case, a=F 14, (1) is simpler from the formal point of view,
perhaps because z—*J_ (z) is a power-series in z2.

The best known set of reciprocal functions of 7f, is Laguerre’s
orthogonal set consisting of the functions

(2) P2 (x) = e~ xi L@ (2x) (n=0,1,2, ...).
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(1) The functions ¢/® belonging to even or odd values of n are self
or skew reciprocal respectively. Thus

(3) P = (=) Y5 [£R(a) > — 1].

(ii) If 3,, is Kronecker’s delta, being zero when m==n and unity
when m = n,

@  [wewea- s @@s -1
o !

‘Thus {¢@), ¢} is a biorthogonal sequence and, in particular, for real
values of a, a> — 1, {§®} is an orthogonal sequence.
(iii) The system {y@} is complete and closed in L?(0,0) if
R (a) > — 1.

All these properties are very well known. Perhaps not equally
well known is a generalisation of (3), namely?

x

@) kreean 19 (5) = -yt o —bre 2 10 (FEP] (R (@> -

(3) corresponds to £ =} in (5). Replacing = and y in (5) by 2kx and
2 (1 — k) y respectively we get

e™® zi* LO) (22) = cq s IKa.k (2, y) e7 yi= LY (2y) dy,
0

where

Koo (2, y) = 2k™4 (1 — k)iet1 e-Q-ICHD ] {4 /2yk (1 — )}

-and
l n
pr=(1——).
ook ( k>

Kober? interpreted this equation by saying that  is also an eigen-
function with respect to the kernel X, ,, the corresponding eigen-value
being ¢, .

In what follows we shall make use of, and generalise, the
generating function of Laguerre polynomials

(6) Sun L@ (2) = (1 — u)-o-! g wll=w, (Ju]<1),
n=20

1 A. Erdélyi, Quart. J. of Math. (Oxford Series) 9 (1938), 196-8 8).

2 H. Kober, Quart. J. of Math. (Oxford Series) 10 (1939), 45-59, especially section
8. Kober takes k = 4 (1 + i cot #r), r real and not integral.
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and the following representations :

oy _Tlt+nt & (nta)(=2)
(a) = ! =

M BE=TFern Hi(—r et =2 (n—r> rl
and

(8) Lo (z) = 20 47 (7% attm)

n! dx®

3. When £ (a) < — 1, then the Bessel function has to be replaced by
the cut Bessel function of the first kind

e A
® Jom (z)_r__zm rtT(a+r41) ° (m=0,1,2,...),

and the ordina.ry Hankel transform by

(10) @) =G tf @ =Lim [ T2 @) @) dy

Y —>

where m =0 if 4R (a)> —1; otherwise m 1is chosen so that
—1<4R(a) + 2m < 1. Negative odd integral values of a are excluded
by this convention'. )
The two-fold reduction of ¢, ,, to T, ; 2, by means of repeated
integration by parts yields the following theorem:
Let —1<R(a)+2m<]1, m=1,23,...; let F(z) and G (x)
belong to L2(0, © ) and
G (z) = gfa+2m {F(z)}
Then
9 (z) = o n {f (@)}

when either

F@_ pmta @ [sarm ¥ (@)
«(11) g(x) =z~ T {x’-‘ + P (x)}
or
J@_ e e B )
{2 0@~ TTLE T YT Gy

With (11) the additional assumption is necessary that f (and consequently
g) exists and belongs to L2(0, 0 ). With (12) no additional assumption

18 necessary.

1 The cut Hankel transform is mentioned inm K. C. Titchmarsh’s Introduction to the

theory of Fourier integrals (Oxford, 1937), § 8.4 Example (1) ; a full discussion of Harm
was given by H. Kober, Quart. J. of Math. (Oxford Series) 8 (1937), 186-99.
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The proof of this theorem has been published in a joint note by
Dr Kober and myself!. Here I only remark that analogous statements
hold true for the ordinary Hankel transform, £ (a) > — 1, and that in
this latter case fractional integration by parts may be used yielding
fractional derivatives and integrals instead of (11) and (12). The
reader will easily see the connection with the general rules in
Titchmarsh’s Fourier Transforms, §§ 9.14-9.16.

Now, from (3)

Pet2m () = (— )" Hopom P23 (2)}.
Hence if we define

x-—ia dm

(13) X ™ (%) = o s, et TR (@),
and

da T
(1) g ) = B [T gty gl o) dy,
then
(15) X;‘a,m) (x) = ( - )’n gfa,m {X%'M) (:L)}’ (n = 0, ]7 2: o .. ')
and »
(16) o™ () = (— )" Hom {P0™ (7))}, (n=0,1,2, ....)
if only

— 1< R(a)+ 2m <1, m=1,2,3,.....

Plainly the conditions of validity of the rule stated above are
fulfilled, for J@&+2m (z) belongs to L% (0, »), x'»™ (z) exists and
belongs to L2 (0, ).

Neither of the sequences {x™}, {¢*™} is an orthogonal one;.
that is, in general, neither of the integrals

a0 -3
[ xemxeman | dem gpm da
0

vanishes whenever n 5=n’. Of course both of them vanish when 7 is
even and »n’ is odd (or conversely), for then the two functions
involved belong to different eigen-values. Also the first integral can
be shown to vanish whenever |n —n’|>m. For m =0 this gives
the orthogonality property of {{)}.

v Quart. J. of Math. (Oxford Series) 11 (1940), 212-21, Theorems 3 and 4.
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All these facts will not be dealt with in detail because they are of
minor importance. More important is it that {y{=), 4™} is a
biorthogonal set, 7.e. that the integral

€0
j Xl m glem) d
0

vanishes whenever n=3=n'. This will be shown in section 10.

The polynomials L.

4. First I shall deal with the system {x!»™}. Corresponding to (2)
I put

(17) xem™ (z) = e~ aletm LM (2g),

Then, from (13) and (2),

et p—a—m dm

(a, m) = -
(18) Ly, (22) = ——— e

n+m —Z go-t+2m Li:+2m) (21‘)}

Plainly L{-™ (2z) is a polynomial of degree n 4 m in z.
Regarding the formal properties, it is equally easy to deal with
the slightly generalised polynomial

(atm) % p—a—m amn b L5
(19) Ln’,m (ax, bx) = ——');l—'_ m e VT goT mL(r‘:+2m) (ax)} .
It is easily seen that this is a polynomial in the variables az and bx
of respective degrees n» and m, the coefficients of which are inde-
pendent of ¢, b and =z.

Now put
(20) o s ) = ket L (20,

Then it will be shown that
(21) xe™ (k) = (= V" Ty ™(@; 1 — )}, [ -1 < R (a) + 2m < 1].
This is the generalisation of (5).

Proof: R () + 2m being larger than — 1, from (5) -

n ,— X %.a+mL(a+2m) ﬁ = (— )] j _ -z pdat (a+2m x
i e e R}

and the functions on both sides of this belong to L2(0, »). Hence

from (11)

kn x—{a _fl_": [e-z x® +2m L(u+2m) i :|
da™ " k

— j AT —La_(ln:__ =z pat2m [ fa+2m) _Z ‘
( ) '/[a,m l(l k) z dl’n [e x ]n IT]C ]J’ 3
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and this is, by definitions (19) and (20), identical with (21). For
k =}, (21), except for a constant factor, reduces to (15).

5. 1In this section it will be shown that the polynomial defined by
(19) is identical with the polynomial I denoted by the same symbol
and studied a few years ago.
In what follows I constantly use the notation
_ I'(a+mn)
(a)n = —F—(a)—_ .
Since
. . _ i (—'n),z’
Fi(—n;a41;2)= rEO mr,
from (19) and (7),

a (@ 4+ 2m 4 1) —a
L;,.:;‘m) (ax, bx) - Wn ebz x

—m 5
§ (— n‘)r a’ dam
re0 ! (a + 2m + 1), da™

_(at+2m+1), (— n), (az)" omin
- n! ,Eo r! (a 4+ 2m + 1), Ly (bz),

by (8). Using again (7), now for L{2 ™+ (bz), we see that

(e+2m+1), (a+m+7r+1),_(a+m+ 1)y,
(at+2m+ 1), a+m+r+1), (atm+1),,,

(e —bZ gat-2m +r),

Hence

L(';;,-;-nm) (ax, bx) — (a' +m + l)m+n g g (“‘ n),(— m‘)s (ax)r (bx)‘

m! n! r0s=0 risl(a+m-+1),,

— (o +:Z'—;"1)m+" Oy (— 72, —m; a+m+ 1; ax, bx)
in the notation of Professor Humbert!. This is exactly the definition
of what I called at that time Laguerre polynomials of two variables?.

6. It is now only too easy to derive a vast number of formal
relations, such as recurrence formulae, series, etc., for the poly-
nomials L{#™ either from the corresponding properties of Laguerre
polynomials by means of (19), or else from my earlier work®. In this

1P, Humbert, Proc. Royal Soc., Edinburgh, 41 (1920/21), 73-96. See also P. Appell
et J. Kampé de Fériet, Fonctions hypergéométriques.  Polynomes d’Hermite. (Paris,
1926), p. 126. .

2 A. Erdélyi, Wiener Sitzungsberichte, 146 (1937), 431-67 (11, 3).

3 Abschnitt IIT of the paper quoted in the preceding footnote.

https://doi.org/10.1017/50013091500027188 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500027188

OX SOME GENERALISATIONS OF LLAGUERRE POLYNOMIALS 201

section I will write down only those few formal relations which
exhibit the connection between L{!m™ and ordinary Laguerre poly-
nomials and / or are needed in subsequent work.

Let us begin with the generating function of these polynomials.

From (19)

m

4 ) B .
wr LG (az, br) = — el* o {e=bz get+2m 3 g LEFIM (q)}
o m! x n=0

I M8

n

ebz poe—m m

= T wyrEE g (7T g,
' — “ T

from (6). For |u|<1 the series is absolutely and uniformly con-
vergent in any finite interval 0 <a; < x < x, and so term-by-term
differentiation is permissible. Finally, by (8), this last result can be
expressed by the Laguerre polynomial of degree m, giving

(22) > ur Li:t-:-nm) (ax, bx) = (1— u)—a—Zm—l e—auz/(l—u) Lg:—i—m) (bx 4 aua,_> -
n=0 ' 1l —u
This is the generating function of our polynomials.
From (19) and (8) we have

b —a—
ebz p—a—m (qm {e(a—b)zili

( (a-f-m) ,b —
(23) L”"” (aw, bx) m!n! da™ dx*

(e—az xa.+2m+n)} .

From this representation the following reduction formulae presently

follow
Letm (az, 0) = (a+m+n-+1), Ifatm) (az),
' m! "
Letm (0, by) = CFEME D paim gy
y n! m
[ a (m + n)' a-+m
(24) Lo (aw, az) = “—mene LED (az),
L@, (az, bx) = L (ax),

L§+m (ax, bx) = LE+™ (bx).
Comparing (18) and (19),
(25) Lem (2z) = Lgtm™ (2z, z).
Finally, from the expansion of section 5, it is readily seen that

(26) lim [a—" LEL™ (az, bz)] _{=ar
a=>wo»

— L$:+m+n) (bx).
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‘This last relation will immediately be required in proving the formula

m!

G0

e~z platmin L$:+m+n) (x) — gfa' wie " glatm L;ln_;;n) (x)},
[—1<K(a) +2m< 1],

which is really only the limiting case £ -> 0 of (21). For, from (20)
and (26),

xg;, m) (z; 0) = e~ @ gletm lim | k* Lﬁ:-:—nm) (—2* ’ x)]
E=>0 :

—\n
= (7')_ e—% x§a+m+n L;;-Hn-}-n) (x)’

and according to (20) and the third equation (24),

m + n)! _
X@m (x5 1) = g__._'.__'l e~ T ylatm Ligrm (x)

Hence (21) with &k = 0 yields (27).

7. In this section the Laplace and Mellin transforms of our reciprocal
functions will be evaluated. In order to do so, I begin with the
slightly more general integral

P e~cr g1 L{¢ 1™ (ax, bx) dz, R (@) >0, R (c)>0.
Jo
"This is, using the expansion of section 5, equal to

(a +m + 1)m+n Loz (""' n)r (_ 7")3 arb®

—ex po+r+s—1
m! nl ,50850 r!s!(a+7n+1),+3foe v v
=F(0)(a+m+l)m+n il‘ g (_7b))‘(_7n)8(0)7+5 ay i ¥
m! n!c? r=0 s—or! sl (a+m+1),,,\c ¢/’
Hence by Appell’s definition of the hypergeometric series F; of two
variables!
j e— % po—1 [ (atm) (ax, bx) dr = r (f{) (_a'+ m + l)m+n x
0 o 1 m! n!c°
(28) . b |
F, (0; —n, —m;a+m+1; — c—), [R (6)>0, <R (c)>0].

1 Appell et Kampé de Fériet, l.c., p. 14 (11). Seealso E. T. Whittaker and G. N.
‘Watson, Modern Analysis (Cambridge, 1927), p. 300, Example 22.
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From the derivation of (28) it is easily seen that :

[Cemeanin Lotm oz, bayde = Dot 2mint )y a\ry by
(29) 0 ! c c

m!n! crtmtl
[R(a +m)>—1, R(c)>0].

Another particular case of (28) will be important when obtaining
the Mellin transform of the reciprocal functions of the cut Hankel
transform. This particular case arises when b =c¢. According to
Appell et Kampé-de Fériet, l.c., p. 22 (23),

. o . @ _(at+m—o+1), . .a
Fl (U, n, nl,a+m+l,_b: 1)’— (a+m+1)m F<0)_n’a+27n+1’_b)
hence
I e~tr g7l Littm (ax, bx) dx
0
(30) T'(o)(a+2m+1),(a +m—0a+1), - . a
= Tl b F (o, n,a+2m+1,—b’

[4R (o) > 0, R (b) > 0).
A similar formula exists for ¢ = c.

Now we shall obtain the Mellin transform of x{*™ (z) and by
this we shall prove once more the self-reciprocal property of x& ™ (x).
Put -

Xem () = [ o™ () 0=+ dae
Then, from (17) and (25), ’

a0
X.m (1) = j e~ gatm—k+iit Ltm (2x, ) dx,
0

and, from (30), this is equal to
X@m (1) = (2 F2m+ 1), U(Ga+m+ 3+ 4l I'(Ga +m+§—4d)
F(—n,3a+m+ % +343t; a+ 2m+1; 2).
The integral is certainly convergent for purely real values of t. Itis
even convergent in the half-plane &R (3a + m + % + 4it) > 0.
By Euler’s transformation,
F(a,B;v;2) =(1 —=2)7* F(a, Y — B; Y5 2),
we have also

X

a+2m+-1), I‘(_%qii-m-l,—lg-}—%it) F(J_ga—{—m—{—a}—%@ %
! nl L (a4 4 —42t)

F(—n,3a+m+3%—3%it;a4+2m+1; 2),

X (i = ()
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-and hence
T (a_—!—_; — it) X;ﬂ- m) t)=(—)r <i__’_;;7’t> X;u.m) (—1),

and this relation is exactly equivalent to (15). Thus this is a second
proof of (15), quite independent of the general theorem of section 3.

When trying to obtain the Laplace transform of the reciprocal
functions, the difficulty arises that (29) is only convergent for
R(a+m)>—1. But with cut Hankel transforms, we have
R (a+m)<—1, unless — 2 <R (a) < — 1; so in general the ordinary
Laplace transform will not work. In order to get convergent
integrals one has to ‘“ cut’ the kernel of the Laplace transform too,
that is use instead of the exponential function the “ cut ”’ exponential
function

Em (x)= % (—x)7=(_x)m

- iy m+1; —2),

which behaves for small values of x like ( — x)™/m!, thus bringing the
‘index of the power of z to a -+ 2m, the real part of which certainly
exceeds — 1.

Consequently it is natural to investigate

j Em (sx) xie Xs:' m (x) dx
[})

‘which is, according to (13), equal to
1

00 dm .
m! .‘.0 k., (sx)gx_m{x&wm Jlet2m (x)} dz.

Integrating m times by parts, this becomes, on account of

m
d fmm(sz) — ( _ S)m ez,
X
-and using (2),

o™ ) ; R s © o

> e 8t x'z“+’" ‘/J(a—i—_m) (IE) dx _ e—(s+1).z: xa+2m L(a+_m) (22}) dx_
ml n m! 0 n

. 0 .

Now it is possible to use (29) withae =2,b =0, ¢ =51, and thus

to obtain

(32) L B, (sz) zh X0 (2) dw = L ;!271?!—’(_87:-_'—1 )t)-l-:m+(:‘-‘:l_ l_)_’
[-1<R(a)+2m<1; R(s)>—1].

‘This is the proper generalisation of the familiar formula for the

Laplace transform of 4 (z). Also (32) can be used to prove (15).
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The functions A.

8. After having discussed the functions x*™ and the polynomials
Li¢+m in some detail, I may confine myself to a short review of the

corresponding results for the functions ¢{™ without giving proofs
and without going into details.

Corresponding to (17), I put
(33) ?ng m) (x) = g-% glatm A(rfiknrzz) (2(1:),
where, from (14) and (2),

B8 A o= x-’"l)'j (@ — yym? €=y Lip+2 (2y) dy.

Instead of this function I introduce

g —_—— - -1 giz—y) [fo+2m)
(35) A:;,:;{” (aa:, bx) (m 1)'J (.’I: )m eblz—v L +2m (ay) dy,
and form
(36) o™ (x; k) = k* e~% ghetm Ag:;m) <%, x)

which satisfies the important relation

B7) . e (@ k) =(— ) Dom ($™ (z; 1 — k),
[~1<R(a)+2m<1].

The proof of (37) is similar to that of (21). Start with (5) replacing
a by a+ 2:m, and apply the general theorem of section 3 with (12).
‘The particular case k£ = 4 of (37) is (16); the limiting cases k —> 0 and
k-1, inversions of each other, are easily obtained.

Also A@t™ (ax, bx) can be expressed by a confluent hyper-
geometric function of the two variables ax and bz, the only difference
compared to the results of section 5 being that the series obtained is
terminating only in az, but an infinite series in bx. Thus AL#™ is a
polynomial of degree = in ax, but has, in bz, rather the character of
the exponential function ¢**. Using the notation of Appell et Kampé
de Fériet, 1. c., p. 150, :

’L’ (25 PERIRERIRIPIN « ﬁ
viBu By BB © @ (@t ; ﬁz (B am g
| i
£ P|Y1 Y wY - 20 12‘01"] ) H 8”é‘ “m! 77,'
O "0 1 )
o 811 8,1, ey 80,, 8,0 (Y m+n ( )m ( 1)71
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we find
o] .
(38) AL (o g)=2F 2R L Dy pf Bmnomi LB
m! n! 1, m+41 ’
1] a4 2m+1, B
Here B is a dummy parameter which cancels in the series.
The generating function of the Al*+™ reads
(39) X ur ALtm (g, bx) = (1 — u)—*~2m-1 x
n=0 ’ .
vz [ _oux - aux
e (= be — 22N B, (b2 4 ) <L

Here E,, is again the ‘“cut’ exponential function defined in the
preceding section.

Since
(40) Al (22) = Al tm (22, ),

all the relations simplify considerably for the reciprocal functions.

9. In order to find the Mellin transform of ¢®*™ and what corre-
sponds to the Laplace transform in this case, one may again start
from the integral

o0
- o—1 a
L e~ x "t ALt™ (ax, bx)dx

1 3
(41) l"(a)iq.;l— 2m + 1), F 2i—mn,m; 1,8 o
m! n! c" 1 m+ 1 [ ! [+ ’

1 a+2’m+l,,3
[R(c)>0, R(c)>|R(b)]]. .

Two particular cases are worth mentlomng.

0
_ a4
e~ ™ Altm (ax, bx) dx

42) *° -
(42) =(ii"2L:H‘*_‘l_1LL<1_£> F<—n,1;a+2m+l;i>,
n!c ¢ ¢

[R (c) >| R ()],

and the limiting case

j " e=ts o1 Aetm (az, ba) da
0
(43) (__)m

n!

(a+ 2m+1),T (o—m)b“’F<—-n,c; ot 2m+1; %)
[0<R(s)< 1, LR (b)>0].
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This limiting case is used when computing the Mellin transform
of ¢t (z), for real values of ¢,

(Dgn:,m) (t) Ej ¢£:qm) (m)x‘é‘f’l’ldx
0

(44) _ym .
=(n') (a+2m+1),,1‘<%ﬂ‘)ﬁ’(— ﬂQL“‘ at2mt1; 2>

[—1<R(a) + 2m < 1].

Again, using Euler’s transformation of the hypergeometric polynomial
on the right of (44), it is readily shown that

(45) r <ﬁj%—u> @™ (f) =(—)T (‘f_'_l__loﬂt> Glem (—y),

and from this the reciprocal property of the ¢ ™ (z) follows.

In the case of the system {¢{ ™} the Laplace transform has not
to be ‘““cut,” but, on the contrary, extended; the right kernel is
e~ Lle+m (s2) instead of the e~** of the ordinary Laplace transform-
and the E,, (sx) of the ““cut’ one which has been used in section 7.

The formula corresponding to (32) now reads

© =8z T (atm Satm Aa, m) - (=)*T(a+ 2m +n + 1) (s — 1)»
(46) Le Le+m (sx) ghetm o (x) da il ! (s TjFoeasi )

[—l<R(a)+2m<1l; LR(s)>1].

This can be proved in a similar way to the proof of (32) by reducing
the integral by m repeated partial integrations to the familiar one
representing the Laplace transform of xie+m Jle+2m (z),

The biorthogonal system {x, ¢}.

10. In this section it will be proved that {x\»™), ¢} ig a biortho-
gonal system, that is, that the integral

j X(a. m) ¢(m m)

vanishes unless n =n’,
The proof is very simple, for from (13) it follows, by m subsequent

integrations by parts, that

r ©m (@) g™ (@) de ==—1— C {atetm o+ 2my g —ie glos m)
m! da:'”
(“)"‘J‘ botm o rzm B gk plem)
=\ 7’ ba a 1 ple, miY g,
i R s T { ™}
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The integrated terms cancel when — 1 < - (a) 4 2m < 1. Now,
from (14),
am
x e dlo MmN — p—te-m (m+2m)
T e Bl ) — e g

and hence

o0 —ym o
jong, m) (l,(u,, m Jy — L;nl‘ j ¢(a+2m) ,/J(zg+2nz) dzx.

Thus from the orthogonallty of the system {y{+2m} the biortho-
gonality of {x{&™, ¢=m™} follows. Moreover, from (4),
(a4 2m+n+1)

m! nt 2a,+2[)l+1

s [—1 <R (a) + 2m < 1].

(1) [om ggmar= 0T
0

In a paper “On some biorthogonal sets” I introduced! a generalisa-
tion of the present set which appears when in the definition of (@™
and ¢~™ fractional derivatives and integrals are wused. The
expansions of the functions, denoted there by X, and @,, into a
terminating series of confluent hypergeometric functions of one
variable only, apply to the present case too.

The biorthogonality of the system {y/»™, &™) can be used in
order to attach to every function of the class L2(0, ) a series in
the x!»™, namely
(48) f@~ Z caxlfr™ (),

n=0

with coefficients

(—)ym! n! 2“+2m+1j (o, m) (
49 = ,
(49) On '(a +2m +n+ 1) f@) giem (x) dz
A function is self/skew reciprocal in the cut Hankel transform when
all the ¢, with odd/even index n respectively, corresponding to this
function, vanish.

11. Now it will be proved that {y{*™, ¢»™}is complete with respect
to L2 (0, »).

In order to do so one has to prove that, except for a nul-
function, there is no function in L%#(0, « ) with a nul-expansion; that
is, if f(x) belongs to L%(0, = ) and all the integrals

J 1@ dem @

vanish, then f(x) is a nul-function.

Y Quart. J. of Math. (Oxford Series), 11 (1940), 111-123.
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Suppose that f (z) is a function belonging to L? (0, » ) such that
- o4
J. fx) g™ (z)dx =0, [n=0,1,2,....]
0

‘Then define

x—r‘:os—-m

(50) F@ = S0 w—aree ) a

Obviously F (x) exists for every value of > 0 and belongs to L?(0, « ).
Also, taking account of (14) and (50), we find by m subsequent
integrations by parts

(51) j Fjiet2m =j @M de =0, [n=0,1,2,....]
0 0

{22} being complete with respect to L?(0, ) because R (a)+2m>—1,
F () is a nul-function. On the other hand from (50) it is seen that
F (x) is absolutely continuous and m times differentiable in any finite
interval 0 < z; < 2 < 2,. Hence F (2) is identically zero. Hence f ()
is a nul-function.

Thus the completeness of {y{~™ ¢/»™} in L?(0, ») is proved.
From a well-known general theorem it then follows that this bi-
orthogonal sequence is also closed in L? (0, w ). Furthermore from a
general theorem of Kober! it is seen that {y{:™, ¢5=™} and {x{& ™, #5: ™}
are closed in the respective function-spaces consisting of functions
belonging to L2 (0, « ) and being self or skew reciprocal respectively
in the cut Hankel transformation.

Thus the remark at the end of the preceding section can also
be expressed by saying that every function which belongs to L? (0, « )
and is self or skew reciprocal in the cut Hankel transformation
K. n can be respectively approximated to by finite linear combina-
tions of the x{%™ (x) only or of the y{u ™ (x) only.

For the sake of simplicity I have restricted myself throughout the
paper to the class L%(0, ). It is quite clear that corresponding
theorems hold for classes L? (0, » ), the restriction —1 < &R (a)+2m < 1
being then replaced by — 2/p < R (a) + 2m < 2 — 2/p.

Some remarks on Hankel and general transforms.

12. The work of the preceding ten sections depends entirely on
special features of the Hankel transformation (the general theorem of

1 H. Kober, Ann. of Math., 40 (1939), 549-59, Satz IV.
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section 3 for instance on the formulae for the derivatives of Bessel
functions) and on the knowledge of an explicit expression for the
reciprocal functions. In what follows some remarks are made on
alternative proofs of some of the results of the preceding sections.
These alternative proofs are independent of the special features of
the Hankel transform and apply likewise to a class of general trans-
forms, namely, roughly speaking, to general transforms possessing a
reciprocal function which is an analytic function of the complex
variable x 4 it and regular for all posi.t,ive finite values of z, (¢ = 0).
Applied to Hankel transforms, no new results will be obtained, only
old ones regained. Therefore I do not give rigorous proofs in this
chapter, but formal sketches only.

First a few comments may be made on the generating function
and the role it plays.

From (22) and (39) in connection with (17), (25) and (33), (40)
respectively we obtain the generating functions of the sequences
(X ™) and (B ™}

(82) Z umylem(x) = (1 + u) (1 —u?)~temm=1ylom <i—_’_—_—3x>, (Ju]<1)

n=0
(53) § ur g™ () = (1 + u) (1—u2)—te—m-1 plem <iizx>, (Ju|<1).

n=0
Hence in both cases the generating function is, except for a factor
depending only on %, the ‘“simplest’ reciprocal function of the
sequence, of argument (1 + u)z/(1 + »). This is by no means a
special feature of the Hankel transform.

Suppose a general transform is given which for the present
purely formal investigations may be taken in the non-integrated
form

g(x) = LK (zy) f (y) dy.

Suppose furthermore that a seli-reciprocal function of the kernel
K (xy), ¢ (z) say, is known which is an analytic function of the com-
plex variable x + 4, regular for 0 <z < w,{=0. This function is a
solution of the integral equation

@) = | KWy
0
Replacing = and y by (1 + %) x/(1 —«) and (1 — u)y/(1 + u) respec-
tively, — 1 < u < 1, this integral equation transforms into

60 e ()= Kena-ws(Ty)

(1
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Now if a (u?) is a power-series in #? the first term of which is unity?,
and functions ¢, (z) are defined by the generating function

(55) S wig (@) = (1+u)a(w)é (’ + “x)

n=0 1—u
then ¢, (x) is an eigen-function of the kernel K (2y) belonging to the

eigen-value (—)*. This is easily seen, for, by multiplying (54) by
o (¢?) and expanding both sides, (54) transforms into

£ wn @)= 3 (—wpr | K (ay) 4u ) dy.
n=0 n=0 0

This being true for every u in the circle of convergence of (55),
coefficients of equal powers of w on both sides must be equal,
yielding '

b = (1| Ky, n=0,1,2,....),

the reciprocal property of the ¢,. 1f a(w?) is a power-series and
a(0) = 1 then ¢, (x) = ¢ (x). If a(u®) contains also negative powers
of u, then ¢(x) does not necessarily occur as an element of the
sequence {¢,}.

13. The generating function may be used in investigating -the ortho-
gonality or biorthogonality as well as completeness and closedness of
the system of reciprocal functions generated.

(i) Orthogonality. If {¢,} is an orthogonal system, that is, if

j 96’” ¢n dx = Cn 8mn:
0
then

(1 4+ u) (1 4+ v) a(u?)a (v?) '\-qu <1 + ux><;b <l i—:x> dzx = §0unv"cn = F (uv).

0 1 —u 1 "=

Hence from a known self-reciprocal function ¢ (z) an orthogonal
sequence of self and skew reciprocal functions can be generated if
and only if the integral

Jo ()¢ (20 o

is equal to (1 + #)~'(1 + »)~! multiplied by a function of %? only
multiplied by the same function of »? multiplied by any function of

1 Dr Kober, in a letter, remarks that, of course, « (1) may be a Laurent series as
well. In this case the summation has to run from —® to +o.
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uv only. If this is the case, the corresponding power (or Laurent)
series « (u?) (except for a factor Cu?* in the case of a Laurent series)
and also the ¢, are uniquely determined except, possibly, for constant
factors, common to all ¢,,.

(ii) Biorthogonality. Suppose that there are two known self-
reciprocal functions ¢ (x) and x (z). If and only if the integral

Jo# (i) (e o=

(A +u) (1 + v) a(u?) b (v)]71 F (w),

where a (u?), b (v?), F (uv) are functions of their respective arguments
only, from ¢ (x) and x(x) a biorthogonal system {¢$, x} can be
generated by

is of form

a+wats (it nr) =S, ()

and

(400 x () = v o)

for which
j ‘?Sm Xn dx = ¢, 8yun,

0

¢, being the coefficient of (uv)” in the power-series expansion of F (uv).
When this test is applied to the functions

(56) #5 (2) = (= " 2t By (2)
and
(57) XE)G" m) (x) — x.}m+m e—* Lg;-;-m) (LIJ),

it shows that {x{= ", ¢{ "} is the only biorthogonal system which can
be generated from x§ ™ (z) and ¢&™ (z) in a way like (55).

(ili) Completeness and closedness. The system {¢,} generated by
(55) is said to be complete with respect to a certain space of functions
if there is, except for nul-elements, no function f (x) belonging to this
space and satisfying every equation

(58) I: I, dz — 0.

Multiplying (58) by #* and summing up with respect to =, it is seen
that, at least formally, (58) and

(59) s (EEe) @
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are equivalent. Hence the completeness of {¢,} depends on solutions
of the homogeneous integral equation of the first kind (59) which
belong to the class of functions with respect to which the completeness
has to be proved. If there is any solution then clearly {¢,} is not
complete. If there is no solution then {¢,} is complete.

This can also be applied to our system {x{ ™), ¢{=m},

The same criterion may be expressed in different words. In the
next section the integral operator 7, will be introduced which is
defined by

(60) T,f1= s | $(52)f (@) do.

Then {¢,} is complete if and only if 7', is totall,

The closedness of the sequence {¢,} in L?(0, » ), say, can be
inferred, due to well-known general theorems, from its being complete
with respect to L? (0, w ) where 1/p + 1/p’ = 1.

Thus it is seen that the power-series a (%) is of no influence on
the completeness or closedness of the generated sequence {¢,}.
This means that all sequences generated from the same reciprocal
function ¢ (x) by (55) with different power-series a (u?), though
different as regards orthogonality or biorthogonality, whichever may
be the case, are equivalent regarding completeness and closedness.
This is quite clear, for the functions of the one set can be expressed
as finite linear combinations of the functions of the other set.

Here also the relations between Kober’s sequence of eigen-
functions of ¢f, , and the sequence {¢*™} of this paper may be
mentioned. Kober’s set of reciprocal functions of ¢, ,, is defined by
the generating function?®

© . ) 1 w
(61) = wryf, (22) = (1 — u)~>"1 (2} E, (1—5 x)
n=0

= (=) 28 (1 4 u) (1 — u?)~k1 glem (;—t—::x> (Jul<1).
Thus from what has been said at the end of (ii) it is clear that no
sequence of reciprocal functions can be generated from x{™ () which
completes {J?,} to a biorthogonal system. Moreover from com-

1 For the definition of total operators see S. Banach, Théorie des opérations linéaires
(Warszawa, 1932), p. 42.
2 H. Kober, Proc. Edinburgh Math. Soc. (2), 6 (1940), 135-146 (3.5).
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parison of (61) and (53) Kober’s functions may be expressed easily in
terms of those introduced here and vice versa. This comparison
yields

(62) Yo, (22) = (=) 2 £ ( ’f) (=) ¢, (),

the summation being extended over all non-negative integers r not
larger than m and not larger than }n.

Obviously the remarks put forward in this section have no
‘bearing at all on the question of whether the functions dealt with are
reciprocal functions of certain functional transformations. Mutatis
mutandis they apply to any sequence of functions generated by a
power-series.

Plainly the Mellin and Laplace transforms as well as any other
linear functional operations can be obtained from the generating
functions.

14. A few more remarks on the operation 7', may be added. Let
us begin with the Hankel transform.

It is well known that the way of dealing with the Hankel trans-
form is, to ‘‘ translate”” it by some functional transformation into a
simpler relation. There are two essentially different ways of doing
this, namely, by the Mellin transform or by the Laplace transform.

The application of Mellin’s transform to (1) is so well known
that I need not say much about it. There are two functions F ()
and G (t) corresponding in a certain way to f(z) and g (x) respectively
(they are also dependent on «) so that the relation (1) between f (x)
and g (x) corresponds to the simple relation

F(t)=G(—1t)

between F and G. Hence the functional transformation 7J, in the
space of the functions f corresponds in the space of the “ images” F to
the reflection in the point { = 0 of the (complex) ¢-plane. From this
all the fundamental properties of the Hankel transform immediately
follow. Obviously off, is identical with its own inversion (so is the
reflection), its only eigenvalues are =1, and the eigen-functions ¢ (z)
are characterised by the relation

D()y=TD(—1)
between their images.
Fortunately the same method also applies to general transforms,
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Watson! himself in his original work used it, although only heuristic-
ally, and Miss Busbridge? proved the transform theory in this way.
Translation by means of Mellin transform is also the basis of Kober’s.
theory of general transforms® and hence of his theory of the cut
Hankel transform too*.

It is quite natural that translation by means of the Mellin
transform, being universally applicable to all general transforms, the
kernel of which depends on the product of x and y only, should be
esteemed as the way of understanding Hankel transforms. It is.
comparatively little known that Tricomi® gave another theory of
Hankel transform which is surely not less beautiful and not less
simple—as regards the reciprocal functions perhaps even simpler®.

Tricomi uses the Laplace transform

LAf= j:e‘szf(x) dz,

and attaches to the functions f (z), g (z) as ‘“images”

(63) F (s) = ste*t 0 {at f (x)}
and

G (s) = s+t 0, ak g (@)}

respectively. Then the connection (1) between f and ¢ corresponds
to the relation G (s)= F(1/s) between their images. Hence the
Hankel transform in the space of the functions f, ¢ corresponds, in
the space of the images F and @, simply to the inversion s’ =1/s
of the complex variable s. From this again all the characteristic

1G. N. Watson, Proc. London Math. Soc. (2.), 35 (1933), 156-99.

2T. W. Busbridge, Journal London Muath. Soc., 9 (1934), 179-87 .
3 H. Kober, Quart. J. of Math. (Oxford Series), 8 (1937), 172-85.
4+ H. Kober, Ibidem, 186-99.

8 F. Tricomi, Rend. dei Lincei (6), 22 (1935), 564-71 and 572-6. Atti Torino, T1
(1936), 285.91.

6 Tricomi’s method has been used in connection with the operational calculus.
B. van der Pol and K. F. Niessen, Phil. Mag. (7), 13 (1932), 537-75, eventually
established Tricomi’s theorem as a ‘‘rule” in the particular cases a =0, 1 before
Tricomi dealt with the general case. K. F. Niessen, Phil. Muag. (7), 20 (1935), 977-97,
formulated the general rule fora = 0,1, 2, ...... independent from and at the same time
as Tricomi. This rule has been frequently used by several authors for evaluation of
Hankel transforms.
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properties of Hankel transform immediately follow. Reciprocal
functions, in particular, are determined by the equation

(64) O (s) = D(1)s)

which their images must satisfy.

In practice Tricomi’s translation works more simply with reciprocal
functions than translation by means of the Mellin transform. The
image in the case of the Mellin transform (it corresponds to

r (#) @l 9 (¢) in the notation of equation (44)) is a termina-

ting hypergeometric series, and it is only from the transformation
theory of hypergeometric series that (45) follows. The image of
o) = ¢ 9 in the sense of (63), as is seen from (46), is however

D(a+ntl) sH(s — 1)
n} (S + 1)a+n+1 ’

shert 0, {ahe @ (2)} =

.and this is not only a simpler expression than (44) (with m = 0) but
also exhibits immediately that (64) is fulfilled.

Unfortunately the Laplace transform does not work in the case
-of general transforms of the form

(65) 7@ = | K@)/ @y

I have always wondered why of the two transforms, equally useful
in the case of the Hankel transform, equally general and useful in
-analysis, one should be applicable also to general transforms and the
other not. '

It is quite obvious why the Mellin transform applies to the
general case. (65)as well as (1) is of the form of a resultant as appearing
in connection with the Mellin transform, and it is quite natural that
the Mellin transform should ¢“ algebraicise > the relation between f and
g. But why then does the Laplace transform work with (1), although
this is by no means the type of resultant which occurs in connection
with the Laplace transform? The answer is: It is really not the
Laplace transform which has been applied by Tricomi, but the
‘transform .

TAf}= s*j P (sz) f (2) dz,
0
and it is only because (1) happens to have a self-reciprocal function
P& (x) = e~Z x> that T, {f} in this case reduces, except for a factor, to
the Laplace transform of z**f ().
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Now it is seen how the operation 7', is *“ adjusted >’ to the special
nature of the Hankel transform—and how it should be generalised so
as to suit (65).

If ¢ (x) is any self-reciprocal function of (65) and 7', is defined.
by (60) then, for a pair of functions satisfying (65),

(66) T, {g} = T {f}
Self or skew reciprocal functions f (x) are characterised by the relations.
(67) T {f} = £ Tuulf)

respectively, everything in exact analogy to Tricomi’s theory of the-
Hankel transform?.

Obviously a skew reciprocal function can be used as kernel of
T, as well, there being only a difference of sign in (66).

15. I do not mean to suggest that the operation 7', should be made
the basis of the theory of general transforms. The choice from the
point of view of the general theory is not difficult indeed, seeing that
the Mellin transform applies universally to all kernels K (xy) whereas
the operation 7', depends on the kernel. Besides, the operation 7,
cannot be made to work unless one has knowledge of the existence
and at least some properties of a reciprocal function. But, although
not of very much use from the point of view of the general theory,
T, may work quite well with certain special transforms.

Now the not very convincing argument of section 7 for ““cutting”
the Laplace transform in order to apply it to the reciprocal function
of the cut Hankel transform can be replaced by the right explanation.
All that happened was that { (sx), which applies to the ordinary
Hankel transform, was replaced by ¢ ™ (sz) which plays the corre-
sponding role with the cut Hankel transform. (32) should be written

D+ 2m +n + 1) shetmtd(s — 1)
(__)mm! n! (s + 1)u+2m+n+1’

(68) s‘j k) (sz) x& ™ (x) da =
0

Similarly the modification of the Laplace transform used in section 9

explains itself when (46) is written in the form

1 ® 2 m o m F'(a+2m+n+41) 85“‘*‘"’“(3—1)"
(69) s foy (52) M @) e = = T T

The right hand sides of both (68) and (69) exhibit the property (67)

L Of. also § 9.3 of Titchmarsh’s Fourier integrals.
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and so these relations are a new proof of the reciprocal property of
the {x{™} and {${~™}.

A few more comments on (68) and (69) are perhaps useful. Of
-course, any reciprocal function could be used as kernel of the opera-
tion 7', in this case. x{®™ and ¢{" are the simplest ones known.
'The advantage of using these arises from the fact that they are the
generating functions of the sequences {x! "} and {¢{~™} respectively.
Applying x{™ to {¢{ ™} and vice versa gives simple results because
of the biorthogonality of {x{ ™, ¢ ™},

Suppose we have two self-reciprocal functions ¢ (z) and y(z) of
{65), and that, by

Zurtd, () =(1+ u)a(u?) <1 + ux>

1 —u
.and

Zut x, (%) = (1 + u) b (u?) x < + Zx),
& biorthogonal system {¢, x,} is generated such that

j bm Xn AT = €4 Opp-
0
‘Then the operation

7,(fy=o | $(e0)f (@) o
gives most simple results when applied to {x,}, and the operation
T\ (f} = | xlon)] (@) do

applies to {¢,}. For, from the generating function,

sgen) =52 3 (L) @ [o] (35

)

and hence
# [ b @ = 5T 5 (1S ) [ burds [ (2
(70)
= 5aGE) =/ G))
and similarly
I N e e Y [N
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This is in exact agreement with (68) and (69). In the case of the
biorthogonal system {}»™, ™} moreover, a (4% and b (u?) are
identical. Hence the identity of the right hand sides of (68) and (69).

Another biorthogonal set.

16. I conclude by introducing another biorthogonal set. Although
the sequence of biorthogonal functions which will be introduced
below has no connection at all with the cut Hankel transform, yet it-
is an extension of Laguerre’s orthogonal set

(72) {e ¥ L@ ()}, (n=0,1,2,....), [-R(a)>—1]

to values of <R (a) which are less than — 1. This set is in many ways
simpler than the system {x{~ ™), ¢!= ™} Like Laguerre’s set, it consists
only of functions which, except for a common factor, are poly-
nomials, these polynomials being (i) Laguerre polynomials (7), and
(ii) “* cut”’ Laguerre polynomials

(73) Lg:)[ (x) - g <n + a,‘) (_x)r

s \B— 7T 7!

— ¥\
=<Z+_O;>(‘ __“:c) eFo(l—n Lil+a+1,1+152), (sn),

which are obtained by omitting the first I terms in L{® ().
The biorthogonal set in question, {¢,, ¢}, is defined by

(74) $u () = e~ ¥ 2 HD L) (), (n=0,1,2,....),
and
(75) hy () = e Pt [® (), (r=0,1,2,....).

Obviously both ¢, and i, belong to L? (0, ) if only &R (a) > — 1 — 1.
This will be assumed throughout the rest of the paper.

In the paper referred to at the end of section 10, I gave a proof
of the biorthogonality of {¢,, ,} very similar to the proof of the
biorthogonality of {x\*™), ™} given in this paper. It is also easy to
prove the completeness and closedness of {¢,, i} in the same way as
that of {x>™, ¢{=™}. Here I shall give alternative proofs using the
methods of section 13.

First let us find the generating functions of {¢,} and {J,}.
From (8)

z =0 Jgntl (o= gatntl n! A
(fzj—l)!d = TR A IR

L3 (@) =
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and hence, from (6)

® (n+ 1) gy ’
= g——i'z ut Lf:-)H (:I:) =efzx (1 — u)—a_l—l (El(e_fl(l—u) xa-+1)’

n=0 n

-or, using (8) again,

g (n+D)! x
18 T (m z!) un L), (x)=(l—u)‘°‘l‘1e‘“”‘““’L}”(l—_—;), (Ju<1).
Similarly

—\ ®
L@ =, ) [ e—p s wa,

.and we obtain

(771) D wr L, (v) = ul(1 — w)~e-t E’(lm u) (lu|<1).
n=0 -

Thus the generating function of {¢,} is

G N z
, s 2+ 0! (1 — ) —e—i=1 et D) gtz Q- wT @ T
(78). nmo i1 ¥ (@ =1 —2) * ¢ Li 1—u H(ul<D,
-and that of {,} is

@

(79) Wiy, () =u=t (1 —u) o lapi—De~iz f, ( ux_)’ (Jul<1).
=0 u

n 1-—
In order to establish the biorthogonality of {¢,, i,}, the integral
w0 k) ' [}
j z Mu’” bn T VP, dx
n=0

Jo n=g mll!

= (1 —wu) o7y~ (] —~p)~=1? roe—z/(l—u) xa.LEa.)( z >E1< VX >dx

0 l1—u

has to be evaluated. By (8) this is

1
i

® [/ .
(1 — u)=e~t-lyp=i(] —p)—=-1 L % (e~ -0 ga+i) E,< vT ) Ja.
Integrating ! times by parts this becomes

ll_; [(1 . 'lL) (l — v)]—n.—l—l swe—z(ll(l—u)+l/(l—u)$ xetl dy
! 0

=P(a+ l+1)(1 —up)—e—i-l= % Plat+l+m + 1) ur vh.
o n=0 nil!

Hence

i _Pla+l4+n+1)
(80) J fmtnda = L2EED

mn-
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According to section 13 (iii), the completeness of {¢,, 4,} depends
on solutions of the integral equation of the first kind

(81) j e~izile=0 F, <1 ux u)f(x) dx = 0.

0

‘The proof that this equation has no solution in L2(0, o) is very
similar to the proof of the completeness of {}™, ¢{ ™} in section 11.
The function F (2) has to be defined here by

F (x) = g+ (_l__:l,IT L (y —z)—! et yk(a—l)f(y) dy.

If f(x) belongs to L%(0, » ), clearly e~#2f(z) and also F (z) belong
to L (0, ). Integrating (81) ! times by parts, we have, since

d! uUx — u\!
—F, . = = { .. —uzf(l —u)
dat [<1—u> <] —~u> ¢ ’

j e—wl1-0 B (z}dz = 0.

0

instead of (81),

This being true identically in w (for 0 <« < 1, say), it follows from
Lerch’s theorem that #(x)=0 almost everywhere. From this
f(x) =0 almost everywhere, and hence the completeness of the
sequence {¢,, ,} can be inferred.
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