
2 Basic Information Theory

We begin with a short primer on basic notions of information theory. We review
the various measures of information and their properties, without discussing their
operational meanings.

At a high level, we can categorize information measures into three categories:
measures of uncertainty, measures of mutual information, and measures of sta-
tistical distances. Quantities such as Shannon entropy fall in the first category,
and provide a quantitative measure of uncertainty in a random variable. In ad-
dition to Shannon’s classic notion of entropy, we also need a related notion of
entropy due to Rényi. These quantities will be used throughout this book, but
will be central to our treatment of randomness extraction (namely, the problem
of generating random and independent coin tosses using a biased coin, correlated
with another random variable).

The measures of mutual information capture the information revealed by a ran-
dom variable about another random variable. As opposed to statistical notions
such as mean squared error, which capture the notion of estimating or failing to
estimate, mutual information allows us to quantify partial information and gives
a mathematical equivalent of the heuristic phrase: “X gives a bit of information
about Y .” For us, Shannon’s mutual information and a related quantity (using
total variation distance) will be used to measure the “information leaked” to an
adversary. These quantities are central to the theme of this book.

Finally, we need the notions of distances between probability distributions.
Statistical inference entails determining the properties of the distribution gener-
ating a random variable X, by observing X. The closer two distributions P and
Q are, the more difficult it is to distinguish whether X is generated by P or by Q.
Information theory provides a battery of measures for “distances” between two
probability distributions. In fact, our notions of information-theoretic security
will be defined using these distances.

In addition, we present the properties of these quantities and inequalities relat-
ing them. To keep things interesting, we have tried to present “less well-known”
proofs of these inequalities – even a reader familiar with these bounds may find
something interesting in this chapter. For instance, we prove Fano’s inequality
using data processing inequality, we prove continuity of entropy using Fano’s
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16 Basic Information Theory

inequality, we provide multiple variational formulae for information quantities,
and we provide two different proofs of Pinsker’s inequality.

We start by covering the essential notions of probability.

2.1 Very Basic Probability

Since our focus will be on discrete random variables, the reader only needs to
be familiar with very basic probability theory. We review the main concepts and
notations in this section.

Let Ω be a set of finite cardinality. A discrete probability distribution P on Ω
can be described using its probability mass function (pmf) p : Ω→ [0, 1] satisfying∑
ω∈Ω p(ω) = 1. We can think of Ω as the underlying “probability space” with

“probability measure” P. Since we restrict our attention to discrete random
variables throughout this book, we will specify the probability distribution P
using the corresponding pmf. In particular, with an abuse of notation, we use
P(ω) to denote the probability of the event {ω} under P.

For a probability distribution P on Ω, we denote by supp(P) its support set
given by

supp(P) = {ω ∈ Ω : P(ω) > 0}.

A discrete random variable X is a mapping X : Ω → X where X is a set of
finite cardinality. Without loss of generality, we will assume that the mapping
X is onto, namely X = range(X). It is not necessary that the probability space
(Ω,P) is discrete; but it suffices for our purpose. We can associate with a random
variable X a distribution PX , which is the distribution “induced” on the output
X by X. Since X is a discrete random variable, PX is a discrete probability
distribution given by

PX(x) = Pr(X = x) =
∑

ω∈Ω:X(ω)=x

P(ω);

often, we will simply say P = PX is a probability distribution on X , without
referring to the underlying probability space Ω. Throughout the book, unless
otherwise stated, when we say random variable, we refer only to discrete random
variables.

Notation for random variables: In probability, we often choose the set X as
R, the set of real numbers. But in this book we will often treat random binary
vectors or messages as random variables. Thus, we will allow for an arbitrary
finite set X . We will say that “X is a random variable taking values in the set
X ,” for any finite set X . We denote the probability distribution of X by PX
and, for every realization x ∈ X , denote by PX(x) the probability Pr(X = x).
Throughout the book, we denote the random variables by capital letters such as
X,Y, Z, etc., realizations by the corresponding small letters such as x, y, z, etc.,
and the corresponding range-sets by calligraphic letters such as X ,Y,Z, etc.
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2.1 Very Basic Probability 17

Associated with a random variable X taking values in X ⊂ R, there are two
fundamental quantities: its expected value E[X] given by

E[X] =
∑
x∈X

xPX(x) ,

and its variance V[X] given by

V[X] = E
[
(X − E[X])2

]
.

An important property of expectation is its linearity. Namely,

E[X + Y ] = E[X] + E[Y ] .

Before proceeding, denoting by 1[S] the indicator function for the set S, we note
a useful fact about the binary random variable 1[X ∈ A]:

E[1[X ∈ A]] = Pr(X ∈ A) ,

for any subsetA of X . Heuristically, the expected value of X serves as an estimate
for X and the variance of X serves as an estimate for the error in the estimate.
We now provide two simple inequalities that formalize this heuristic.

theorem 2.1 (Markov’s inequality) For a random variable X taking values
in [0,∞) and any t > 0, we have

Pr(X ≥ t) ≤ E[X]
t

.

Proof We note that any random variable X can be expressed as

X = X1[X ≥ t] +X1[X < t] .

Then,

E[X] = E[X1[X ≥ t]] + E[X1[X < t]]

≥ E[X1[X ≥ t]]
≥ E[t1[X ≥ t]]
= tPr(X ≥ t) ,

where the first inequality uses the fact that X is nonnegative and the second
inequality uses the fact that X1[X ≥ t] is either 0 or exceeds t with probability
1.

Applying Markov’s inequality to |X −E[X] |2, we obtain the following bound.

theorem 2.2 (Chebyshev’s inequality) For a random variable X taking values
in R and any t > 0, we have

Pr(|X − E[X] | ≥ t) ≤ V[X]
t2

.
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18 Basic Information Theory

The previous bound says that the random variable X lies within the interval
[E[X]−

√
V[X] /ε,E[X] +

√
V[X] /ε] with probability exceeding 1− ε. Such an

interval is called the (1− ε)-confidence interval. In fact, the
√

1/ε dependence of
the accuracy on the probability of error can often be improved to

√
ln 1/ε using

a “Chernoff bound.” We will present such bounds later in the book.
When we want to consider multiple random variables X and Y taking values

in X and Y, respectively, we consider their joint distribution PXY specified by
the joint probability distribution PXY (x, y). For discrete random variables, we
can define the conditional distribution PX|Y using the conditional probabilities
given by1

PX|Y (x|y) :=
PXY (x, y)

PY (y)

for every x ∈ X and y ∈ Y such that PY (y) > 0; if PY (y) = 0, we can define
PX|Y (x|y) to be an arbitrary distribution on X . A particular quantity of interest
is the conditional expectation E[X|Y ] of X given Y , which is a random variable
that is a function of Y , defined as

E[X|Y ] (y) :=
∑
x∈X

xPX|Y (x|y) , ∀ y ∈ Y.

Often, we use the alternative notation E[X|Y = y] for E[X|Y ] (y). Note that
E[X|Y ] denotes the random variable obtained when y is replaced with the ran-
dom Y with distribution PY .

In information theory, it is customary to use the terminology of a channel in
place of conditional distributions. Simply speaking, a channel is a randomized
mapping. For our use, we will define this mapping using the conditional dis-
tribution it induces between the output and the input. Formally, we have the
definition below.

definition 2.3 (Channels) For finite alphabets X and Y, a channel W with
input alphabet X and output alphabet Y is given by probabilities W (y|x), y ∈
Y, x ∈ X , where W (y|x) denotes the probability of observing y when the input
is x.

Often, we abuse the notation and use W : X → Y to represent the channel.
Also, for a channel W : X → Y and input distribution P on X , we denote by
P ◦W the distribution induced on the output Y of the channel when the input
X has distribution X. Namely,

(P ◦W )(y) =
∑
x∈X

P(x)W (y|x).

Furthermore, we denote by P×W the joint distribution of (X,Y ).

1 In probability theory, conditional probability densities are technically difficult to define and
require several conditions on the underlying probability space. However, since we restrict
our attention to discrete random variables, the conditional pmf serves this purpose for us.
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2.2 The Law of Large Numbers 19

2.2 The Law of Large Numbers

Chebyshev’s inequality tells us that a good estimate for a random variable X
is its expected value E[X], up to an accuracy of roughly ±

√
V[X]. In fact, this

estimate is pretty sharp asymptotically when X is a sum of independent random
variables.

Specifically, let X1, . . . , Xn be independent and identically distributed (i.i.d.)
random variables, that is, they are independent and have the same (marginal)
distribution, say, PX . An important fact to note about independent random vari-
ables is that their variance is additive. Indeed, for independent random variables
X and Y ,

V[X + Y ] = E
[
(X + Y )2

]
− E[X + Y ]2

= E
[
X2
]

+ E
[
Y 2
]

+ 2E[XY ]− (E[X]2 + E[Y ]2 + 2E[X] E[Y ])

= V[X] + V[Y ] + 2(E[XY ]− E[X] E[Y ])

= V[X] + V[Y ] ,

where in the final identity we used the observation that E[XY ] = E[X] E[Y ] for
independent random variables.

In fact, X and Y such that E[XY ] = E[X] E[Y ] are called uncorrelated, and
this is the only property we need to get additivity of variance. Note that in
general, random variables may be uncorrelated but not independent.2

Returning to i.i.d. random variables X1, X2, . . . , Xn with common distribution
PX , by the linearity of expectation we have

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = nE[X] ,

and since the variance is additive for independent random variables,

V

[
n∑
i=1

Xi

]
=

n∑
i=1

V[Xi] = nV[X] .

Therefore, by Chebyshev’s inequality,

Pr
(∣∣∣∣ n∑

i=1

Xi − nE[X]
∣∣∣∣ ≥ t) ≤ nV[X]

t2
,

or equivalently,

Pr
(∣∣∣∣ n∑

i=1

Xi − nE[X]
∣∣∣∣ ≥

√
nV[X]
ε

)
≤ ε

2 For example, consider the random variable X taking values {−1, 0, 1} with equal

probabilities and Y = 1− |X|. For these random variables, E[X] = 0 = E[X] E[Y ] and
E[XY ] = 0 since Y = 0 whenever X 6= 0. But clearly X and Y are not independent.
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20 Basic Information Theory

for every ε ∈ (0, 1). Thus, with large probability, 1
n

∑n
i=1Xi is roughly within

±
√

V[X] /n of its expected value E[X]. We have proved the weak law of large
numbers.

theorem 2.4 (Weak law of large numbers) Let X1, X2, . . . , Xn be i.i.d. with
common distribution PX over a finite set X ⊂ R. For every δ > 0 and ε ∈ (0, 1),
we have

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ > δ

)
≤ ε

for every n sufficiently large.

Alternatively, we can express the previous result as follows: for every δ > 0,

lim
n→∞

Pr

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ > δ

)
= 0.

In fact, a stronger version of the result above holds – we can exchange the
limit and the probability. This result is a bit technical, and it says that for all
“sample paths” {Xi}∞i=1 the sample average 1

n

∑n
i=1 converges to E[X] as n goes

to infinity. We state this result without proof.

theorem 2.5 (Strong law of large numbers) Let X1, X2, . . . , Xn be i.i.d. with
common distribution PX over a finite set X ⊂ R. Then,

Pr

(
lim
n→∞

1
n

n∑
i=1

Xi = E[X]

)
= 1.

In summary, in this section we have learnt that the average of a large number
of independent random variables can be approximated, rather accurately, by its
expected value.

2.3 Convex and Concave Functions

Convex and concave functions play an important role in information theory.
Informally speaking, convex and concave functions, respectively, are those whose
graphs look like a “cup” and “cap.” In particular, a function f is concave if −f
is convex. We provide the formal definition and a key property below.

The domain of a convex function must be a convex set, which we define first.
For simplicity, we restrict ourselves to convex sets that are subsets of Rd.

definition 2.6 (Convex set) For a natural number d ∈ N, a set S ⊂ Rd is a
convex set if for any two points s1 and s2 in S and any θ ∈ [0, 1], we must have
θs1 + (1− θ)s2 ∈ S. Namely, if two points belong to S, then all the points in the
straight line joining these two points also belong to S.
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2.3 Convex and Concave Functions 21

Figure 2.1 Depiction of convex and concave functions.

definition 2.7 (Convex and concave functions) For d ∈ N, let S ⊂ Rd be a
convex set. Then, a function f : S → R is a convex function if for every θ ∈ [0, 1]
and every pair of points s1, s2 ∈ S, we have

f(θs1 + (1− θ)s2) ≤ θf(s1) + (1− θ)f(s2), (2.1)

and it is concave if

f(θs1 + (1− θ)s2) ≥ θf(s1) + (1− θ)f(s2). (2.2)

In particular, when strict inequality holds in (2.1) (respectively (2.2)) for every
θ ∈ (0, 1) and s1 6= s2, then the function is a strict convex function (respectively
strict concave function).

Simply speaking, a function is convex (respectively concave) if the value of
the function at the (weighted) average of two points is less than (respectively
more than) the average of the values at the point. Note that linear functions are
both convex and concave, but not strict convex nor strict concave. Examples of
strict convex functions include ex, e−x, x2, etc. and examples of strict concave
functions include lnx (natural logarithm),

√
x, etc. We depict the shape of convex

and concave functions in Figure 2.1.
It is clear from the definition of convex functions that, for a random variable X

taking values in a finite set X and a convex function f , we must have E[f(X)] ≥
f(E[X]). This is the powerful Jensen inequality.

lemma 2.8 (Jensen’s inequality) Let f : Rn → R be a convex function and X
a random variable taking values in Rn. Then,

f(E[X]) ≤ E[f(X)] . (2.3)

Similarly, if f is a concave function, then

f(E[X]) ≥ E[f(X)] . (2.4)

In particular, when f is strict convex (respectively strict concave), then strict
inequality holds in (2.3) (respectively (2.4)) unless X = E[X] with probability 1.

In fact, this inequality holds for more general random variables than those
considered in this book – there is no need for the assumption of finiteness or
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22 Basic Information Theory

even discreteness. However, the proof is technical and beyond the scope of this
book.

Note that for the convex function f(x) = x2, this inequality implies V[X] =
E
[
X2
]
−E[X]2 ≥ 0. Another very useful implication of this inequality is for the

concave function f(x) = log x. Instead of showing that log x is concave and using
Jensen’s inequality, we derive a self-contained inequality which is very handy.

lemma 2.9 (Log-sum inequality) For nonnegative numbers {(ai, bi)}ni=1,
n∑
i=1

ai log
ai
bi
≥

n∑
i=1

ai log
∑n
i=1 ai∑n
i=1 bi

,

with equality3 if and only if ai = bi for all i.

Proof The inequality is trivial if all ai are 0, or if there exists an i such that
bi = 0 but ai 6= 0. Otherwise, by rearranging the terms, it suffices to show that

n∑
i=1

ai log
ai/
∑n
j=1 aj

bi/
∑n
j=1 bj

≥ 0,

which holds if and only if
n∑
i=1

a′i log
a′i
b′i
≥ 0,

where a′i = ai/
∑n
j=1 aj and b′i = bi/

∑n
j=1 bj . Note that the previous inequality

is simply our original inequality for the case when
∑n
i=1 ai =

∑n
i=1 bi = 1.

Thus, without loss of generality we can assume that ai and bi, 1 ≤ i ≤ n, both
constitute pmfs. Then, since lnx ≤ x − 1, log x ≤ (x − 1) log e, applying this
inequality for x = ai/bi we get

n∑
i=1

ai log
bi
ai
≤ log e

n∑
i=1

ai

(
bi
ai
− 1
)

= 0,

which establishes the inequality.
Equality can hold only if equality holds for every instance of lnx ≤ x− 1 used

in the proof, which happens only if x = 1. Thus, equality holds only if ai = bi
for every i ∈ {1, . . . , n}.

2.4 Total Variation Distance

Suppose we observe a sample X taking values in a discrete set X . How difficult is
it to determine if X is generated from a distribution P or Q? We need a precise
quantitative handle on this difficulty for this book. Indeed, the formal notion of
information-theoretic security that we define in this book will rely on difficulty
in solving such problems. This problem is one of the fundamental problems in
3 We follow the convention that 0 log(0/0) = 0 log 0 = 0 throughout the book.
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2.4 Total Variation Distance 23

statistics – the binary hypothesis testing problem. Later in the book, we will
revisit this problem in greater detail. In this section, we only present a quick
version that will help us motivate an important notion.

Formally, we can apply a channel T : X → {0, 1} to make this decision, where
the outputs 0 and 1 indicate P and Q, respectively. Such a decision rule is called
a (hypothesis) test. For this channel denoting the test, let T (1|x) = 1 − T (0|x)
denote the probability with which T declares 1 for input x ∈ X . When X was
generated using P, the test T makes an error if its output is 1, which happens
with probability

∑
x∈X P(x)T (1|x). Similarly, when X was generated using Q,

the probability of making an error is
∑
x∈X Q(x)T (0|x).

One simple notion of performance of the test T is the average of these two
errors. It corresponds to the probability of error in T ’s output when the input
distribution for X is chosen to be P or Q with equal probability. Specifically, the
average probability of error Perr(T ) is given by

Perr(T |P,Q) :=
1
2

[∑
x∈X

P(x)T (1|x) +
∑
x∈X

Q(x)T (0|x)

]
,

and a measure of difficulty of the hypothesis testing problem described above is
the minimum average probability of error

Perr(P,Q) = min
T
Perr(T |P,Q),

where the minimum is over all channels T : X → {0, 1}.
In fact, the minimizing T is easy to find (it is sometimes called the Bayes

optimal test or simply the Bayes test).

lemma 2.10 (Bayes test) For distributions P and Q on a discrete set X ,
Perr(P,Q) is attained by the deterministic test which outputs 0 for x ∈ X such
that P(x) ≥ Q(x) and 1 otherwise, i.e.,

T ∗(0|x) =

{
1, if P(x) ≥ Q(x),

0, otherwise.

Furthermore, the minimum average probability of error is given by

Perr(P,Q) =
1
2

1−
∑

x∈X :P(x)≥Q(x)

(P(x)−Q(x))

 .
Proof It is easy to verify that

Perr(T ∗|P,Q) =
1
2

1−
∑

x∈X :P(x)≥Q(x)

(P(x)−Q(x))

 .
Thus, it suffices to show that the right-hand side of the expression above is less
than Perr(T |P,Q) for every test T . To this end, note that
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24 Basic Information Theory

2Perr(T |P,Q) =
∑
x∈X

P(x)T (1|x) +
∑
x∈X

Q(x)T (0|x)

=
∑
x∈X

P(x)T (1|x) +
∑
x∈X

Q(x)(1− T (1|x))

=
∑
x∈X

(P(x)−Q(x))T (1|x) +
∑
x∈X

Q(x)

≥
∑

x∈X :P(x)<Q(x)

(P(x)−Q(x)) + 1

=
∑
x∈X

(P(x)−Q(x))T ∗(1|x) + 1

= 1−
∑

x∈X :P(x)≥Q(x)

(P(x)−Q(x)),

where the inequality holds since T (1|x) lies in [0, 1] and we have dropped only
positive terms from the preceding expression.

The optimal test T ∗ that emerges from the previous result is a natural one:
declare P when you observe x which has higher probability of occurrence under
P than under Q. Thus, the difficulty of resolving the hypothesis testing problem
above is determined by the quantity

∑
x∈X :P(x)≥Q(x) P(x)−Q(x).

We note that the optimal test T ∗ is a deterministic one. Further, note that a
deterministic test can be characterized by the subset A = {x ∈ X : T (0|x) = 1}
of X , and its probability of error is given by

Perr(T |P,Q) =
1
2

[P(Ac) + Q(A)] =
1
2

(1− (P(A)−Q(A))).

By comparing with the optimal probability of error for a deterministic test (at-
tained by T ∗), we get∑

x∈X :P(x)>Q(x)

P(x)−Q(x) = max
A⊂X

P(A)−Q(A),

where the maximum is attained by the set A∗ = {x ∈ X : P(x) > Q(x)}
(corresponding to T ∗).4

We would like to treat maxA⊂X P(A)−Q(A) as a notion of “distance” between
the distributions P and Q; our little result above already tells us that the closer
P and Q are in this distance, the harder it is to tell them apart using statistical
tests. In fact, this quantity is rather well suited to being termed a distance. The
next result shows an equivalent form for the same quantity that better justifies
its role as a distance.

lemma 2.11 For two distributions P and Q on a finite set X , we have

max
A⊂X

P(A)−Q(A) =
1
2

∑
x∈X
|P(x)−Q(x)|.

We leave the proof as an (interesting) exercise (see Problem 2.1).

4 Alternatively, we can include x with P(x) = Q(x) into A∗.
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The expression on the right-hand side of the previous result is (up to normal-
ization) the `1 distance between finite-dimensional vectors (P(x), x ∈ X ) and
(Q(x), x ∈ X ). We have obtained the following important notion of distance
between P and Q.

definition 2.12 (Total variation distance) For discrete distributions P and
Q on X , the total variation distance dvar(P,Q) between P and Q is given by5

dvar(P,Q) :=
1
2

∑
x∈X
|P(x)−Q(x)| = max

A⊂X
P(A)−Q(A).

By the foregoing discussion and the definition above, we have

Perr(P,Q) =
1
2

(1− dvar(P,Q)) . (2.5)

theorem 2.13 (Properties of total variation distance) For distributions P, Q,
and R on a finite set X , the following hold.

1. (Nonnegativity) dvar(P,Q) ≥ 0 with equality if and only if P = Q.
2. (Triangular inequality) dvar(P,Q) ≤ dvar(P,R) + dvar(R,Q).
3. (Normalization) dvar(P,Q) ≤ 1 with equality if and only if supp(P)∩supp(Q)

= ∅.

Proof The first two properties are easy to check; we only show the third one. For
that, we note that P(A)−Q(A) ≤ 1 for every A ⊂ X , whereby dvar(P,Q) ≤ 1.
Further, denoting A∗ = {x : P(x) > Q(x)}, we have dvar(P,Q) = P(A∗)−Q(A∗)
whereby dvar(P,Q) = 1 holds if and only if

P(A∗)−Q(A∗) = 1.

This in turn is possible if and only if P(A∗) = 1 and Q(A∗) = 0, which is the
same as A∗ = supp(P) and supp(Q) ⊂ Ac, completing the proof.

Next, we note a property which must be satisfied by any reasonable measure
of distance between distributions – the data processing inequality.

lemma 2.14 (Data processing inequality for total variation distance) Let PX
and QX be distributions on X and T : X → Y be a channel. Denote by PY and
QY the distribution of the output of T when the input distribution is PX and
PY , respectively. Then,

dvar(PY ,QY ) ≤ dvar(PX ,QX).

Proof Define the conditional distribution W (y|x) := Pr(T (X) = y | X = x),
x ∈ X , y ∈ Y. Then, the distributions PY and QY are given by

PY (y) =
∑
x∈X

PX(x)W (y|x), QY (y) =
∑
x∈X

QX(x)W (y|x).

5 Other names used for the distance are variational distance and statistical distance.
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Thus, we get

dvar(PY ,QY ) =
1
2

∑
y∈Y
|PY (y)−QY (y)|

=
1
2

∑
y∈Y
|
∑
x∈X

W (y|x)(PX(x)−QX(x))|

≤ 1
2

∑
y∈Y

∑
x∈X

W (y|x)|PX(x)−QX(x)|

= dvar(PX ,QX),

which completes the proof.

We can see the property above directly from the connection between hy-
pothesis testing and total variation distance seen earlier. Indeed, we note that
Perr(PY ,QY ) ≥ Perr(PX ,QX) since the optimal test for PY versus QY can be
used as a test for PX versus QX as well, by first transforming the observation X
to Y = T (X). By (2.5), this yields the data processing inequality above.

We close this section with a very useful property, which will be used heavily
in formal security analysis of different protocols later in the book.

lemma 2.15 (Chain rule for total variation distance) For two distributions
PXY and QXY on X × Y, we have

dvar(PXY ,QXY ) ≤ dvar(PX ,QX) + EPX

[
dvar(PY |X ,QY |X)

]
,

and further,

dvar(PX1···Xn ,QX1···Xn) ≤
n∑
i=1

EPXi−1

[
dvar(PXi|Xi−1 ,QXi|Xi−1)

]
,

where Xi abbreviates the random variable (X1, . . . , Xi).

Proof The proof simply uses the triangular inequality for total variation dis-
tance. Specifically, we have

dvar(PXY ,QXY ) ≤ dvar(PXY ,PXQY |X) + dvar(QXY ,PXQY |X).

For the first term on the right-hand side, we have

dvar(PXPY |X ,PXQY |X) =
1
2

∑
x∈X

PX(x)
∑
y∈Y
|PY |X(y|x)−QY |X(y|x)|

= EPX

[
dvar(QY |X ,PY |X)

]
,

and further, for the second term,

dvar(QXQY |X ,PXQY |X) =
1
2

∑
x∈X ,y∈Y

|QX(x)QY |X(y|x)− PX(x) QY |X(y|x)|

=
1
2

∑
x∈X

∑
y∈Y

QY |X(y|x)|PX(x)−QX(x)|

= dvar(PX ,QX).
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The claim follows upon combining these expressions with the previous bound;
the general proof for n ≥ 2 follows by applying this inequality repeatedly.

In the proof above, we noted that

dvar(PXY ,PXQY |X) = EPX

[
dvar(PY |X ,QY |X)

]
,

a useful expression of independent interest. Further, for product distributions
PXn and QXn (corresponding to independent random variables), the previous
result implies the subadditivity property

dvar(PXn ,QXn) ≤
n∑
i=1

dvar(PXi ,QXi).

2.5 Kullback–Leibler Divergence

In this book, we use total variation distance to define our notion of security.
However, there is a close cousin of this notion of distance that enjoys great
popularity in information theory – the Kullback–Leibler divergence.

definition 2.16 (KL divergence) For two discrete distributions P and Q on
X , the Kullback–Leibler (KL) divergence D(P‖Q) between P and Q is given by

D(P‖Q) =

{∑
x∈X P(x) log P(x)

Q(x) , supp(P) ⊂ supp(Q),

∞, supp(P) 6⊂ supp(Q)

where log is to the base 2. This convention will be followed throughout – all our
logarithms are to the base 2, unless otherwise stated.

KL divergence is not a metric, but is a very useful notion of “distance” between
distributions. Without giving it an “operational meaning” at the outset, we
simply note some of its useful properties in this chapter.

theorem 2.17 (Properties of KL divergence) For distributions P and Q on a
finite set X , the following hold.

1. (Nonnegativity) D(P‖Q) ≥ 0 with equality if and only if P = Q.
2. (Convexity) D(P‖Q) is a convex function of the pair (P,Q) (over the set of

pairs of distributions on X ).
3. (Data processing inequality) For a channel T : X → Y, denote by PY and QY

the distribution of the output of T when the input distribution is PX and QX ,
respectively. Then, D(PY ‖QY ) ≤ D(PX‖QX).

Proof The proofs of all these properties use the log-sum inequality (see Lemma
2.9). In fact, the first property is equivalent to the log-sum inequality with vectors
(P(x), x ∈ X ) and (Q(x), x ∈ X ) in the role of (a1, . . . , ak) and (b1, . . . , bk),
respectively.
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For the second property, consider pairs (P1,Q1) and (P2,Q2) of distributions
on X . Further, for θ ∈ [0, 1], consider the pair (Pθ,Qθ) of distributions on X
given by Pθ := θP1 + (1− θ)P2 and Qθ := θQ1 + (1− θ)Q2. Then, we have

D(Pθ‖Qθ) =
∑
x

Pθ(x) log
Pθ(x)
Qθ(x)

=
∑
x

(θP1(x) + (1− θ)P2(x)) log
θP1(x) + (1− θ)P2(x)
θQ1(x) + (1− θ)Q2(x)

≤
∑
x

θP1(x) log
θP1(x)
θQ1(x)

+ (1− θ)P2(x) log
(1− θ)P2(x)
(1− θ)Q2(x)

= θD(P1‖Q1) + (1− θ)D(P2‖Q2),

where the inequality is by the log-sum inequality.
Finally, for the data processing inequality, withW (y|x) := Pr(T (x) = y | X =x),

we get

D(PY ‖QY ) =
∑
y∈Y

PY (y) log
PY (y)
QY (y)

=
∑
y∈Y

∑
x∈X

PX(x)W (y|x) log
∑
x∈X PX(x)W (y|x)∑
x∈X QX(x)W (y|x)

≤
∑
y∈Y

∑
x∈X

PX(x)W (y|x) log
PX(x)W (y|x)
QX(x)W (y|x)

= D(PX‖QX),

where the inequality uses the log-sum inequality and our convention that
0 log(0/0) = 0.

The convexity of D(P‖Q) in the pair (P,Q) is a very useful property. In
particular, it implies that D(P‖Q) is convex in P for a fixed Q and convex
in Q for a fixed P. Also, later in the book, we will see a connection between
KL divergence and probability of error for binary hypothesis testing, and the
data processing inequality for KL divergence has similar interpretation to that
for total variation distance – adding noise (“data processing”) gets distributions
closer and makes it harder to distinguish them.

We close this section with a chain rule for KL divergence.

lemma 2.18 (Chain rule for KL divergence) For distributions PX1···Xn and
QX1···Xn on a discrete set X1 ×X2 × · · · × Xn, we have

D(PX1···Xn‖QX1···Xn) =
n∑
i=1

EPXi−1

[
D(PXi|Xi−1‖QXi|Xi−1)

]
,

where Xi abbreviates the random variable (X1, . . . , Xi).
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Proof It suffices to show the result for n = 2. We have

D(PXY ‖QXY ) = EPXY

[
log

PXY (X,Y )
QXY (X,Y )

]
= EPXY

[
log

PX(X)
QX(X)

+ log
PY |X(Y |X)
QY |X(Y |X)

]
= EPX

[
log

PX(X)
QX(X)

]
+ EPXY

[
log

PY |X(Y |X)
QY |X(Y |X)

]
= D(PX‖QX) + EPX

[
D(PY |X‖QY |X)

]
;

the proof for general n is obtained by applying this identity recursively.

We note that, unlike the chain rule for total variation distance, the chain rule
above holds with equality. In particular, KL divergence is seen to be additive for
product distributions; namely, for PX1···Xn =

∏n
i=1 PXi and QX1···Xn =

∏n
i=1 QXi ,

we have

D(PX1···Xn‖QX1···Xn) =
n∑
t=1

D(PXi‖QXi).

2.6 Shannon Entropy

Probabilistic modeling allows us to capture uncertainty in our knowledge of
a quantity (modeled as a random variable). But to build a formal theory for
security, we need to quantify what it means to have partial knowledge of a
random variable – to have a “bit” of knowledge about a random variable X.
Such a quantification of uncertainty is provided by the information-theoretic
notion of Shannon entropy.

definition 2.19 (Shannon entropy) For a random variable X, the Shannon
entropy of X is given by6

H(PX) :=
∑
x∈X

PX(x) log
1

PX(x)
,

where log is to the base 2. For brevity, we often abbreviate H(PX) as H(X).
However, the reader should keep in mind that H is a function of the distribution
PX of X.

We have not drawn this quantity out of the hat and proposed it as a measure
of uncertainty. There is a rich theory supporting the role of entropy as a measure
of uncertainty or a measure of randomness. However, the details are beyond the
scope of our book. In fact, a heuristic justification for entropy as a measure of
randomness comes from the following observation: denoting by Punif the uniform
distribution on X , we have

H(P) = log |X | −D(P‖Punif). (2.6)
6 We follow the convention 0 log 0 = 0.
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Figure 2.2 The binary entropy function h(p).

That is, Shannon entropy H(P) is a measure of how far P is from a uniform
distribution. Heuristically, the uniform distribution is the “most random” distri-
bution on X , and therefore, Shannon entropy is indeed a measure of uncertainty
or randomness.

We present the properties of Shannon entropy, which can be derived readily
from the properties of KL divergence and (2.6).

theorem 2.20 (Shape of the Shannon entropy functional) Consider a proba-
bility distribution P on a finite set X . Then, the following properties hold.

1. (Nonnegativity) H(P) ≥ 0 with equality if and only if |supp(P)| = 1, namely
P is the distribution of a constant random variable.

2. (Boundedness) H(P) ≤ log |X | with equality if and only if P is the uniform
distribution on X .

3. (Concavity) H(P) is a concave function of P, namely for every θ ∈ [0, 1] and
two probability distributions Q1 and Q2 on X ,

H(θQ1 + (1− θ)Q2) ≥ θH(Q1) + (1− θ)H(Q2).

Proof The nonnegativity property is easy to see: each term in the expression
for entropy is nonnegative, whereby H(P) is 0 if and only if each term in the
sum is 0. This can only happen if P(x) = 1 for one x ∈ X and P(x) = 0 for the
rest.

The boundedness property follows from (2.6) using the nonnegativity of KL
divergence. Further, the concavity of Shannon entropy also follows from (2.6)
using the convexity of D(P‖Punif) in P.

For the special case of binary random variables (X = {0, 1}), Shannon en-
tropy H(P) depends only on p := P(1) and is denoted using the function
h : [0, 1] → [0, 1], termed the binary entropy function. That is, h(p) := p log 1

p +
(1− p) log 1

(1−p) , p ∈ [0, 1]. We depict h(p) in Figure 2.2.
Next, we seek a notion of residual uncertainty, the uncertainty remaining in

X when a correlated random variable Y is revealed. Such a notion is given
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by the conditional Shannon entropy, or simply, conditional entropy, defined
below.

definition 2.21 (Conditional Shannon entropy) For discrete random variables
X and Y , the conditional Shannon entropy H(X|Y ) is given by EPY

[
H(PX|Y )

]
.

Using the expression for Shannon entropy, it is easy to check that

H(Y |X) =
∑
x,y

PXY (x, y) log
1

PY |X(y|x)
= E

[
− log PY |X(Y |X)

]
.

Note that the random variable in the expression on the right-hand side is − log
PY |X(Y |X), and we take expectation over (X,Y ) ∼ PXY .

We present now a chain rule for Shannon entropy, which allows us to divide
the joint entropy H(X1, . . . , Xn) of random variables (X1, . . . , Xn) into “smaller”
components.

lemma 2.22 (Chain rule for entropy) For discrete random variables (X1, . . . ,

Xn) and Y , we have

H(X1, . . . , Xn | Y ) =
n∑
i=1

H(Xi|Xi−1, Y ). (2.7)

Proof We can derive this using the chain rule for KL divergence and (2.6).
Alternatively, we can see it directly as follows. First consider the case n = 2 and
Y is a constant. We have

H(X2|X1) = E
[
− log PX2|X1(X2|X1)

]
= E[− log PX1X2(X1, X2)] + E[log PX1(X1)]

= H(X1, X2)−H(X1),

where we used the Bayes rule in the second identity. The result for general n,
but with Y constant, is obtained by applying this result recursively. The more
general result when Y is not constant follows from (2.7) with constant Y upon
noting that H(X1, . . . , Xn|Y ) = H(X1, . . . , Xn, Y )−H(Y ).

We close this section by commenting on the notation H(Y |X), which is, ad-
mittedly, a bit informal. It will be more appropriate to view conditional entropy
as a function of (P,W ) where P is the distribution of X and W is the channel
with X as the input and Y as the output. In particular, we use the notation
H(W |P) to denote H(Y |X). Note that

H(W |P) =
∑
x∈X

P(x)
∑
y∈Y

W (y|x) log
1

W (y|x)
,

and that H(W |P) is a linear function of P and a concave function of W .
Finally, we note the following important consequence of concavity of H(P ).
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lemma 2.23 (Conditioning reducing entropy) For a probability distribution P
on a finite set X and a channel W : X → Y, we have H(W |P) ≤ H(P ◦W ). (In
our alternative notation, H(Y |X) ≤ H(Y ) for all random variables (X,Y ).)

Proof Since H(·) is a concave function, we have

H(W |P) =
∑
x

P(x)H(Wx) ≤ H
(∑

x

P(x)Wx

)
= H(P ◦W ),

where we abbreviate the output distribution W (·|x) as Wx.

2.7 Mutual Information

How much information does a random variable Y reveal about another random
variable X? A basic postulate of information theory is that “Information is
reduction in Uncertainty.” We already saw how to measure uncertainty: H(X) is
the uncertainty in a random variableX andH(X|Y ) is the uncertainty remaining
inX once Y is revealed. Thus, a measure of information provided by the postulate
above is H(X) − H(X|Y ). This fundamental measure of information is called
the mutual information.

definition 2.24 (Mutual information) Given a joint distribution PXY , the
mutual information between X and Y is given by I(X ∧Y ) = H(X)−H(X|Y ).
We will use an alternative definition where we represent the mutual information
as a function of the input distribution P = PX and the channel W = PY |X .
Namely, we represent mutual information I(X ∧ Y ) as I(P,W ).

Before proceeding, we note several alternative expressions for mutual informa-
tion.

lemma 2.25 (Alternative expressions for mutual information) For discrete ran-
dom variables (X,Y ), the following quantities are equal to I(X ∧ Y ):

1. H(Y )−H(Y |X);
2. H(X) +H(Y )−H(X,Y );
3. H(X,Y )−H(X|Y )−H(Y |X);
4. D(PXY ‖PX × PY ).

Proof The equality of H(X) − H(X|Y ) with expressions in 1–3 follows upon
noting that H(X|Y ) = H(X,Y )−H(Y ) and H(Y |X) = H(X,Y )−H(X). The
equality withD(PXY ‖PX×PY ) follows sinceH(X,Y ) = EPXY [− log PXY (X,Y )],
H(X) = EPXY [− log PX(X)], and H(Y ) = EPXY [− log PY (Y )], whereby

H(X) +H(Y )−H(X,Y ) = EPXY

[
log

PXY (X,Y )
PX(X) PY (Y )

]
= D(PXY ‖PX × PY ).
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The simple mathematical expressions above lead to a rather remarkable theory.
First, we observe that the information revealed by Y aboutX, I(X∧Y ), coincides
with the information revealed by X about Y , I(Y ∧ X). Further, I(X ∧ Y ) =
D(PXY ‖PX × PY ) allows us to interpret mutual information as a measure of
how “dependent” X and Y are. In particular, I(X ∧ Y ) = 0 if and only if X
and Y are independent, and equivalently, H(X) = H(X|Y ) if and only if X
and Y are independent. Also, since KL divergence is nonnegative, it follows that
conditioning reduces entropy, a fact we already saw using concavity of entropy.

Next, we define conditional mutual information of X and Y given Z as

I(X ∧ Y |Z) := H(X|Z)−H(X|Y, Z).

It is easy to verify that

I(X ∧ Y |Z) = EPZ

[
D(PXY |Z‖PX|Z × PY |Z)

]
,

whereby I(X ∧ Y |Z) = 0 if and only if X and Y are independent given Z.
Further, we can use the chain rule for KL divergence or Shannon entropy to
obtain the following chain rule for mutual information.

lemma 2.26 (Chain rule for mutual information) For discrete random variables
(X1, . . . , Xn, Y ), we have

I(X1, X2, . . . , Xn ∧ Y ) =
n∑
i=1

I(Xi ∧ Y | Xi−1),

where Xi−1 = (X1, . . . , Xi−1) for 1 < i ≤ n and X0 is a constant random
variable.

Finally, we present a data processing inequality for mutual information which
is, in fact, a consequence of the data processing inequality for KL divergence. To
present this inequality, we need to introduce the notion of a Markov chain.

definition 2.27 (Markov chains) Random variables X,Y, Z form a Markov
chain if X and Z are independent when conditioned on Y , i.e., when I(X ∧
Z|Y ) = 0 or, equivalently, PXY Z = PX|Y PZ|Y PY . This definition extends
naturally to multiple random variables: X1, . . . , Xn form a Markov chain if
Xi−1 = (X1, . . . , Xi−1), Xi, and Xn

i+1 = (Xi+1, . . . , Xn) form a Markov chain
for every 1 ≤ i ≤ n. We use the notation X1 −◦−X2 −◦− · · · −◦−Xn to indicate that
X1, . . . , Xn form a Markov chain.7

A specific example is when Z = f(Y ) for some function f . In this case, for
every X we have X −◦− Y −◦− Z. Heuristically, if X −◦− Y −◦− Z holds, then Z can
contain no more information about X than Y . The following result establishes
this bound formally.

lemma 2.28 (Data processing inequality for mutual information)
If X −◦− Y −◦− Z, then I(X ∧ Z) ≤ I(X ∧ Y ). Equivalently, H(X|Y ) ≤ H(X|Z).
7 That is, there is no more information about Xn

i+1 in Xi than that contained in Xi.
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Proof Instead of taking recourse to the data processing inequality for KL
divergence, we present an alternative proof. We have

I(X ∧ Z) = I(X ∧ Y, Z)− I(X ∧ Y |Z)

≤ I(X ∧ Y, Z)

= I(X ∧ Y ) + I(X ∧ Z|Y )

= I(X ∧ Y ),

where the inequality holds since conditional mutual information is nonnegative
and the final identity holds since X −◦− Y −◦− Z.

2.8 Fano’s Inequality

We now prove Fano’s inequality – a lower bound for the probability of error for
guessing a random variable X using another random variable Y . In particular,
Fano’s inequality provides a lower bound for the probability of error in terms
of the mutual information I(X ∧ Y ) between X and Y . Alternatively, we can
view Fano’s inequality as an upper bound for the conditional entropy H(X|Y ),
in terms of the probability of error. It is a very useful inequality and is applied
widely in information theory, statistics, communications, and other related fields.
In fact, the proof of Fano’s inequality we present uses nothing more than the data
processing inequality.

theorem 2.29 (Fano’s inequality) For discrete random variables X and Y ,
consider X̂ such that X −◦− Y −◦− X̂.8 Then, we have

H(X|Y ) ≤ Pr(X̂ 6= X) log(|X | − 1) + h
(

Pr(X̂ 6= X)
)
,

where h(t) = −t log t− (1− t) log(1− t) is the binary entropy function.

Proof Instead of PXY , consider the distribution QXY given by

QXY (x, y) =
1
|X |PY (y) , x ∈ X , y ∈ Y,

namely, the distribution when X is uniform and independent of Y . We can treat
the estimate X̂ as a randomized function of Y , expressed using the channel PX̂|Y .
Let QXY X̂ be given by

QXY X̂(x, y, x̂) = QXY (x, y)PX̂|Y (x̂|y) , ∀x, x̂ ∈ X , y ∈ Y.

We note that the probability of correctness of the estimate X̂ under QXY is the
same as that of a “random guess.” Indeed, we have

QXY X̂(X = X̂) =
∑
x∈X

∑
y∈Y

QXY (x, y)PX̂|Y (x|y)

8 We can view X̂ as an “estimate” of X formed from Y .
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=
1
|X |

∑
x∈X

∑
y∈Y

PY (y) PX̂|Y (x|y)

=
1
|X | . (2.8)

The main idea behind our proof is the following. For any distribution PXY , the
difference between the performance of the estimator X̂ under PXY and QXY ,
the independent distribution, is bounded by the “distance” between these dis-
tributions. We formalize this using the data processing inequality.

Formally, consider the channel W : X×Y×X → {0, 1} given by W (1|x, y, x̂) =
1[x = x̂]. Then, by the data processing inequality we get

D(PXY X̂ ◦W‖QXY X̂ ◦W ) ≤ D(PXY X̂‖QXY X̂)

= D(PXY ‖QXY )

= log |X | −H(X|Y ),

where we used the chain rule for KL divergence in the first identity and the
second identity can be verified by a direct calculation (see Problem 2.2) . Further,
denoting p = PXY X̂(X = X̂) and q = QXY X̂(X = X̂), we get

D(PXY X̂ ◦W‖QXY X̂ ◦W ) = p log
p

q
+ (1− p) log

1− p
1− q

= log |X | − (1− p) log(|X | − 1)− h(1− p),
where in the second identity we used the expression for probability of correctness
q under QXY X̂ computed in (2.8). Upon combining this expression with the
previous bound, we get

H(X|Y ) ≤ (1− p) log(|X | − 1) + h(1− p),
which completes the proof since PXY X̂(X 6= X̂) = 1− p.

When X is uniform, it follows from Fano’s inequality that

Pr(X 6= X̂) ≥ 1− I(X ∧ Y ) + 1
log |X | ,

an inequality used popularly for deriving lower bounds in statistics.

2.9 Maximal Coupling Lemma

Earlier in Section 2.4, we saw that dvar(P,Q) = maxA⊂X (P(A) − Q(A)), a for-
mula that expresses total variation distance as an optimization problem. Such
expressions are sometimes called “variational formulae,” leading to the alterna-
tive name variational distance for total variation distance. In fact, we saw in
Lemma 2.10 an operational interpretation of this formula, where we can asso-
ciate with A the hypothesis test which declares P when X ∈ A. In this section,
we will see yet another variational formula for total variation distance, which
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is equally important and interesting. This one also gives another operational
meaning to the total variation distance, in the context of optimal transportation
cost.

As a motivation, consider the following optimal transportation problem. A
commodity is stored across multiple warehouses labeled by elements of X , with
warehouse x ∈ X having a fraction P(x) of it. We need to transfer this commodity
to multiple destinations, labeled again by the elements of X , with destination
y ∈ X seeking Q(y) fraction of it. Towards that, we assign a fraction W (y|x) of
commodity at x ∈ X to be shipped to y ∈ X . Suppose that we incur a cost of 1
when we send a “unit” of the commodity from source x to a destination y that
differs from x, and no cost when sending from x to x. What is the minimum
possible cost that we can incur?

More precisely, we can represent the input fractions using a random variable X
with probability distribution P and the output fractions using a random variable
Y with probability distribution Q. While the marginal distributions of X and
Y are fixed, our assignment W defines a joint distribution for X and Y. Such a
joint distribution is called a coupling of distributions P and Q.

definition 2.30 (Coupling) For two probability distributions P and Q on
X , a coupling of P and Q is a joint distribution PXY such that PX = P and
PY = Q. The set of all couplings of P and Q is denoted by π(P,Q). Note that
π(P,Q) contains P×Q and is, therefore, nonempty

We now express the previous optimal transportation problem using this notion
of couplings. An assignment W coincides with a coupling PXY of P and Q, and
the cost incurred by this assignment is given by

C(X,Y ) := EPXY [1[X 6= Y ]] = Pr(X 6= Y ) .

Thus, in the optimal transport problem specified above, the goal is to find the
minimum cost9

C∗(P,Q) = min
PXY ∈π(P,Q)

C(X,Y ) = min
PXY ∈π(P,Q)

Pr(X 6= Y ) .

Interestingly, C∗(P,Q) coincides with dvar(P,Q).

lemma 2.31 (Maximal coupling lemma) For probability distributions P and Q
on X , we have

dvar(P,Q) = C∗(P,Q).

Proof Consider a coupling PXY ∈ π(P,Q). Then, for any x, we have

P(x) = Pr(X = x, Y 6= X) + Pr(X = x, Y = X)

≤ Pr(X = x, Y 6= X) + Pr(Y = x)

= Pr(X = x, Y 6= X) + Q(x),

9 We will see soon that there is a coupling that attains the minimum, justifying the use of

min instead of inf in the definition.
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whereby

P(x)−Q(x) ≤ Pr(X = x, Y 6= X) , ∀x ∈ X .

Summing over x such that P(x) ≥ Q(x), we get

dvar(P,Q) ≤
∑

x:P(x)≥Q(x)

Pr(X = x, Y 6= X) ≤ Pr(Y 6= X) .

Since this bound holds for every coupling PXY ∈ π(P,Q), we obtain

dvar(P,Q) ≤ C∗(P,Q).

For the other direction, let U be a binary random variable, with Pr(U = 0) =∑
x∈X min{P(x),Q(x)}. Noting that

1−
∑
x∈X

min{P(x),Q(x)} =
∑
x∈X

(P(x)−min{P(x),Q(x)})

=
∑

x∈X :P(x)≥Q(x)

(P(x)−Q(x))

= dvar(P,Q),

i.e., U is the Bernoulli random variable with parameter dvar(P,Q). Conditioned
on U = 0, we sample X = x, Y = y with probability

Pr(X = x, Y = y|U = 0) = min{P(x),Q(x)}1[x = y] /(1− dvar(P,Q)).

Conditioned on U = 1, we sample X = x and Y = y with probability

Pr(X = x, Y = y|U = 1)

=
(P(x)−Q(x))(Q(y)− P(y))

dvar(P,Q)2
1[P(x) ≥ Q(x),Q(y) ≥ P(y)] .

Thus, X = Y if and only if U = 0, whereby

Pr(X 6= Y ) = Pr(U = 1) = dvar(P,Q).

It only remains to verify that PXY ∈ π(P,Q). Indeed, note that∑
y∈Y

PXY (x, y) = Pr(U = 0)
∑
y∈X

Pr(X = x, Y = y|U = 0)

+ Pr(U = 1)
∑
y∈X

Pr(X = x, Y = y|U = 1)

= min{P(x),Q(x)}
∑
y∈X

1[y = x]

+ (P(x)−Q(x))1[P(x) ≥ Q(x)]
∑

y∈X : Q(y)≥P(y)

(Q(y)− P(y))
dvar(P,Q)

= min{P(x),Q(x)}+ (P(x)−Q(x))1[P(x) ≥ Q(x)]

= P(x)
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for every x ∈ X , and similarly,
∑
x∈X PXY (x, y) = Q(y), which shows that

C∗(P,Q) ≤ dvar(P,Q) and completes the proof.

2.10 A Variational Formula for KL Divergence

We have seen two variational formulae for total variation distance. In fact, a very
useful variational formula can be given for KL divergence as well.

lemma 2.32 (A variational formula for KL divergence) For probability distri-
butions P and Q on a set X such that supp(P) ⊂ supp(Q), we have

D(P‖Q) = max
R

∑
x∈X

P(x) log
R(x)
Q(x)

,

where the max is over all probability distributions R on X such that supp(P) ⊂
supp(R). The max is attained by R = P.

Proof Using the expression for KL divergence, we have

D(P‖Q) =
∑
x∈X

P(x) log
P(x)
Q(x)

=
∑
x

P(x) log
R(x)
Q(x)

+D(P‖R)

≥
∑
x

P(x) log
R(x)
Q(x)

,

with equality if and only if P = R.

In fact, a similar formula can be attained by restricting R to a smaller fam-
ily of probability distributions containing P. A particular family of interest is
the “exponentially tilted family” of probability distributions given by Rf (x) =
Q(x)2f(X)/EQ

[
2f(X)

]
, where f : X → R, which gives the following alternative

variational formula.

lemma 2.33 For probability distributions P and Q on a set X such that supp(P) ⊂
supp(Q), we have

D(P‖Q) = max
f

EP[f(X)]− log EQ

[
2f(X)

]
,

where the maximum is over all functions f : X → R and is attained by f(x) =
log(P (x)/Q(x)).

2.11 Continuity of Entropy

Next, we present a bound that relates H(P)−H(Q) to dvar(P,Q). We will show
that |H(P)−H(Q)| is roughly O(dvar(P,Q) log 1/dvar(P,Q)) with the constant
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depending on log |X |. As a consequence, we find that entropy is continuous in P,
for distributions P supported on a finite set X .

theorem 2.34 (Continuity of entropy) For probability distributions P and Q
on X , we have

|H(P)−H(Q)| ≤ dvar(P,Q) log(|X | − 1) + h(dvar(P,Q)),

where h(·) denotes the binary entropy function.

Proof Consider a coupling PXY of P and Q (PX = P and PY = Q). Then,
H(X) = H(P) and H(Y ) = H(Q), whereby

|H(P)−H(Q)|= |H(X)−H(Y )|= |H(X|Y )−H(Y |X)|
≤ max{H(X|Y ), H(Y |X)}.

By Fano’s inequality, we have

max{H(X|Y ), H(Y |X)} ≤ Pr(X 6= Y ) log(|X | − 1) + h(Pr(X 6= Y )).

The bound above holds for every coupling. Therefore, choosing the coupling
that attains the lower bound of dvar(P,Q) in the maximal coupling lemma
(Lemma 2.31), we get

max{H(X|Y ), H(Y |X)} ≤ dvar(P,Q) log(|X | − 1) + h(dvar(P,Q)).

2.12 Hoeffding’s Inequality

Earlier, in Section 2.2, we saw that a sum of i.i.d. random variables Sn =
∑n
i=1Xi

takes values close to nE[X1] with high probability as n increases. Specifically, in
proving the weak law of large numbers, we used Chebyshev’s inequality for Sn.
We take a short detour in this section and present a “concentration inequality”
which often gives better estimates for |Sn−nE[X1] | than Chebyshev’s inequality.
This is a specific instance of the Chernoff bound and applies to bounded random
variables – it is called Hoeffding’s inequality. The reason for presenting this bound
here is twofold: first, indeed, we use Hoeffding’s inequality for our analysis in this
book; and second, we will use Hoeffding’s lemma to prove Pinsker’s inequality
in the next section.

Consider a random variable X taking values in a finite set X ⊂ R and such
that E[X] = 0. By Markov’s inequality applied to the random variable eλX ,
where λ > 0, we get

Pr(X > t) = Pr(λX > λt)

= Pr
(
eλX > eλt

)
≤ E

[
eλ(X−t)

]
for every t ∈ R and every λ > 0. This very simple bound is, in fact, very powerful,
and is called the Chernoff bound.
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Of particular interest are sub-Gaussian random variables, namely random
variables which have similar tail probabilities Pr(X > t) to Gaussian random
variables. It is a standard fact that, for a Gaussian random variable G with zero
mean and unit variance, Pr(G > t) ≤ e− t

2
2 . Roughly speaking, sub-Gaussian ran-

dom variables are those which have similarly decaying tail probabilities. Using
the Chernoff bound given above, we can convert this requirement of quadrati-
cally exponential decay of tail probabilities to that for the log-moment generating
function ψX(λ) := ln E

[
eλX

]
, λ ∈ R.

Formally, we have the following definition.

definition 2.35 (Sub-Gaussian random variables) A random variable X is
sub-Gaussian with variance parameter σ2 if E[X] = 0 and for every λ ∈ R we
have

ln E
[
eλX

]
≤ λ2σ2

2
.

Recall that the log-moment generating function of the standard Gaussian ran-
dom variable is given by ψG(λ) = λ2/2. Thus, the definition above requires that
X has log-moment generating function dominated by that of a Gaussian random
variable with variance σ2.

Using the Chernoff bound provided above, we get a Gaussian-like tail bound
for sub-Gaussian random variables.

lemma 2.36 (Sub-Gaussian tails) For a sub-Gaussian random variable X with
variance parameter σ2, we have for every t > 0 that

Pr(X > t) ≤ e− t2

2σ2 . (2.9)

Proof Since X is sub-Gaussian with variance parameter σ2, using the Chernoff
bound, for every λ > 0 we have

Pr(X > t) ≤ e−λtE
[
eλX

]
≤ e−λt+λ2σ2/2,

which upon minimizing the right-hand side over λ > 0 gives the desired bound
(2.9), which is attained by λ = t

σ2 .

Next, we make the important observation that the sum of independent sub-
Gaussian random variables is sub-Gaussian too. This, when combined with the
previous observations, gives a concentration bound for sums of sub-Gaussian
random variables.

lemma 2.37 (Sum of sub-Gaussian random variables) Let X1, . . . , Xn be inde-
pendent and sub-Gaussian random variables with variance parameters σ2

1 , . . . , σ
2
n,

respectively. Then, for every t > 0, we have

Pr

(
n∑
i=1

Xi ≥ t
)
> e
− t2

2
∑n
i=1 σ

2
i .
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Proof First, we note that for every λ > 0 we have

E
[
eλ

∑n
i=1 Xi

]
=

n∏
i=1

E
[
eλXi

]
≤ eλ2 ∑n

i=1 σ
2
i /2,

where we used the independence of the Xi for the identity and the fact that
they are sub-Gaussian for the inequality. Thus,

∑n
i=1Xi is sub-Gaussian with

variable parameter
∑n
i=1 σ

2
i , and the claim follows from Lemma 2.36.

Finally, we come to the Hoeffding inequality, which provides a concentration
bound for bounded random variable. The main technical component of the proof
is to show that a bounded random variable is sub-Gaussian. We show this first.

lemma 2.38 (Hoeffding’s lemma) For a random variable X taking finitely
many values in the interval [a, b] and such that E[X] = 0, we have

ln E
[
eλX

]
≤ (b− a)2λ2

8
.

Proof As a preparation for the proof, we first note that for any random variable
Y taking values in [a, b], we have

V[Y ] ≤ (b− a)2

4
.

The first observation we make is that V[Y ] = minθ∈[a,b] E
[
(Y − θ)2

]
. This can

be verified10 by simply optimizing over θ. It follows that

V[Y ] ≤ min
θ∈[a,b]

max{(θ − a)2, (b− θ)2} =
(a− b)2

4
.

Next, we note that the function ψ(λ) = ln E
[
eλX

]
is a twice continuously differ-

entiable function over λ ∈ R for a discrete and finite random variable X. Thus,
by Taylor’s approximation,

ψ(λ) ≤ ψ(0) + ψ′(0)λ+ max
c∈(0,λ]

ψ′′(c)
λ2

2
.

A simple calculation shows that ψ′(λ) = E
[
XeλX

]
/E
[
eλX

]
, and it follows that

ψ(0) = ψ′(0) = 0.

Also, differentiating once again, we get

ψ′′(λ) =
E
[
X2eλX

]
E[eλX ]

−
(

E
[
XeλX

]
E[eλX ]

)2

.

Denoting by Q(x) the probability distribution Q(x) = PX(x) eλx/E
[
eλX

]
, we

note that ψ′′(λ) is the variance of X under Q. Thus, by our observation earlier,

10 We only consider discrete random variables, wherein the proofs are technically
straightforward.
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ψ′′(λ) ≤ (b−a)2/4. Combining these bounds with the Taylor approximation, we
get

ψ(λ) ≤ (b− a)2λ2

8
,

which completes the proof.

Thus, a zero-mean random variable taking values in [a, b] is sub-Gaussian with
variance parameter (b−a)2/4. We obtain Hoeffding’s inequality as a consequence
of this fact and Lemma 2.37. We state this final form for random variables which
need not be zero-mean. This can be done simply by noting that if X ∈ [a, b],
then even X − E[X] takes values in an interval of length b− a.

theorem 2.39 (Hoeffding’s inequality) Consider discrete, independent ran-
dom variables X1, . . . , Xn that take values in the interval [ai, bi], 1 ≤ i ≤ n.
Then, for every t > 0, we have

Pr

(
n∑
i=1

(Xi − E[Xi]) > t

)
≤ e−

2t2∑n
i=1(bi−ai)2 .

2.13 Pinsker’s Inequality

Returning to the discussion on information-theoretic quantities, we now establish
a relation between dvar(P,Q) and D(P‖Q). Roughly, we show that dvar(P,Q) is
less than

√
D(P‖Q).

theorem 2.40 (Pinsker’s inequality) For probability distributions P and Q on
X , we have

dvar(P,Q)2 ≤ ln 2
2
D(P‖Q).

Proof We obtain Pinsker’s inequality as a consequence of the variational formula
for KL divergence given in Lemma 2.33 and Hoeffding’s lemma (Lemma 2.38).
Consider the set A such that dvar(P,Q) = P (A) − Q(A), and let fλ(x) =
λ(1[{x ∈ A}] − Q(A)). Then, it is easy to see that EP[fλ(X)] = λdvar(P,Q)
and EQ[fλ(X)] = 0. Using this specific choice of f = fλ in the variation formula
for KL divergence given in Lemma 2.33, we get

D(P‖Q) ≥ λdvar(P,Q)− log EQ

[
2fλ(X)

]
.

Note that the random variable 1[x ∈ A]−Q(A) is zero-mean under Q and takes
values between −Q(A) and 1−Q(A). Thus, by Hoeffding’s lemma,

log EQ

[
2fλ(X)

]
=

1
ln 2

ln EQ

[
e(ln 2)fλ(X)

]
≤ (ln 2)λ2

8
.

Upon combining the two bounds above, we obtain

D(P‖Q) ≥ λdvar(P,Q)− (ln 2)λ2

8
, ∀λ > 0,
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which on maximizing the right-hand side over λ > 0 yields the claimed
inequality.

2.14 Rényi Entropy

In addition to Shannon entropy, in this book, we rely on another related measure
of uncertainty and randomness: the Rényi entropy. Below we review some basic
properties of this quantity.

definition 2.41 (Rényi entropy) For a probability distribution P on X and
α ≥ 0, α 6= 1, the Rényi entropy of order α, denoted by Hα(P), is defined as

Hα(P) :=
1

1− α log
∑
x∈X

P(x)α.

As for Shannon entropy, we use the notation Hα(X) and Hα(P) to denote the
Rényi entropy of order α for a random variable X with distribution P.

theorem 2.42 (Properties of Hα(P)) For a probability distribution P on a
finite set X and α > 0, α 6= 1, the following properties hold.

1. 0 ≤ Hα(P) ≤ log |X |.
2. Hα(P) is a nonincreasing function of α.
3. limα→∞Hα(P) = minx∈X − log P(x).
4. limα→1Hα(P) = H(P).

Proof of 1. For 0 < α < 1 and α > 1, respectively, we note that
∑
x∈X P(x)α >

1 and
∑
x∈X P(x)α ≤ 1. Therefore, Hα(P) ≥ 0.

Next, for α ∈ (0, 1), note that

∑
x

P(x)α = EP

[(
1

P(X)

)1−α
]

≤ |X |1−α,

where the inequality uses Jensen’s inequality applied to the concave function
t1−α for α ∈ (0, 1) and t > 0. Thus, Hα(P) ≤ log |X | for α ∈ (0, 1). The proof
for α > 1 can be completed similarly by noting that t1−α is a convex function
for α > 1 and t > 0.

Proof of 2. Consider the function f(α) = Hα(P) for α > 0 and α 6= 1. Then,
denoting Pα(x) = P(x)α /

∑
x′ P(x′)α, we can verify that

f ′(α) = − 1
(1− α)2

∑
x∈X

Pα(x) log
Pα(x)
P(x)

= − 1
(1− α)2

D(Pα‖P) ≤ 0

whereby f is a nonincreasing function.
Claims 3 and 4 can be verified by directly computing the limits.
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From Claim 4, we can regard the Shannon entropy as the Rényi entropy of
order α = 1. The Rényi entropy for α = 0 is H0(P) = log |supp(P)|, and it is
referred to as the max-entropy, denoted Hmax(P). On the other hand, the Rényi
entropy for α→∞ is referred to as the min-entropy, denoted Hmin(P). We will
see operational meanings of the max-entropy and the min-entropy in Chapter 6
and Chapter 7, respectively.

2.15 References and Additional Reading

The content of this chapter concerns many basic quantities in information the-
ory. Many of these appeared in Shannon’s seminal work [304] and the relevance
of some of them in the context of security appeared in [305]. However, quantities
such as total variation distance and Kullback–Leibler divergence are statistical
in origin and did not directly appear in Shannon’s original work. A good refer-
ence for their early use is Kullback’s book [207] and references therein. But these
notions are now classic and can be accessed best through standard textbooks for
information theory such as [75, 88, 151]. In our presentation, some of the proofs
are new and not available in these textbooks. In particular, our proof of Fano’s
inequality based on data processing inequality is a folklore and underlies many
generalizations of Fano’s inequality; our presentation is closest to that in [150].
Our discussion on the variational formula for Kullback–Leibler divergence, Ho-
effding’s inequality, and proof of Pinsker’s inequality using these tools is based
on the presentation in the excellent textbook [40] on concentration inequalities.
Our bound for continuity of Shannon entropy using the maximal coupling lemma
is from [10, 362] (references we found in [88, Problem 3.10]). Rényi entropy was
introduced in [291] and has emerged as an important tool for single-shot results
in information theory and information-theoretic cryptography.

Problems

2.1 For two distributions P and Q on a finite set X , prove the following equiv-
alent forms of the total variation distance for discrete distributions P and Q:

dvar(P,Q) = sup
A⊂X

P(A)−Q(A)

= sup
A⊂X

|P(A)−Q(A)|

=
∑

x∈X :P(x)≥Q(x)

P(x)−Q(x)

=
1
2

∑
x∈X
|P(x)−Q(x)|.

2.2 For distributions PXY and QXY = Punif × PY on X × Y, where Punif

denotes the uniform distribution on X , show that
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D(PXY ‖QXY ) = log |X | −H(X | Y ).

The quantity on the left-hand side was used to define a security index in [90].
2.3 Show the following inequalities for entropies (see [228] for other such in-
equalities and their application in combinatorics):
1. H(X1, X2, X3) ≤ 1

2 [H(X1, X2) +H(X2, X3) +H(X3, X1)],
2. H(X1, X2, X3) ≥ 1

2 [H(X1, X2|X3) +H(X2, X3|X1) +H(X3, X1|X2)].
2.4 In this problem we outline an alternative proof of Fano’s inequality. Con-
sider random variables X, Y , and X̂ satisfying the Markov relation X−◦−Y −◦−X̂ and
such thatX and X̂ both take values in the same finite set X . Denote by E the ran-
dom variable 1

[
X̂ 6= X

]
. Show that H(X | X̂) ≤ Pr(E = 1) log(|X |−1) +H(E)

and conclude that

H(X | Y ) ≤ Pr
(
X 6= X̂

)
log(|X | − 1) + h

(
Pr
(
X 6= X̂

))
.

2.5 In this problem we outline an alternative proof of Pinsker’s inequality. Using
the data processing inequality for KL divergence, show that Pinsker’s inequality
holds if and only if it holds for distributions on X with |X | = 2. Further, show
that Pinsker’s inequality for binary alphabet holds, that is, show that for every
p, q ∈ (0, 1) we have

p log
p

q
+ (1− p) log

(1− p)
(1− q) ≥

2
ln 2
· (p− q)2.

2.6 Let (X1, . . . , Xn) ∈ {0, 1}n be distributed uniformly over all binary se-
quences with less than np ones, with 0 ≤ p ≤ 1/2. Show that Pr(Xi = 1) ≤ h(p)
for all 1 ≤ i ≤ n, and that H(X1, . . . , Xn) ≤ ∑n

i=1H(Xi). Conclude that for
every t ≤ np,

t∑
i=0

(
n

i

)
≤ 2nh(p).

2.7 We now use Problem 2.6 and Pinsker’s inequality to derive a Hoeffding-type
bound. Consider i.i.d. random variables X1, . . . , Xn with common distribution
Bernoulli(p), 0 ≤ p ≤ 1/2.
1. For any sequence x ∈ {0, 1}n with nθ ones, show that

Pr(Xn = x) = 2−nD2(θ‖p)−nh(θ),

where D2(q‖p) denotes the KL divergence between Bernoulli distributions
with parameters q and p.

2. Use Problem 2.6 to conclude that Pr(
∑n
i=1Xi = nθ) ≤ 2−nD2(θ‖p) and then

Pinsker’s inequality to conclude that for all θ > p,

Pr

(
n∑
i=1

Xi > nθ

)
≤ ne−2n(p−θ)2

.
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2.8 Establish the following variational formula for a discrete distribution P

over real numbers. For all λ > 0,

log EP
[
2λ(X−EP[X])

]
= max
Q:supp(Q)⊂ supp(P )

λ(EQ[X]− EP [X])−D(Q‖P ).

Show that if |X| ≤ 1 with probability 1 under P , then EQ[X]−EP [X] ≤ 2d(P,Q).
Finally, conclude that if P (|X| ≤ 1) = 1, then

log EP
[
2λ(X−EP[X])

]
≤ 2λ2

ln 2
.

2.9 For two pmfs P and Q on a finite set X and 0 < θ < 1, define

dθ(P,Q) := max
A

P (A)− 1− θ
θ

Q(A).

Suppose that B ∼ Ber(θ) is generated. If B = 1, then a sample X from
P is generated. If B = 0, then a sample X from Q is generated. Consider
the minimum probability of error in estimating B from X given by P ∗e (θ) =
minf :X→{0,1} Pr(B 6= f(X)). Show that

P ∗e (θ) = θ(1− dθ(P,Q))

and, further, that

dθ(P,Q) =
1
2θ

∑
x

|θP (x)− (1− θ)Q(x)|+ 2θ − 1
2θ

.

2.10 Show that the Rényi entropy Hα(P) for a distribution P on a finite
cardinality set X is a concave function of P.
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