SOME GENERALIZED THEOREMS ON CONNECTIVITY

R. E. NETTLETON

The " k-dense" subgraphs of a connected graph G are connected and contain neighbours of all but at most $k-1$ points. We consider necessary and sufficient conditions that a point be in Γ_{k}, the union of the minimal k-dense subgraphs. It is shown that Γ_{k} contains all the " $[m, k]$-isthmuses" and " $[m, k]$-articu-lators"-minimal subgraphs which disconnect the graph into at least $k+1$ disjoint graphs-and that an $[m, k]$-isthmus or $[m, k]$-articulator of Γ_{k} disconnects G. We define "central points," "degree" of a point, and "chromatic number" and examine the relationship of these concepts to connectivity. Many theorems contain theorems previously proved (1) as special cases.

1. Definitions. The concepts points, graph, and subgraph will be used here in precisely the same sense as in a previous paper (1), in which were also defined the union, intersection, and difference of two subgraphs, together with neighbours, path of length k, diameter of a graph, connected points and graphs, m-connected and completely connected graphs, articulator, a subgraph which disconnects G, and the partition of a disconnected graph. Unless otherwise specified, a connected graph G will have a finite number " n " of points, and the null graph will be assumed disconnected. If G^{\prime} and $G^{\prime \prime}$ are subgraphs, $G^{\prime}\left(G^{\prime \prime}\right)$ will denote the subgraph determined by all points in $G^{\prime}-G^{\prime \prime}$ which have neighbours in $G^{\prime \prime}$. If $G^{\prime \prime}$ is a single point p, we denote this subgraph by $G^{\prime}(p)$. The number of points in $G(p)$ is the degree of p, and the set of all points in G which have a given degree forms a degree class.

The distance between a point p_{1} and a subgraph S contained in $G-p_{1}$ is the smallest positive integer q such that for some point p_{2} in S there is a path of length q connecting p_{1} and p_{2}. A subgraph G^{\prime} disconnects two subgraphs which are contained in separate graphs of the partition of $G-G^{\prime}$. An $[m, k]$ - $i s t h m u s$ ($[m, k]$-articulator) is a completely connected (not completely connected) subgraph G^{\prime} which disconnects G and has precisely m points, such that G^{\prime} contains no proper disconnecting subgraph, and the partition of $G-G^{\prime}$ consists of at least $k+1$ graphs. The generic term isthmus will refer to a subgraph which, for any m, is an $[m, 1]$-isthmus. Ω_{k} will denote the union of all subgraphs which, for any m, are [m, k]-articulators or [m, k]-isthmuses of G. In Figure I, the points $\{2,5\}$ determine a [2, 1]-isthmus, while $\{2,4\}$ determine a [2, 2]articulator.

Received March 31, 1959. Research supported by the Robert A. Welch Foundation.

2. \mathbf{k}-dense subgraphs. If k is any positive integer, a k-dense subgraph G^{\prime} is a connected subgraph such that there are at most $k-1$ points of $G-G^{\prime}$ which have no neighbours in G^{\prime}. In Figure 2, the points " 1 " and " 4 " are 1dense while " 2 " and " 3 " are 2 -dense.

Figure 2
Clearly if G^{\prime} is k-dense, then G^{\prime} is p-dense for $p>k$. Another obvious result is
Lemma 2.1. A connected subgraph which contains a k-dense subgraph is k-dense.

Let S_{k} denote the set of all k-dense subgraphs having at least k points, plus the null graph. A trivial consequence of 2.1 is

Theorem 2.2. The subgraphs in S_{k} form a lattice under the relation of set inclusion.

If G is m-connected for $m<n$ and contains a point $p_{1}, G\left(p_{1}\right)$ must have at least m points which implies

Theorem 2.3. If G is m-connected for $m<n$, every connected subgraph is $(n-m)$-dense.

A k-dense subgraph which properly contains no other k-dense subgraph is said to be D_{k}-minimal. The reader will easily verify:

Theorem 2.4. If a point is D_{k}-minimal, then it is contained in every $[m, k]$ isthmus and $[m, k]$-articulator.

If $n>1$ and a point p is not a $[1,1]$-isthmus, $G-p$ is 1 -dense and hence k-dense. If p is a $[1,1]$-isthmus and the partition of $G-p$ contains precisely
$q+1$ graphs, q of which contain fewer than k points among them, then the remaining graph in the partition is k-dense, which cannot be the case if every q graphs in the partition contain at least k points. This proves:

Theorem 2.5. For $n>1$, the intersection of all the k-dense subgraphs is precisely the subgraph G^{\prime} of $[1,1]$-isthmuses with the property that for any $[1, q]$ isthmus $G^{\prime \prime}$ in G^{\prime} such that $G^{\prime \prime}$ is not a $[1, q+1]$-isthmus, any set of q graphs in the partition of $G-G^{\prime \prime}$ contain at least k points among them.

We shall now show how the assumption that G is k-connected or that a point is D_{k}-minimal restricts the distances between points of G. The associated number of a point p_{1} is the greatest positive integer d such that for some point p_{2} in G, d is the distance between p_{1} and p_{2}. A point having minimum associated number is called a central point of G.

Lemma 2.6. Suppose G is k-connected. Let p be a point in G with associated number d, and define $G^{r}(p), r=1, \ldots, d$, to be the set of all points distant r from p, while $G^{\circ}(p) \equiv p$. It follows that: ${ }^{1}$
1.

$$
G=\sum_{r \leqslant d} G^{r}(p)
$$

2. For $1 \leqslant r<d$ and $s>0, G^{r}(p)$ disconnects $G^{r+s}(p)$ from all $G^{i}(p)$ for which $i \leqslant r-1$.
3. For each $r, 1 \leqslant r<d, G^{r}(p)$ contains at least k points.

For any point $p_{1} \neq p$, the distance of p_{1} from p is $\leqslant d$ and thus p_{1} is in some $G^{i}(p)$ for $i \leqslant d$, which proves Part 1. Let $\left\{p_{0}=p^{1}, \ldots, p^{q}=p^{\prime}\right\}$ determine a path connecting p_{0} in $G^{i}(p)$, for $i<r$, to p^{\prime} in $G^{r+s}(p)$. If p^{i} is distant $<r$ and p^{i+1} distant $>r$ from p, then there exists a path $\left\{p=q^{1}\right.$, $\left.\ldots, q^{t}=p^{i}\right\}$ such that $t \leqslant r$ and $\left\{q^{1}, \ldots, q^{t}, p^{i+1}\right\}$ is a path of length $\leqslant r$ connecting p and p^{i+1}, which is a contradiction. Therefore by induction it follows that no path with p_{0} as initial point can contain a point in $G^{i}(p)$ for $i>r$ if it contains no point in $G^{r}(p)$-which proves Part 2. Since G is k connected and $G^{r}(p)$ disconnects G for $1 \leqslant r<d, G^{r}(p)$ must contain at least k points.

Theorem 2.7. If G is k-connected, S is an r-dense subgraph for $r \leqslant m k+1$, m being a non-negative integer, and p is a point in $G-S$, then the distance from p to S is $\leqslant m+1$.

By 2.6, if the distance from p to S is $\geqslant m+2$, there exist disjoint subgraphs $G^{i}(p), i=0, \ldots, m$, in which no point has a neighbour in S and m of which have at least k points each, contrary to the assumption that S is r-dense for $r \leqslant m k+1$. When S consists of a single point and $m=1,2.7$ implies

[^0]Theorem 2.8. If G contains a point which is D_{1}-minimal, the set of central points is precisely the set of D_{1}-minimal points, and if G contains no point which is D_{1}-minimal, but G is k-connected and contains a point p which is D_{r}-minimal for $r \leqslant k+1$, then p is a central point of G.

Theorem 2.9. If G has an isthmus or articulator G^{\prime}, and also a point p_{1} with associated number d, and a point p_{2} distant d from G^{\prime}, then there is a graph $G^{\prime \prime}$ in the partition of $G-G^{\prime}$ such that all the central points of G are contained in the union of G^{\prime} and $G^{\prime \prime}$.

Suppose p_{2} and a point p_{3} are in two disconnected graphs of the partition of $G-G^{\prime}$. Then the distance from p_{2} to p_{3} is at least $d+1$, and p_{3} is not a central point.
3. Union of the D_{k}-minimal subgraphs. The symbol " Γ_{k} " will denote the union of all the D_{k}-minimal subgraphs of G.

Lemma 3.1. For given k, an $[m, k]$-isthmus or $[m, k]$-articulator of Γ_{k} disconnects G.

Let Γ^{\prime} be an $[m, k]$-isthmus or $[m, k]$-articulator of Γ_{k} and suppose $G-\Gamma^{\prime}$ is connected. Every point in Γ^{\prime} has a neighbour in $G-\Gamma^{\prime}$, for Γ^{\prime} can have no proper subgraph disconnecting Γ_{k}, and thus $G-\Gamma^{\prime}$ is 1 -dense and contains a D_{k}-minimal subgraph G^{\prime}. But $G-\Gamma^{\prime}-\left(G-\Gamma_{k}\right)=\Gamma_{k}-\Gamma^{\prime}$ is not connected, and its partition consists of at least $k+1$ graphs, so that it contains no D_{k}-minimal subgraph. Thus G^{\prime} must contain some point of $G-\Gamma_{k}$, which is a contradiction.

If G is m-connected, no $[m, k]$-articulator or $[m, k]$-isthmus of Γ_{k} can have a proper subgraph which disconnects G. Thus we have proved:

Theorem 3.2. If G is m-connected, an [$m, k]$-articulator or $[m, k]$ - $i s t h m u s$ of Γ_{k} is respectively an $[m, 1]$-articulator or $[m, 1]$-isthmus of G.

Theorem 3.3. If S is any subgraph determined by k points and containing no D_{k}-minimal subgraph, then $\Gamma_{k}(S)$ disconnects G.

If $G-\Gamma_{k}(S)$ is connected, it is k-dense and contains a D_{k}-minimal subgraph in which some point not in S must have a neighbour in S, which is impossible.

Theorem 3.4. If G is m-connected and $k \leqslant m$, then Γ_{k} contains at least $m-k+1$ points.

If there exists S satisfying the hypothesis of 3.3 , then $\Gamma_{k}(S)$ contains at least m points as does Γ_{k}. If every subgraph of k points contains a D_{k}-minimal subgraph of $G, G-\Gamma_{k}$ contains fewer than k points, and so Γ_{k} contains more than $n-k$ points, that is, at least $m-k+1$ points.

We now consider general conditions under which articulators and isthmuses of G are contained in Γ_{k}.

Theorem 3.5. If G^{\prime} is an articulator or isthmus such that the partition of $G-G^{\prime}$ consists of precisely q graphs, every $q-1$ of which contain at least k points among them, then G^{\prime} is contained in Γ_{k}.

If p is a point in G^{\prime}, then $G-G^{\prime}+p$ is 1 -dense and contains a D_{k}-minimal subgraph which cannot be contained in $G-G^{\prime}$. An immediate consequence is

Theorem 3.6. $\quad \Omega_{k}$ is contained in Γ_{k}.
In proving the following theorem, we use the results, proved in (1), which assert that if G is not completely connected, it contains a disconnecting subgraph, and a proper subgraph which disconnects G contains an articulator or an isthmus.

Theorem 3.7. If G is not completely connected and for given k, every articulator or isthmus is respectively, for some m, an $[m, k]$-articulator or $[m, k]$-isthmus, then Γ_{k} is contained in Ω_{k}.

Suppose p is a point in Γ_{k}. If p is D_{k}-minimal, p is contained in every $[m, k]-$ isthmus and $[m, k]$-articulator by 2.4 , and since G is not completely connected, Ω_{k} is not null. If p is not D_{k}-minimal, let Γ^{\prime} be a D_{k}-minimal subgraph containing p. Then either $\Gamma^{\prime}-p$ is not connected or there is a point p_{1} in $G-\Gamma^{\prime}$ such that p_{1} is a neighbour of p and of no other point in Γ^{\prime}. In the first of these two cases, $G-\Gamma^{\prime}+\mathrm{p}$ disconnects G, and therefore contains an $[m, k]-$ isthmus or $[m, k]$-articulator which must contain p since there are at most $k-1$ points in $G-\Gamma^{\prime}$ which have no neighbours in Γ^{\prime}. In the second case, $G-\Gamma^{\prime}-p_{1}+p$ disconnects G and contains an $[m, k]$-articulator or [m, k]-isthmus which must contain p by the same reasoning. For the case $k=1,3.6$ and 3.7 jointly imply:

Theorem 3.8. If G is not completely connected, then $\Omega_{1}=\Gamma_{1}$.
We now proceed to obtain necessary conditions and sufficient conditions that a point be contained in $G-\Gamma_{k}$.

Theorem 3.9. If p is a point which is not D_{k}-minimal and is not a $[1,1]-$ isthmus, and whenever G^{\prime} is a minimal subgraph with the property that $G^{\prime}+p$ disconnects two points of $G(p), G^{\prime}$ also disconnects p from at least k points of $G-G^{\prime}$, then p is contained in $G-\Gamma_{k}$.

Suppose a point p satisfies the conditions of the theorem and there is a D_{k}-minimal subgraph Γ^{\prime} containing p and a point which is a neighbour of p. Then either $\Gamma^{\prime}-p$ is not connected (Case I), or there is a point p_{1} in G which is a neighbour of p and of no other point in Γ^{\prime} (Case II). In Case I, $G-\Gamma^{\prime}+p$ disconnects two points of the intersection of $G(p)$ with Γ^{\prime}, and since p is not a [1, 1]-isthmus, $G-\Gamma^{\prime}$ contains a minimal subgraph G^{\prime}, such that $G^{\prime}+p$ disconnects these two points. But if G^{\prime} disconnects p from k points of $G-G^{\prime}$, then Γ^{\prime} is not D_{k}-minimal. Thus $\Gamma^{\prime}-p$ must be connected, and we consider Case II. In this case, $G-\Gamma^{\prime}-p_{1}+p$ disconnects p_{1} in $G(p)$ from another
point in the intersection of $G(p)$ with Γ^{\prime}. Then $G-\Gamma^{\prime}$ contains a minimal subgraph G^{\prime} such that $G^{\prime}+p$ disconnects these two points, but by the same reasoning as in Case I, G^{\prime} cannot disconnect p from k points of $G-G^{\prime}$ if Γ^{\prime} is D_{k}-minimal. Thus p is contained in $G-\Gamma_{k}$.

Theorem 3.10. A point p is contained in $G-\Gamma_{k}$ only if whenever G^{\prime} is a minimal subgraph with the property that $G^{\prime}+p$ disconnects at least $k+1$ points of $G(p)$ from one another, G^{\prime} also disconnects p from at least k points of $G-G^{\prime}$.

If G^{\prime} is a minimal subgraph with the property that $G^{\prime}+p$ disconnects $k+1$ points of $G(p)$, then every point of G^{\prime} is connected to at least one of these $k+1$ points by a path which, except for its initial point, contains only points of $G-G^{\prime}$. Otherwise G^{\prime} would contain a proper subgraph with this property. Accordingly, $G-G^{\prime}$ contains a k-dense subgraph if G^{\prime} does not disconnect p from at least k points in $G-G^{\prime}$. But $G-G^{\prime}-p$ cannot contain a k-dense subgraph, since it contains $k+1$ points no pair of which is connected. Accordingly p belongs to a D_{k}-minimal subgraph. For the case $k=1,3.9$ and 3.10 yield

Theorem 3.11. A point p which is not a $[1,1]$-isthmus and is not D_{1}-minimal is contained in $G-\Gamma_{1}$ if, and only if, whenever G^{\prime} is a minimal subgraph with the property that $G^{\prime}+p$ disconnects two points of $G(p), G^{\prime}$ also disconnects G.

In a previous paper (1), it was shown that every connected graph contains at least two proper 1-dense subgraphs. This result will now be used to prove.

Theorem 3.12. If $G-\Gamma_{k}$ contains fewer than k points and the D_{k}-minimal subgraphs are mutually disjoint, then no D_{k}-minimal subgraph can have more than k points.

Suppose S_{1}, \ldots, S_{r} are the D_{k}-minimal subgraphs containing more than one point, and let S_{r} contain $q>k$ points. Then there is a point $p_{r}{ }^{\prime}$ in S_{r} such that $S_{r}{ }^{\prime}=S_{r}-p_{r}{ }^{\prime}$ is a proper connected subgraph containing $q-1 \geqslant k$ points. Then each of the $S_{i}(i=1, \ldots, r-1)$ being k-dense, must contain a point p_{i} having a neighbour in $S_{r}{ }^{\prime}$. There exists a proper subgraph $S_{i}{ }^{\prime}=S_{i}-$ $p_{i}{ }^{\prime}$ containing p_{i} and all but one of the points, $p_{i}{ }^{\prime}$, of S_{i}, since S_{i} contains two proper connected subgraphs. Consider the subgraph

$$
S=\sum_{i=1}^{r} S_{i}^{\prime} .
$$

S is connected since each of the $S_{i}{ }^{\prime}$ is connected and all the $S_{i}{ }^{\prime}$ for $i<r$ contain neighbours of points in the connected subgraph $S_{T}{ }^{\prime}$. Since every D_{k}-minimal subgraph containing only one point must have a neighbour in $S_{r}{ }^{\prime}$ and since each of the points $p_{i}{ }^{\prime}$ has a neighbour in $S_{i}{ }^{\prime}, S$ contains neighbours of all the points in Γ_{k} which are not in S. Since $G-\Gamma_{k}$ contains fewer than k points, S is a k-dense subgraph containing no D_{k}-minimal subgraph, which is impossible.

In Figure 3 is shown an example of a graph in which all the conditions of 3.12 are satisfied for $k=2$. The points numbered " $1,4,6$ " are each $D_{2^{-}}$ minimal, as is the pair $\{2,3\}$. The point numbered " 5 " is the only point in $G-\Gamma_{2}$.

Figure 3
4. Colour Classes. A colour class is a subgraph no two points of which are neighbours. We shall study the relationship of this concept to connectivity, a relationship also investigated by Dirac (3;4). A k-colouring of G is a set of k colour classes such that each point of G lies in one, and only one, class of the set. The chromatic number of a subgraph G^{\prime}, which we shall denote by $c\left(G^{\prime}\right)$, is the smallest integer k such that there exists a k-colouring of G^{\prime}. The graph in Figure 3 has chromatic number 3, a 3 -colouring being formed from the colour classes $\{1,5\},\{3,4\},\{2,6\}$.

Theorem 4.1. If G is m-connected for $m<n$:

1. $c(g) \geqslant n /(n-m)$.
2. If for any positive integer k, G has diameter $\geqslant 2 k+1$, then $c(G) \leqslant$ $n-2(m k-m+1)$.
3. If G has diameter $d=k+1$ for $k \geqslant 3$, no point of G can have degree $>n-m(k-3)-3$.
4. The diameter d of G satisfies the condition:

$$
d-4 \leqslant(n-m-3) / m .
$$

By 2.3, there can be no set of more than $n-m$ points in which no pair are neighbours which implies Part 1.

To prove Part 2 , let p be a point in G with associated number $d \geqslant 2 k+1$. By 2.6 , there is sequence of subgraphs $G^{r}(p), 0 \leqslant r \leqslant d$, such that $G^{i}(p)$, $i \geqslant 0$, has no neighbour in $G^{i+2}(p)$, while from Part 3 of 2.6 , each $G^{i}(p)$, $1 \leqslant i \leqslant 2 k$, contains at least m points. Thus we can form m colour classes, each containing one point from $G^{1}(p), G^{3}(p), \ldots, G^{2 k-1}(p)$, and m other colour classes, each containing a point from $G^{2}(p), \ldots, G^{2 k}(p)$. The point p can be assigned the same colour as a point in $G^{2}(p)$, while a point in $G^{2 k+1}(p)$
can be assigned the same colour as a point in $G^{2 k-1}(p)$. If an additional colour is given to each of the $n-2(m k+1)$ points of G not already coloured, we obtain an $[n-2(m k-m+1)]-$ colouring of G.

If p^{\prime} is a point in $G^{r}(p)$ for $2 \leqslant r \leqslant k-1, \mathrm{p}^{\prime}$ has no neighbours in $G^{s}(p)$ for $s<r-1$ and $s>r+1$. Thus, including p^{\prime}, there are at least $m(k-3)+$ 3 points in G which are not neighbours of p^{\prime}, which accordingly is of degree at most $n-m(k-3)-3$. If p^{\prime} is in $G^{r}(p)$ for $r=0,1$, then p^{\prime} has no neighbours in $G^{s}(p)$ for $s \geqslant 3$, and thus p^{\prime} is of degree at most $n-m(k-2)-$ $2 \leqslant n-m(k-3)-3$. A similar argument applies when p^{\prime} is in $G^{k}(p)$ or $G^{k+1}(p)$.

Part 4, for the case $d \geqslant 4$, follows from Part 3 and the observation, from 2.3 , that if G is m-connected, no point has degree $<m$. If $d<4$, the theorem is obviously true unless $m \geqslant n-2$, in which case $d \leqslant 2$. Then $d-4 \leqslant-$ $2 \leqslant-2 / m \leqslant(n-m-3) / m$ since $m \leqslant n-1$.

Theorem 4.2. If G contains a subgraph G^{\prime} with the property that $c\left(G^{\prime}\right)=m$, the partition of $G-G^{\prime}$ consists of $q>1$ connected graphs $G_{i}(i=1, \ldots, q)$, and $r=\max \left\{c\left(G_{i}\right)\right\}$, than $c(G) \leqslant m+r$.

The reader can readily show that there exists an r-colouring of $G-G^{\prime}$ which, combined with an m-colouring of G^{\prime}, gives an $(m+r)$-colouring of G.

Theorem 4.3. For k an integer $\geqslant 1$, if G contains at least $2 k$ degree classes, $c(G) \leqslant n-k+1$.

Let k degree classes $D_{i}(i=1, \ldots, k)$ be arranged in order of decreasing degree, so that the degree of a point in D_{j} exceeds the degree of a point in D_{j+m} by at least $2 m$. From each D_{i} choose one point $p_{i}(i=1, \ldots, k)$. We can choose p_{12} in $G\left(p_{1}\right)-G\left(p_{2}\right)-p_{2}$. Assuming we have chosen $j-1$ distinct points $p_{12}, \ldots, p_{1 j}$ in such a way that $p_{1 r}$ is in

$$
G\left(p_{1}\right)-G\left(p_{r}\right)-\sum_{i \leqslant r} p_{i} \quad(r=2, \ldots, j)
$$

then since p_{1} has at least $2 j$ neighbours which are not neighbours of p_{j+1} and we have already chosen at most $2 j-1$ of these, we can choose $p_{1, j+1}$, distinct from $p_{1 r}$ for $r \leqslant j$, in

$$
G\left(p_{1}\right)-G\left(p_{j+1}\right)-\sum_{i \leqslant j+1} p_{i} .
$$

In this way we can form $k-1$ colour classes $S_{i}=p_{i}+p_{1 i}(i=2, \ldots, k)$ each having two points. We obtain an $(n-k+1)$ - colouring of G by colouring each of the remaining $n-2(k-1)$ points with a separate colour.

References

1. R. E. Nettleton, K. Goldberg, and M. S. Green, Dense subgraphs and connectivity, Can. J. Math., 11 (1959), 262-268.
2. F. Harary and R. Z. Norman, The dissimilarity characteristic of Husimi trees, Ann. Math., 58 (1953), 134-141.
3. G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. Lond. Math Soc., 7 (1957), 161-195.
4. G. A. Dirac, The structure of k-chromatic graphs, Fund. Math., 40 (1953), 42-55.

The Rice Institute

[^0]: ${ }^{1}$ The summation sign will be used to denote the union of all the subgraphs designated as summands.

