SOME GENERALIZED THEOREMS ON CONNECTIVITY

R. E. NETTLETON

The "k-dense" subgraphs of a connected graph G are connected and contain neighbours of all but at most k-1 points. We consider necessary and sufficient conditions that a point be in Γ_k , the union of the minimal k-dense subgraphs. It is shown that Γ_k contains all the "[m, k]-isthmuses" and "[m, k]-articulators"—minimal subgraphs which disconnect the graph into at least k + 1disjoint graphs—and that an [m, k]-isthmus or [m, k]-articulator of Γ_k disconnects G. We define "central points," "degree" of a point, and "chromatic number" and examine the relationship of these concepts to connectivity. Many theorems contain theorems previously proved **(1)** as special cases.

1. Definitions. The concepts points, graph, and subgraph will be used here in precisely the same sense as in a previous paper (1), in which were also defined the union, intersection, and difference of two subgraphs, together with neighbours, path of length k, diameter of a graph, connected points and graphs, m-connected and completely connected graphs, articulator, a subgraph which disconnects G, and the partition of a disconnected graph. Unless otherwise specified, a connected graph G will have a finite number "n" of points, and the null graph will be assumed disconnected. If G' and G'' are subgraphs, G'(G'') will denote the subgraph determined by all points in G'-G'' which have neighbours in G''. If G'' is a single point p, we denote this subgraph by G'(p). The number of points in G(p) is the degree of p, and the set of all points in G which have a given degree forms a degree class.

The distance between a point p_1 and a subgraph S contained in G- p_1 is the smallest positive integer q such that for some point p_2 in S there is a path of length q connecting p_1 and p_2 . A subgraph G' disconnects two subgraphs which are contained in separate graphs of the partition of G-G'. An [m, k]-isthmus ([m, k]-articulator) is a completely connected (not completely connected) subgraph G' which disconnects G and has precisely m points, such that G' contains no proper disconnecting subgraph, and the partition of G-G' consists of at least k + 1 graphs. The generic term isthmus will refer to a subgraph which, for any m, is an [m, 1]-isthmus. Ω_k will denote the union of all subgraphs which, for any m, are [m, k]-articulators or [m, k]-isthmuses of G. In Figure I, the points $\{2, 5\}$ determine a [2, 1]-isthmus, while $\{2, 4\}$ determine a [2, 2]-articulator.

Received March 31, 1959. Research supported by the Robert A. Welch Foundation.

FIGURE 1

2. k-dense subgraphs. If k is any positive integer, a k-dense subgraph G' is a connected subgraph such that there are at most k - 1 points of G - G' which have no neighbours in G'. In Figure 2, the points "1" and "4" are 1-dense while "2" and "3" are 2-dense.

Clearly if G' is k-dense, then G' is p-dense for p > k. Another obvious result is

LEMMA 2.1. A connected subgraph which contains a k-dense subgraph is k-dense.

Let S_k denote the set of all k-dense subgraphs having at least k points, plus the null graph. A trivial consequence of 2.1 is

THEOREM 2.2. The subgraphs in S_k form a lattice under the relation of set inclusion.

If G is *m*-connected for m < n and contains a point p_1 , $G(p_1)$ must have at least *m* points which implies

THEOREM 2.3. If G is m-connected for m < n, every connected subgraph is (n-m)-dense.

A k-dense subgraph which properly contains no other k-dense subgraph is said to be D_k -minimal. The reader will easily verify:

THEOREM 2.4. If a point is D_k -minimal, then it is contained in every [m, k]-isthmus and [m, k]-articulator.

If n > 1 and a point p is not a [1, 1]-isthmus, G - p is 1-dense and hence k-dense. If p is a [1, 1]-isthmus and the partition of G - p contains precisely

547

q + 1 graphs, q of which contain fewer than k points among them, then the remaining graph in the partition is k-dense, which cannot be the case if every q graphs in the partition contain at least k points. This proves:

THEOREM 2.5. For n > 1, the intersection of all the k-dense subgraphs is precisely the subgraph G' of [1, 1]-isthmuses with the property that for any [1, q]isthmus G'' in G' such that G'' is not a [1, q + 1]-isthmus, any set of q graphs in the partition of G - G'' contain at least k points among them.

We shall now show how the assumption that G is k-connected or that a point is D_k -minimal restricts the distances between points of G. The associated number of a point p_1 is the greatest positive integer d such that for some point p_2 in G, d is the distance between p_1 and p_2 . A point having minimum associated number is called a *central point* of G.

LEMMA 2.6. Suppose G is k-connected. Let p be a point in G with associated number d, and define $G^{r}(p)$, r = 1, ..., d, to be the set of all points distant r from p, while $G^{\circ}(p) \equiv p$. It follows that:¹

1.
$$G = \sum_{\tau \leqslant d} G^{\tau}(p).$$

- 2. For $1 \le r < d$ and s > 0, $G^r(p)$ disconnects $G^{r+s}(p)$ from all $G^i(p)$ for which $i \le r 1$.
- 3. For each r, $1 \leq r < d$, $G^r(p)$ contains at least k points.

For any point $p_1 \neq p$, the distance of p_1 from p is $\leq d$ and thus p_1 is in some $G^i(p)$ for $i \leq d$, which proves Part 1. Let $\{p_0 = p^1, \ldots, p^q = p'\}$ determine a path connecting p_0 in $G^i(p)$, for i < r, to p' in $G^{r+s}(p)$. If p^i is distant < r and p^{i+1} distant > r from p, then there exists a path $\{p = q^1, \ldots, q^i = p^i\}$ such that $t \leq r$ and $\{q^1, \ldots, q^i, p^{i+1}\}$ is a path of length $\leq r$ connecting p and p^{i+1} , which is a contradiction. Therefore by induction it follows that no path with p_0 as initial point can contain a point in $G^i(p)$ for i > r if it contains no point in $G^r(p)$ —which proves Part 2. Since G is kconnected and $G^r(p)$ disconnects G for $1 \leq r < d$, $G^r(p)$ must contain at least k points.

THEOREM 2.7. If G is k-connected, S is an r-dense subgraph for $r \leq mk + 1$, m being a non-negative integer, and p is a point in G - S, then the distance from p to S is $\leq m + 1$.

By 2.6, if the distance from p to S is $\ge m + 2$, there exist disjoint subgraphs $G^i(p)$, i = 0, ..., m, in which no point has a neighbour in S and mof which have at least k points each, contrary to the assumption that S is r-dense for $r \le mk + 1$. When S consists of a single point and m = 1, 2.7implies

¹The summation sign will be used to denote the union of all the subgraphs designated as summands.

THEOREM 2.8. If G contains a point which is D_1 -minimal, the set of central points is precisely the set of D_1 -minimal points, and if G contains no point which is D_1 -minimal, but G is k-connected and contains a point p which is D_r -minimal for $r \leq k + 1$, then p is a central point of G.

THEOREM 2.9. If G has an isthmus or articulator G', and also a point p_1 with associated number d, and a point p_2 distant d from G', then there is a graph G'' in the partition of G - G' such that all the central points of G are contained in the union of G' and G''.

Suppose p_2 and a point p_3 are in two disconnected graphs of the partition of G - G'. Then the distance from p_2 to p_3 is at least d + 1, and p_3 is not a central point.

3. Union of the D_k -minimal subgraphs. The symbol " Γ_k " will denote the union of all the D_k -minimal subgraphs of G.

LEMMA 3.1. For given k, an [m, k]-isthmus or [m, k]-articulator of Γ_k disconnects G.

Let Γ' be an [m, k]-isthmus or [m, k]-articulator of Γ_k and suppose $G - \Gamma'$ is connected. Every point in Γ' has a neighbour in $G - \Gamma'$, for Γ' can have no proper subgraph disconnecting Γ_k , and thus $G - \Gamma'$ is 1-dense and contains a D_k -minimal subgraph G'. But $G - \Gamma' - (G - \Gamma_k) = \Gamma_k - \Gamma'$ is not connected, and its partition consists of at least k + 1 graphs, so that it contains no D_k -minimal subgraph. Thus G' must contain some point of $G - \Gamma_k$, which is a contradiction.

If G is *m*-connected, no [m, k]-articulator or [m, k]-isthmus of Γ_k can have a proper subgraph which disconnects G. Thus we have proved:

THEOREM 3.2. If G is m-connected, an [m, k]-articulator or [m, k]-isthmus of Γ_k is respectively an [m, 1]-articulator or [m, 1]-isthmus of G.

THEOREM 3.3. If S is any subgraph determined by k points and containing no D_k -minimal subgraph, then $\Gamma_k(S)$ disconnects G.

If $G - \Gamma_k(S)$ is connected, it is k-dense and contains a D_k -minimal subgraph in which some point not in S must have a neighbour in S, which is impossible.

THEOREM 3.4. If G is m-connected and $k \leq m$, then Γ_k contains at least m - k + 1 points.

If there exists S satisfying the hypothesis of 3.3, then $\Gamma_k(S)$ contains at least *m* points as does Γ_k . If every subgraph of *k* points contains a D_k -minimal subgraph of *G*, $G - \Gamma_k$ contains fewer than *k* points, and so Γ_k contains more than n - k points, that is, at least m - k + 1 points.

We now consider general conditions under which articulators and isthmuses of *G* are contained in Γ_k .

R. E. NETTLETON

THEOREM 3.5. If G' is an articulator or isthmus such that the partition of G - G' consists of precisely q graphs, every q - 1 of which contain at least k points among them, then G' is contained in Γ_k .

If p is a point in G', then G - G' + p is 1-dense and contains a D_k -minimal subgraph which cannot be contained in G - G'. An immediate consequence is

THEOREM 3.6. Ω_k is contained in Γ_k .

In proving the following theorem, we use the results, proved in (1), which assert that if G is not completely connected, it contains a disconnecting subgraph, and a proper subgraph which disconnects G contains an articulator or an isthmus.

THEOREM 3.7. If G is not completely connected and for given k, every articulator or isthmus is respectively, for some m, an [m, k]-articulator or [m, k]-isthmus, then Γ_k is contained in Ω_k .

Suppose p is a point in Γ_k . If p is D_k -minimal, p is contained in every [m, k]isthmus and [m, k]-articulator by 2.4, and since G is not completely connected, Ω_k is not null. If p is not D_k -minimal, let Γ' be a D_k -minimal subgraph containing p. Then either $\Gamma' - p$ is not connected or there is a point p_1 in $G - \Gamma'$ such that p_1 is a neighbour of p and of no other point in Γ' . In the first of these two cases, $G - \Gamma' + p$ disconnects G, and therefore contains an [m, k]isthmus or [m, k]-articulator which must contain p since there are at most k - 1 points in $G - \Gamma'$ which have no neighbours in Γ' . In the second case, $G - \Gamma' - p_1 + p$ disconnects G and contains an [m, k]-articulator or [m, k]-isthmus which must contain p by the same reasoning. For the case k = 1, 3.6 and 3.7 jointly imply:

THEOREM 3.8. If G is not completely connected, then $\Omega_1 = \Gamma_1$.

We now proceed to obtain necessary conditions and sufficient conditions that a point be contained in $G - \Gamma_k$.

THEOREM 3.9. If p is a point which is not D_k -minimal and is not a [1, 1]isthmus, and whenever G' is a minimal subgraph with the property that G' + pdisconnects two points of G(p), G' also disconnects p from at least k points of G - G', then p is contained in $G - \Gamma_k$.

Suppose a point p satisfies the conditions of the theorem and there is a D_k -minimal subgraph Γ' containing p and a point which is a neighbour of p. Then either $\Gamma' - p$ is not connected (Case I), or there is a point p_1 in G which is a neighbour of p and of no other point in Γ' (Case II). In Case I, $G - \Gamma' + p$ disconnects two points of the intersection of G(p) with Γ' , and since p is not a [1, 1]-isthmus, $G - \Gamma'$ contains a minimal subgraph G', such that G' + p disconnects these two points. But if G' disconnects p from k points of G - G', then Γ' is not D_k -minimal. Thus $\Gamma' - p$ must be connected, and we consider Case II. In this case, $G - \Gamma' - p_1 + p$ disconnects p_1 in G(p) from another point in the intersection of G(p) with Γ' . Then $G - \Gamma'$ contains a minimal subgraph G' such that G' + p disconnects these two points, but by the same reasoning as in Case I, G' cannot disconnect p from k points of G - G' if Γ' is D_k -minimal. Thus p is contained in $G - \Gamma_k$.

THEOREM 3.10. A point p is contained in $G - \Gamma_k$ only if whenever G' is a minimal subgraph with the property that G' + p disconnects at least k + 1points of G(p) from one another, G' also disconnects p from at least k points of G - G'.

If G' is a minimal subgraph with the property that G' + p disconnects k + 1 points of G(p), then every point of G' is connected to at least one of these k + 1 points by a path which, except for its initial point, contains only points of G - G'. Otherwise G' would contain a proper subgraph with this property. Accordingly, G - G' contains a k-dense subgraph if G' does not disconnect p from at least k points in G - G'. But G - G' - p cannot contain a k-dense subgraph, since it contains k + 1 points no pair of which is connected. Accordingly p belongs to a D_k -minimal subgraph. For the case k = 1, 3.9 and 3.10 yield

THEOREM 3.11. A point p which is not a [1, 1]-isthmus and is not D_1 -minimal is contained in $G - \Gamma_1$ if, and only if, whenever G' is a minimal subgraph with the property that G' + p disconnects two points of G(p), G' also disconnects G.

In a previous paper (1), it was shown that every connected graph contains at least two proper 1-dense subgraphs. This result will now be used to prove.

THEOREM 3.12. If $G - \Gamma_k$ contains fewer than k points and the D_k -minimal subgraphs are mutually disjoint, then no D_k -minimal subgraph can have more than k points.

Suppose S_1, \ldots, S_r are the D_k -minimal subgraphs containing more than one point, and let S_r contain q > k points. Then there is a point p_r' in S_r such that $S_r' = S_r - p_r'$ is a proper connected subgraph containing $q - 1 \ge k$ points. Then each of the S_i $(i = 1, \ldots, r - 1)$ being k-dense, must contain a point p_i having a neighbour in S_r' . There exists a proper subgraph $S_i' = S_i - p_i'$ containing p_i and all but one of the points, p_i' , of S_i , since S_i contains two proper connected subgraphs. Consider the subgraph

$$S = \sum_{i=1}^{r} S'_{i}.$$

S is connected since each of the S_i' is connected and all the S_i' for i < r contain neighbours of points in the connected subgraph S_r' . Since every D_k -minimal subgraph containing only one point must have a neighbour in S_r' and since each of the points p_i' has a neighbour in S_i' , S contains neighbours of all the points in Γ_k which are not in S. Since $G - \Gamma_k$ contains fewer than k points, S is a k-dense subgraph containing no D_k -minimal subgraph, which is impossible. In Figure 3 is shown an example of a graph in which all the conditions of 3.12 are satisfied for k = 2. The points numbered "1, 4, 6" are each D_2 -minimal, as is the pair $\{2, 3\}$. The point numbered "5" is the only point in $G - \Gamma_2$.

4. Colour Classes. A colour class is a subgraph no two points of which are neighbours. We shall study the relationship of this concept to connectivity, a relationship also investigated by Dirac (3; 4). A *k*-colouring of G is a set of k colour classes such that each point of G lies in one, and only one, class of the set. The chromatic number of a subgraph G', which we shall denote by c(G'), is the smallest integer k such that there exists a k-colouring of G'. The graph in Figure 3 has chromatic number 3, a 3-colouring being formed from the colour classes $\{1, 5\}, \{3, 4\}, \{2, 6\}.$

THEOREM 4.1. If G is m-connected for m < n:

- 1. $c(g) \ge n/(n-m)$.
- 2. If for any positive integer k, G has diameter $\ge 2k + 1$, then $c(G) \le n 2(mk m + 1)$.
- 3. If G has diameter d = k + 1 for $k \ge 3$, no point of G can have degree > n m(k 3) 3.
- 4. The diameter d of G satisfies the condition:

$$d-4 \leqslant (n-m-3)/m.$$

By 2.3, there can be no set of more than n - m points in which no pair are neighbours which implies Part 1.

To prove Part 2, let p be a point in G with associated number $d \ge 2k + 1$. By 2.6, there is sequence of subgraphs $G^r(p)$, $0 \le r \le d$, such that $G^i(p)$, $i \ge 0$, has no neighbour in $G^{i+2}(p)$, while from Part 3 of 2.6, each $G^i(p)$, $1 \le i \le 2k$, contains at least m points. Thus we can form m colour classes, each containing one point from $G^1(p)$, $G^3(p)$, ..., $G^{2k-1}(p)$, and m other colour classes, each containing a point from $G^2(p)$, ..., $G^{2k}(p)$. The point pcan be assigned the same colour as a point in $G^2(p)$, while a point in $G^{2k+1}(p)$ can be assigned the same colour as a point in $G^{2k-1}(p)$. If an additional colour is given to each of the n - 2(mk + 1) points of G not already coloured, we obtain an [n - 2 (mk - m + 1)] – colouring of G.

If p' is a point in $G^r(p)$ for $2 \le r \le k - 1$, p' has no neighbours in $G^s(p)$ for s < r - 1 and s > r + 1. Thus, including p', there are at least m(k - 3) + 3 points in G which are not neighbours of p', which accordingly is of degree at most n - m(k - 3) - 3. If p' is in $G^r(p)$ for r = 0, 1, then p' has no neighbours in $G^s(p)$ for $s \ge 3$, and thus p' is of degree at most $n - m(k - 2) - 2 \le n - m(k - 3) - 3$. A similar argument applies when p' is in $G^k(p)$ or $G^{k+1}(p)$.

Part 4, for the case $d \ge 4$, follows from Part 3 and the observation, from 2.3, that if G is *m*-connected, no point has degree < m. If d < 4, the theorem is obviously true unless $m \ge n-2$, in which case $d \le 2$. Then $d-4 \le -2 \le -2/m \le (n-m-3)/m$ since $m \le n-1$.

THEOREM 4.2. If G contains a subgraph G' with the property that c(G') = m, the partition of G - G' consists of q > 1 connected graphs $G_i(i = 1, ..., q)$, and $r = \max \{c(G_i)\}$, than $c(G) \leq m + r$.

The reader can readily show that there exists an r-colouring of G - G'which, combined with an *m*-colouring of G', gives an (m + r)-colouring of G. THEOREM 4.3. For k an integer ≥ 1 , if G contains at least 2 k degree classes,

 $c(G) \leqslant n - k + 1.$

Let k degree classes $D_i(i = 1, ..., k)$ be arranged in order of decreasing degree, so that the degree of a point in D_j exceeds the degree of a point in D_{j+m} by at least 2m. From each D_i choose one point p_i (i = 1, ..., k). We can choose p_{12} in $G(p_1) - G(p_2) - p_2$. Assuming we have chosen j - 1 distinct points p_{12}, \ldots, p_{1j} in such a way that p_{1r} is in

$$G(p_1) - G(p_r) - \sum_{i \leq r} p_i \qquad (r = 2, \ldots, j),$$

then since p_1 has at least 2j neighbours which are not neighbours of p_{j+1} and we have already chosen at most 2j - 1 of these, we can choose $p_{1, j+1}$, distinct from p_{1r} for $r \leq j$, in

$$G(p_1) - G(p_{j+1}) - \sum_{i \leq j+1} p_i.$$

In this way we can form k - 1 colour classes $S_i = p_i + p_{1i}(i = 2, ..., k)$ each having two points. We obtain an (n - k + 1) - colouring of *G* by colouring each of the remaining n - 2(k - 1) points with a separate colour.

R. E. NETTLETON

References

- R. E. Nettleton, K. Goldberg, and M. S. Green, Dense subgraphs and connectivity, Can. J. Math., 11 (1959), 262-268.
- 2. F. Harary and R. Z. Norman, The dissimilarity characteristic of Husimi trees, Ann. Math., 58 (1953), 134-141.
- 3. G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. Lond. Math Soc., 7 (1957), 161-195.
- 4. G. A. Dirac, The structure of k-chromatic graphs, Fund. Math., 40 (1953), 42-55.

The Rice Institute