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Abstract A classical result of Baer states that a finite group G which is the product of two normal
supersoluble subgroups is supersoluble if and only if G′ is nilpotent. In this article, we show that if
G =AB is the product of supersoluble (respectively, w -supersoluble) subgroups A and B, A is normal in
G and B permutes with every maximal subgroup of each Sylow subgroup of A, then G is supersoluble
(respectively, w -supersoluble), provided that G′ is nilpotent. We also investigate products of subgroups
defined above when A ∩B = 1 and obtain more general results.

Keywords: finite groups; residuals; semidirect products; supersoluble groups; direct product

2020 Mathematics subject classification: Primary 20D10; 20D20

1. Introduction

All groups considered here will be finite.
A significant number of articles investigating the properties of groups expressible as

a product of two supersoluble subgroups were published since the 1957 paper by Baer
[2] in which he proved that a normal product G =AB of two supersoluble subgroups
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A and B is supersoluble provided that the derived subgroup G ′ is nilpotent. There has
been many generalizations of this theorem. Instead of having normal subgroups, certain
permutability conditions were imposed on the factors. The case in which A permutes
with every subgroup of B and B permutes with every subgroup of A, that is, when G is
a mutually permutable product of A and B, is in fact one of the most interesting cases
and has been investigated in detail (see [5] for a thorough review of results in this context
and also [1] for general results on products).
In this article, we study a weak form of a normal product arising quite frequently

in the structural study of mutually permutable products and appears not to have been
investigated in detail.

Definition 1.1. Let G=AB be a product of subgroups A and B. We say that G is a
weak normal product of A and B if

(a) A is normal in G.

(b) B permutes with all the maximal subgroups of Sylow subgroups of A.

As an important first step in the study of weak normal products G =AB and motivated
by the mutually permutable case, we analyse the situation A ∩B = 1. In this case, they
are semidirect products of A and B.

Definition 1.2. Let the group G=AB be the weak normal product of A and B with
A normal in G. We say that G is a weak direct product of A and B if A∩B = 1. In this
case, we write G = [A]B.

We study these products when the factors are supersoluble and widely supersoluble
and analyse the behaviour of the residuals associated to these classes of groups. Recall
that a widely supersoluble group, or w -supersoluble group for short, is defined as a group
G such that every Sylow subgroup of G is P-subnormal in G (a subgroup H of a group
G is P-subnormal in G whenever either H =G or there exists a chain of subgroups
H = H0 6 H1 6 · · · 6 Hn−1 6 Hn = G, such that |Hi:Hi−1| is a prime for every
i = 1, . . . , n).
The class of w -supersoluble groups, denoted wU, is a subgroup-closed saturated

formation containing the subgroup-closed saturated formation U of all supersoluble
groups. Moreover w -supersoluble groups have a Sylow tower of supersoluble type
(see [8, Corollary]).
Our first aim is to show that the saturated formations of all supersoluble groups and

w-supersoluble groups are closed under the formation of weak direct products.

Theorem A. Let G = [A]B be a weak direct product of A and B. If A and B belong
to U, then G is also supersoluble.

Theorem A will be very useful in the proofs of Theorem B and Theorem C. Also we
obtain the following result as a corollary.

Corollary A. Let G = [A]B be a weak direct product of A and B. If A and B belong
to wU, then G is w-supersoluble.

https://doi.org/10.1017/S0013091523000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000044


On some products of finite groups 91

Our second aim is to show that the product of the supersoluble (respectively,
w-supersoluble) residuals of the factors of weak direct products is just the supersoluble
(respectively, w-supersoluble) residual of the group.

Theorem B. Suppose that F = U or F = wU. Let G = [A]B be a weak direct product
of A and B. Then

GF = AFBF.

We now analyse the behaviour of weak normal products with respect to the formations
of all supersoluble and w-supersoluble groups. Our next result shows that Baer’s theorem
can be generalized in this new direction:

Theorem C. Let G=AB be a weak normal product of A and B. If G′ is nilpotent, A
is normal in G and A,B ∈ U, then G ∈ U.

As a corollary, we obtain the result for wU-groups.

Corollary B. Let the group G=AB be a weak normal product of wU-subgroups A and
B. If G′ is nilpotent and A is normal in G, then G belongs to wU.

Our second objective is to investigate the residuals of weak normal products.
Unfortunately, it does not follow that GU = AUBU when G is a weak normal prod-
uct as the following examples show. Example 1.3(ii) generalizing (i) was communicated
to the authors by the referee:

Example 1.3.

(i) Let

A = 〈g2, g4, g5, g6, g7 | g32 = g34 = g35 = g36 = g37 = 1,

g
g2
4 = g4g6, g

g2
5 = g5g7, g

g2
6 = g6, g

g2
7 = g7,

g
g4
5 = g5, g

g4
6 = g6, g

g4
7 = g7,

g
g5
6 = g6, g

g5
7 = g7,

g
g6
7 = g7〉.

Let Q = 〈b〉 ∼= C4 act on A via

gb2 = g2, gb4 = g4g5, gb5 = g4g
2
5 , gb6 = g6g7, gb7 = g6g

2
7 .

Let G = [A]Q be the corresponding semidirect product.
Note that A′ = Φ(A) = 〈g6, g7〉. Let A0 = 〈g4, g5〉. Then A0 is not a normal sub-

group of A but is normalized byQ. LetB = A0〈b〉, then CoreG(B) = 1. Furthermore,
B permutes with the 13 maximal subgroups of A. The supersoluble residual of G
is 〈g4, g5, g6, g7〉, giving a quotient isomorphic to C 12. Consequently, G

U 6= AUBU.
This group corresponds to SmallGroup(972, 406) of GAP.
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(ii) Suppose p is a prime number and n is a positive integer, where n is not a multiple
of p, and the order of p modulo n is 2. Let Fp2 be the Galois field of order p2, and

note that n is a factor of p2 − 1, so there is an element β of multiplicative order n
in Fp2 . Let V = U0 ⊕ U1 be a vector space of dimension 2 over Fp2 , where U 0 and
U 1 are one-dimensional Fp2-subspaces of V. Take elements a and b in the general

linear group GL2(p
2), with

a =

[
1 1

0 1

]
, b =

[
β 0

0 β

]
.

Then V can be regarded as an Fp2〈a, b〉-module. Let G = [V ]〈a, b〉 be the
corresponding semidirect product. Consider the following subgroups of G :

P = 〈a〉 ' Cp, A = V P, Q = 〈b〉 ' Cn, B = U0Q.

As in (i), A is normal in AB =G, A′ = Φ(A) = [V, P ] = U1, U 0 is an FpQ-
simple module, B′ = [U0, Q] = U0, the core of B in G is 1, the number of maximal
subgroups of A is (p3−1)/(p−1) = p2+p+1, A is the unique Sylow p-subgroup of G
and all the maximal subgroups of A permute with B, while the supersoluble residual
of G is GU = V , with G/GU ' PQ ' Cpn and GU 6= AUBU. This construction
can be carried out when p=2 and n =3, giving an Example with |G| = 253 = 96;
moreover, there is a maximal subgroup of A which does not permute with the Sylow
subgroup Q of B.

We will use Theorem C to prove the following result (note that Example 1.3(ii) suggests
the permutability hypothesis in Theorem D and Corollary D):

Theorem D. Let the group G=AB be a product of the subgroups A and B. Assume
that A is a normal subgroup of G and every Sylow subgroup of B permutes with every
maximal subgroup of every Sylow subgroup of A. If G′ is nilpotent, then GU = AUBU.

An immediate consequence is:

Corollary C. Let the group G=AB be a product of the subgroups A and B. Assume
that A is a normal subgroup of G and every Sylow subgroup of B permutes with every
maximal subgroup of every Sylow subgroup of A. If G′ is nilpotent, then GwU = AwUBwU.

Denote by N the class of all nilpotent groups. A nice result of Monakhov [7, Theorem 1]
states that if G =AB is the mutually permutable product of the supersoluble subgroups
A and B, then GU = (G′)N = [A,B]N. We prove an analogue of this result for weak
normal products.

Corollary D. Let G=AB be a weak normal product of the supersoluble subgroups A
and B. If A is normal in G, we have that GU = (G′)N = [A,B]N.
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2. Preliminary results

It is easy to see that factor groups of weak normal products are also weak normal products.
For weak direct products, we have the following:

Lemma 2.1. Let G = [A]B be a weak direct product of A and B.

(a) If N is a normal subgroup of G such that N 6 A or N 6 B, then G/N =
[AN/N ](BN/N) is a weak direct product of AN/N and BN/N .

(b) If K is a subgroup of B, then [A]K is a weak direct product of A and K.

Proof. (a) Let H/N be a Sylow p-subgroup of AN/N . Then H/N = PN/N , where
P is a Sylow p-subgroup of A. Let K/N be a maximal subgroup of H/N . Then
K = K ∩ PN = N(P ∩K) and K/N = N(P ∩K)/N . Thus,

p = |PN/N : (P ∩K)N/N | = |P ||N |
|P ∩N |

|P ∩K ∩N |
|P ∩K||N |

= |P : P ∩K|.

Hence, P ∩K is a maximal subgroup of P. Then B permutes with P ∩K, and so BN/N
permutes with K/N . Therefore, G/N = [AN/N ](BN/N) is a weak direct product of
AN/N and BN/N .
(b) Let K be any proper subgroup of B and H be any maximal subgroup of a Sylow

subgroup of A. By the hypotheses, we have HB =BH and so H = H(A∩B) = A∩HB.
Since A is normal in G, it follows that H is normal in HB and so B normalizes H. Hence,
K permutes with H. Therefore, [A]K is a weak direct product of A and K. �

Our second lemma contains some of the properties of P-subnormal subgroups.

Lemma 2.2. [8, Lemma 1.4] Let G be a soluble group and H and K two subgroups
of G. The following properties hold:

(i) If H is P-subnormal in G and N is normal in G, then HN/N is P-subnormal in
G/N .

(ii) If N is normal in G and HN/N is P-subnormal in G/N , then HN is P-subnormal
in G.

(iii) If H is P-subnormal in K and K is P-subnormal in G, then H is P-subnormal
in G.

3. Supersoluble and w-supersoluble residuals

We start this section by proving Theorem A.

Proof of Theorem A. Assume that the result is false, and let G be a counterex-
ample of minimal order. Clearly, G is soluble and A and B are proper subgroups of G.
Let N be a minimal normal subgroup of G contained in A, then applying Lemma 2.1(a),
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G/N = [A/N ](BN/N) is a weak direct product of A/N and BN/N . By the minimal-
ity of G, G/N ∈ U. Since the class of all supersoluble groups is a saturated formation,
there exists a unique minimal normal subgroup N of G contained in A, N a p-group
for some prime p, |N | > p and Φ(A) = 1. Since A is supersoluble, A has a normal
Sylow subgroup, and since N is the unique minimal normal subgroup of G contained
in A, it follows that F(A) is a p-group and F(A) is an elementary abelian Sylow
p-subgroup of A.
Assume that A is not a p-group. Then F(A) is a completely reducible A-module, and

so F(A) = N × Z, for some A-module Z. Let L be a minimal normal subgroup of A
contained in N. Then N = L×D, for some A-module D. Then F(A) = L×DZ, and DZ
is a maximal subgroup of F(A) because L is of prime order. Therefore, E =DZ permutes
with B. Hence, DZ = A ∩ (DZ)B, and so DZ is normalized by B. Since DZ is also
normalized by A, it follows that DZ is a normal subgroup of G. The minimality of N
forces D =1 and so N is of prime order, which is a contradiction. Consequently, A is an
elementary abelian p-group. Note that A cannot be cyclic since |N | > p. Let 1 6= X be
a maximal subgroup of A. Arguing as above, we have that X is normal in XB so that
X is normalised by B. Hence X is normal in G because A is abelian. Therefore, N is
contained in X, and so N ≤ Φ(A) = 1, our final contradiction. �

Proof of Corollary A. Assume, by way of contradiction, that the result fails, and
let G be a counterexample of least order. Clearly, G is soluble and A and B are proper
subgroups of G. Since the class of all w-supersoluble groups is a saturated formation,
we can argue as in Theorem A to conclude that there exists a unique minimal normal
subgroup N of G contained in A, and N is a p-group for some prime p. Moreover,
Φ(A) = 1, and Ap = F(A) is the Sylow p-subgroup of A. By the minimality of G, G/N is
w -supersoluble. Let P be a Sylow p-subgroup of G. Then P/N is P-subnormal in G/N .
By Lemma 2.2(ii), P is P-subnormal in G. Suppose that for every prime q 6= p dividing |G|
and every Sylow q-subgroup Bq of B, we have that ABq is a proper subgroup of G. Let
Aq be a Sylow q-subgroup of A such that Gq = AqBq is a Sylow q-subgroup of G. Since
G/N is w -supersoluble, it follows that GqN is P-subnormal in G. By Lemma 2.1(b), ABq

satisfies the hypotheses of the theorem. Hence, ABq is w -supersoluble by the choice of G.
Thus, GqN ≤ ABq is w -supersoluble. Consequently, Gq is P-subnormal in GqN , which
is P-subnormal in G. Applying Lemma 2.2(iii), Gq is P-subnormal in G. Therefore, the
Sylow subgroups of G are P-subnormal in G, and so G is w -supersoluble, a contradiction.
Thus, we may assume there exists q 6= p such that G = ABq. Let T = ApGq = (ApAq)Bq.
Since A is normal in G, we have that Aq is normal in Gq and then ApAq is normalized by
Bq . Moreover, ApAq is a w -supersoluble metanilpotent subgroup of G. By [8, Theorem
2.13(1)], ApAq is supersoluble. It is clear that T is a weak direct product of the super-
soluble subgroups ApAq and Bq . Applying Theorem A, it follows that T is supersoluble.
Therefore, T is w -supersoluble. But GqN ≤ T , which is w -supersoluble. Thus, Gq is
P-subnormal in GqN , which is P-subnormal in G. Again the application of Lemma 2.2(iii)
yields Gq is P-subnormal in G. If Gr is a Sylow r -subgroup of G for some prime r 6= p, q,
then Gr is contained in A and so Gr is P-subnormal in A. Since A is also P-subnormal
in G, we have that Gr is P-subnormal in G. Consequently, every Sylow subgroup of G is
P-subnormal in G, and G is w-supersoluble. This final contradiction completes the proof
of the corollary. �
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Proof of Theorem B. Suppose that the result is not true, and let G be a minimal
counterexample. Then

(i) A ∈ F, BF 6= 1, CoreG(B) = 1 and GF = BFN for every minimal normal subgroup
N of G such that N 6 A.
Let N be a minimal normal subgroup of G such that N 6 A or N 6 B. Then

G/N = [AN/N ](BN/N) is a weak direct product of AN/N and BN/N by Lemma 2.1(a).
The minimal choice of G implies that GFN/N = (AFN/N)(BFN/N), that is, GFN =
AFBFN . Since G/GF ∈ F, AGF/GF and BGF/GF also belong to F and then AF 6 GF

and BF 6 GF. If GF∩N = 1, then GF = AFBF(GF∩N) = AFBF, a contradiction. Hence,
GF = AFBFN for every minimal normal subgroup N of G such that N 6 A or N 6 B. If
AF 6= 1, then there exists a minimal normal subgroup N of G contained in AF because AF

is normal in G. This contradiction yields A ∈ F and GF = BFN for every minimal normal
subgroup N of G such that N 6 A or N 6 B. If B ∈ F, then G ∈ F by Theorem A and
Corollary A, contrary to the assumption. Hence, BF 6= 1. Suppose that CoreG(B) 6= 1.
Let N be a minimal normal subgroup of G contained in B, and let R be a minimal normal
subgroup of G contained in A. Then GF = BFN ∩BFR ≤ B ∩BFR = BF(B ∩R) = BF,
a contradiction. Consequently, we have that CoreG(B) = 1.

(ii) F(A) is a Sylow p-subgroup of A, where p is the largest prime dividing |A| .
Since A ∈ F, it follows that A is a Sylow tower group of supersoluble type. In particular,

1 6= Op(A) is the Sylow p-subgroup of A, where p is the largest prime dividing |A|. If F(A)
is not a p-group, then 1 6= Oq(A) 6 Oq(G). Let N 1 be a minimal normal subgroup of G
contained in Op(A), and let N 2 be a minimal normal subgroup of G contained in Oq(A).
Then GF = BFN1 = BFN2, which is a contradiction since BF ∩ N1 = BF ∩ N2 = 1.
Therefore, F(A) = Op(A) is the Sylow p-subgroup of A.

(iii) G is soluble, AK belongs to F for every proper subgroup K of B; in particular, B
is a minimal non-supersoluble group and BF is a q-subgroup of B for some prime q.
Suppose that K is a proper subgroup of B. By Lemma 2.1, AK satisfies the hypothe-

ses of the theorem, and so (AK)F = KF by the minimal choice of G. Since (AKx)F =
(Kx)F = (KF)x for any x ∈ B, it follows that A normalizes (KF)x. Thus, A nor-
malizes 〈(KF)x | x ∈ B〉. Then 〈(KF)x | x ∈ B〉 C G, contrary to CoreG(B) = 1.
Hence, (KF)x = 1. Consequently, AK belongs to F. This shows that B is F-critical,
and by [8, Theorem 2.9], we have that B is a minimal non-supersoluble group. By [3,
Theorem 10], we have that BF is a q-group for some prime q. In particular, B and then
G are soluble.

(iv) GF = BF ×N is an elementary abelian p -group.
Applying (iii), it follows that BF is a q-group for some prime q. Let N be a minimal

normal subgroup of G contained in A. Then GF = BFN by (i), and N is a p-group
by (ii).
Suppose that BF is a normal subgroup of GF. Then GF/BF is an elementary abelian

p-group. Consequently, the residual X of GF associated to the formation of all elementary
abelian p-groups is a normal subgroup of G contained in B. Hence, X ≤ CoreG(B) = 1,
and GF is an elementary abelian p-group.
Assume that p 6= q. Let N be a minimal normal subgroup of G contained in A. Then

GF = BFN , and N is a p-group by (ii). Hence, BF is a Sylow q-subgroup of GF =
BFN . Applying Frattini’s argument, we have that G = GFNG(B

F) = NNG(B
F). Since
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CoreG(B) = 1, it follows that NG(B
F) is a proper subgroup of G. Hence, N is not

contained in Φ(G) for each minimal normal subgroup N of G contained in A. If Φ(A) 6= 1,
a minimal normal subgroup of G must be contained in Φ(A) ≤ Φ(G), a contradiction.
Therefore, Φ(A) = 1. Let N be a minimal normal subgroup of G contained in A. Then
N = N1×N2×· · ·×Nr is a direct product of minimal normal subgroups of A, and there
exists i ∈ {1, 2, . . . , r} such that N i is not contained in Φ(A). Suppose i =1. Let M be a
maximal subgroup of A such that A = N1M and N1 ∩M = 1. Assume first that A is a
p-group. Then BM is a subgroup of G, and M = BM ∩A is a normal subgroup of BM.
Hence, M is normalized by B, and so M is a normal subgroup of G. Now N = N1(M∩N).
But M ∩N is normal in G. The minimality of N yields N = N1 and then |N | = p. Thus,
G/CG(N) is abelian. Hence, GF centralizes N, and BF is a normal subgroup in GF, and so
GF is an elementary abelian p-group. This contradiction implies that A is not a p-group.
Then T = F(A)B is a proper subgroup of G which is a weak direct product of F(A) and
B. By the minimality of G, TF = BF. Then BF is a normal subgroup of GF, and so GF

is an elementary abelian p-group, a contradiction which shows that p= q. Then BF is a
subnormal subgroup of G. By [6, Lemma A.14.3], N normalizes BF, and therefore BF is
a normal subgroup of the elementary abelian p-group GF.

(v) Final contradiction. By [6, IV, 5.18], since BF is abelian, there exists an F-projector
K of B such that B = BFK and K ∩ BF = 1. Consider the subgroup Z =AK of G.
Applying (iii), Z belongs to F and G = BFZ = F (G)Z. By [6, III, 3.23(b)], there exists
a unique F-projector of G containing Z, E say. Hence, G = BFZ = GFE and GF∩E = 1
by (iii) and [6, IV, 5.18]. In particular, BF∩Z = 1. Now |Z||BF| = |E||GF| = |E||BF||N |.
Hence, |Z| = |E||N |. This implies Z =E and then BF = GF, a contradiction. �

Proof of Theorem C. Assume that the result is false and let G be a minimal coun-
terexample. Then every proper epimorphic image of G is supersoluble, and hence G has
exactly one minimal normal subgroup N which is not contained in the Frattini sub-
group of G. Since G is soluble, it follows that N is abelian, N = CG(N) = F (G), and
there exists a core-free maximal subgroup of G such that G =NM and N ∩M = 1. Let
p be the prime dividing |N |. Then |N | > p. Since 1 6= G′ is nilpotent, we have that
G′ = N and M is abelian. However, Op(M) = 1 by [6, Lemma A.13.6]. Hence, M is

a p
′
-group and N is the Sylow p-subgroup of G. Since B 6=G, we have that N ≤ A.

Note that N = CA(N) = Op′p(A). Therefore, A/Op′p(A) = A/Op(A) = A/N is abelian
of exponent dividing p− 1 because A is supersoluble. Assume BN is a proper subgroup
of G. Then, by the minimality of G, BN is supersoluble, and so Bp′

∼= BN/Op′p(BN)
is abelian of exponent dividing p− 1. Consequently, M is abelian of exponent dividing
p− 1. Since N is an irreducible and faithful module for M, we have that N has order p
by [6, Theorem B.9.8], a contradiction. Hence, G =BN. Now B∩N is a normal subgroup
of G contained in N. Thus, B ∩N = 1, and G =BN is the weak direct product of B and
N. By Theorem A, G is supersoluble. This contradiction proves the theorem. �

Proof of Corollary B. Note that since G ′ is nilpotent, A and B are metanilpotent.
By [8, Theorem 2.11], A and B are supersoluble. By Theorem C, G is supersoluble, and
hence G ∈ wU. �
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Proof of Theorem D. Suppose the theorem is not true and let (G,A,B) be a coun-
terexample with |G|+ |A|+ |B| as small as possible. Let N be a minimal normal subgroup
of G. It is easy to check that G/N satisfies the hypotheses of the theorem. By the mini-
mality of G, we have that GUN = AUBUN . Hence, GU = AUBU(GU∩N). Consequently,
Soc(G) is contained in GU and GU = AUBUN for every minimal normal subgroup N of
G. Since GU is contained in G ′, we have that GU is nilpotent.
Note that AU is a normal subgroup of G. If AU 6= 1, then there exists a minimal normal

subgroup N of G such that N ≤ AU and so GU = AUBUN = AUBU, a contradiction.
Hence, we may assume that A is supersoluble and that GU = BUN for every minimal
normal subgroup N of G. If B were supersoluble, then G would be supersoluble by
Theorem C, which is a contradiction. Hence, BU 6= 1. Furthermore, BU cannot contain a
normal subgroup of G. Hence, CoreG(B

U) = 1. Let p be the largest prime dividing |A|.
Since A is a Sylow tower group of supersoluble type, A has a normal Sylow p-subgroup,
Ap say, which is also normal in G. Hence, G has a minimal normal subgroup N of G
which is a p-group. Since GU is nilpotent, we have that BU is a subnormal subgroup of
G. By [6, Lemma A.14.3], BU is normalized by N. Thus, BU is a normal subgroup of GU,
and GU/BU is an elementary abelian p-group. Consequently BU contains the residual X
of GU associated to the formation of all elementary abelian p-groups. Since X is a normal
subgroup of G, it follows that X ≤ CoreG(B

U) = 1. Hence, GU is an elementary abelian
p-group.
Since Soc(G) is contained in GU, Op′(G) = 1 and hence F(G) = Op(G). Therefore

G′ ≤ F(G) is a p-group, and F(G) is the unique Sylow p-subgroup of G. Moreover, the
Hall p

′
-subgroups of G are abelian (note that G is soluble). Assume ApB < G. Then ApB

satisfies the hypotheses of the theorem. By the choice of G, we have that (ApB)U = BU.
Note that G′ ≤ ApB. Hence, ApB is a normal subgroup of G. This implies that BU is
normal in G, a contradiction. Hence, G = ApB and Ap and B satisfy the hypotheses of
the theorem. If A 6= Ap, the choice of (G,A,B) implies that GU = BU, a contradiction.
Consequently, we have that A = Ap.
Write T = ABp′ . By Theorem C, T is supersoluble. Moreover, since G = F (G)Bp′ ,

it follows that every minimal normal subgroup N of G contained in T is a minimal
normal subgroup of T. Thus, |N | = p. Consequently, N is U-central in G. By [6, V, 3.2],
N is contained in every supersoluble normalizer of G. Let E be one of them. Then
G = GUE and GU∩E = 1. However, N ≤ GU∩E = 1. This final contradiction proves the
theorem. �

Proof of Corollary C. Since U ⊆ wU, we have GwU ≤ GU ≤ G′. Then G/GwU is a
metanilpotent w-supersoluble group. Applying [8, Theorem 2.11], we have that G/GwU

is supersoluble. Hence, GU ≤ GwU, and therefore GU = GwU, and the same is true for A
and B. Therefore, by Theorem D, GwU = AwUBwU, as desired. �

4. An analogue of Monakhov’s result

The following two results are the key to prove Corollary D.

Lemma 4.1. [4, Theorem A] Let the group G=HK be the product of the subgroups
H and K. Assume that H permutes with every maximal subgroup of K and K permutes with
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every maximal subgroup of H. If H is supersoluble, K is nilpotent and K is δ-permutable
in H, where δ is a complete set of Sylow subgroups of H, then G is supersoluble.

Proposition 4.2. Let G=AB be a weak normal product of A and B, with A and B
supersoluble and A normal in G. Then B

′
is a subnormal subgroup of G.

Proof. Assume the result is not true, and let G be a counterexample of minimal
order with |A| as small as possible. Let p be the largest prime dividing the order of
A. Then A has a normal Sylow p-subgroup Ap , which is also a normal subgroup of G.
Let N be a minimal normal subgroup of G such that N ≤ Ap. It is clear that ApB
satisfies the hypotheses of the theorem. Assume that ApB is a proper subgroup of G.

By the minimality of G, B
′
is a subnormal subgroup of ApB. Hence, B′ ≤ F (ApB). By

Lemma 2.1(a), G/N is a weak normal product of A/N and BN/N . By the minimality of
G, we have that B′N is a subnormal subgroup of G. Since N ≤ F (ApB), it follows that
B′N ≤ F (Ap′B). Hence, B′N is a subnormal nilpotent subgroup of G. Consequently,

B′N ≤ F (G). Thus, B
′
is a subnormal subgroup of G, a contradiction. Hence, we may

assume that G = ApB. The minimality of |A| implies that A = Ap. Applying now the
above Lemma, we conclude that G is supersoluble and therefore G ′ is nilpotent. Hence,
B

′
is subnormal in G. This final contradiction proves the proposition. �

Proof of Corollary D. Arguing as in [7, Theorem 1], we obtain GU = (G′)N.
Moreover, by [7, Lemma 1(3)], we have that G′ = A′B′[A,B] = (A′)G(B′)G[A,B].
Since A is a normal subgroup of G, then A

′
is a subnormal subgroup of G. Also the

application of Proposition 4.2 yields B
′
is subnormal in G and both A

′
and B

′
are nilpo-

tent. Hence, (A′)G(B′)G is a normal nilpotent subgroup of G. By [6, II, Lemma II.2.12],
(G′)N = ((A′)G(B′)G)N[A,B]N = [A,B]N, as desired. �
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