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On Algebraically Maximal Valued Fields
and Defectless Extensions

Anuj Bishnoi and Sudesh K. Khanduja

Abstract. Let v be a Henselian Krull valuation of a field K. In this paper, the authors give some nec-
essary and sufficient conditions for a finite simple extension of (K, v) to be defectless. Various charac-
terizations of algebraically maximal valued fields are also given which lead to a new proof of a result
proved by Yu. L. Ershov.

1 Introduction

Throughout this paper, by a valuation v of a field K we mean a Krull valuation, i.e., v
is a mapping from K onto G U {co}, where G is a totally ordered additively written
abelian group such that for all x, y in K the following properties are satisfied:

(i) v(x) = coifand only if x = 0;

(ii) v(xy) = v(x) +v(y);

(iii) v(x+ y) = min{v(x),v(y)}.

The pair (K, v) is called a valued field and G the value group of v. The subring
0, = {x € K | v(x) > 0} of K with unique maximal ideal M, = {x € K | v(x) > 0}
is called the valuation ring of v and O, /M, its residue field. A valuation v’ is said
to be an extension or prolongation of v to an overfield K’ of K if v/ coincides with
v on K, in which case (K, v’) is said to be an extension of (K, v). For a valued field
extension (K’,v")/(K,v),if G C G’ and O,/M, C O,,/M, denote respectively the
value groups and the residue fields of v, v/, then the index [G’:G] and the degree
of the field extension O,/ /M, over O,/M, are called respectively the index of ram-
ification and the residual degree of v/ /v. An extension (K’,v’) of (K, v) is said to
be immediate if the value groups and the residue fields of v/ and v coincide, i.e., the
index of ramification and the residual degree of v'/v are both one. A valued field
(K,v) is said to be Henselian if v has a unique prolongation to the algebraic clo-
sure of K. Henselian valued fields form an important class of valued fields and have
several equivalent characterizations [3}[7] and [4, Theorem 4.1.3]. In this paper, we
characterize some special types of Henselian valued fields.

In what follows, v is a Henselian valuation of a field K and # is the unique prolon-
gation of v to the algebraic closure K of K. In this paper, we prove that a valued field
(K, v) is algebraically maximal, i.e., it has no proper immediate algebraic extension
if and only if the set {#(0 — a) | a € K} has a maximum element for every ¢ in
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K \ K. It is shown that the above characterization quickly yields a result proved by
Yu. L. Ershov which states that (K, v) is algebraically maximal if and only if the set
{v(f(a)) | a € K} has a maximum element for every polynomial f(x) belonging
to K[x] [5) Proposition 1.5.4, p. 54, p. 259]. Furthermore, it is also shown that for
any fixed 6 in K which is algebraic over K of degree n > 1, each of the sets M i(0),
1 < j < n—1,defined by

(1.1) M;(0) = {#(0 - B) | B € K, [K(8) : K] < j}

has a maximum if and only if K() is a defectless extension of (K, v). Recall that a
finite extension (K’,v") of a Henselian valued field (K, v) (or briefly K’ /K) is said to
be defectless if [K': K] = ef where e, f are the index of ramification and the residual
degree of v/ /.

Theorem 1.1 Letv be a Henselian valuation of a field K and v be the unique prolon-
gation of v to the algebraic closure K of K. The following statements are equivalent.

(1) (K,v) is algebraically maximal.

(i) Forevery @ in K \ K, the set {#(6 — a) | a € K} has a maximum.

(iii) For each monic irreducible polynomial f(x) € K[x], there exists an element ay
belonging to K such that v(f(as)) > v(f(a)) for every ain K.

(iv) For each polynomial f(x) belonging to K[x], there exists as belonging to K such
that v(f(as)) > v(f(a)) for every ain K.

The equivalence of (i) and (ii) above will be deduced from a slightly more general
result to be proved as Theorem[T.2]

Theorem 1.2 Let (K,v), (f, V) be as in the above theorem and let 0 be an element of
K\ K. Then the set {#(§ — a) | a € K} has no maximum if and only if there exists
- belonging to K \ K with [K(7):K] < [K(0):K] such that K(v)/K is an immediate
extension and ¥(y — a) = ¥(0 — a) for every ain K.

As regards defectless extensions, we prove the following.

Theorem 1.3 Let (K,v), (E, 7) be as in Theorem[L.1land let 6 be an element off \K

with the minimal polynomial g(x) over K of degree n. The following statements are

equivalent.

(1)  K(0)/K is a defectless extension.

(i) Theset M;(0) = {v(0 — ) | B € K, [K(B8):K] < i} has a maximum element
for each number j not exceeding n — 1.

(iii) For1 < j < n—1,theset Nj(g) = {#(g(p)) | B € K, [K(B):K] < j} has a
maximum element.

Our proof in fact specifies the elements 3; with [K(3;) : K] < j such that
max N;(g) = 7(g(5;)), 1 < j < n— 1 (see Remark[3.6)).

It may be pointed out that some other characterizations of finite separable defect-
less extensions are given in [2,/8]].
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2 Proof of Theorem 1.1 and Theorem 1.2

In what follows, (K, v) and (K, #) are as in Theorem [I1] By the degree of an element
o in K, we shall mean the degree of the extension K(«)/K and shall denote it by
deg . For an element ¢ in the valuation ring of #, E will stand for its 7-residue, i.e.,
the image of £ under the canonical homomorphism from the valuation ring of # onto
its residue field. When there is no chance of confusion, we shall write 7#(«) as v(«)
for o belonging to K.

Proposition 2.1 Suppose that the set My = {#(av — a) | a € K} does not have a
maximum element for some o belonging to K \ K. Then either K(cv) is an immediate
extension of (K, v) or there exists 3 belonging to K \ K with deg 8 < deg v such that
o —a) = ¥(B — a) for each ain K.

Proof Let M denote the set {#(a — 3) | B € K,deg3 < deg a} containing M, and
sup M its supremum. The proof is split into two cases.

Case1: supM; < sup M. Then there exists 3 belonging to K with deg 8 < dega
such that #(a— 3) > sup M. Since M, does not have a maximum element, the above
inequality shows that (o — 8) > #(« — a) for every a in K. Therefore by the strong
triangle law, for any element a of K, we have

(8 —a) = min{#(f — o), W — a)} = #a — a).

Case2: supM; = sup M. Then M, is a cofinal subset of M. In this case we show
that K(«)/K is an immediate extension. For this it is enough to prove that for any
polynomial k(x) belonging to K[x] with deg h(x) < dega, there exists ¢ € K such
that

2.1) v( };l((i‘)) — 1) > 0.

Write h(x) = a]_[z-zl(x — 7). Since degy; < deg h(x) < deg avand #(a — ;) € M,
there exists an element #(a — a;) of M such that #(a —~;) < #(a—a,) for1 < j <t
consequently by the strong triangle law, we have

v(a; — vj) = min{¥(a; — o), ¥ — )} = ¥ — ;) < ¥ — ay).

On writing Z((Zi = H;Zl ( ::11] ) as H;:l (1+ :%f;) and using the above inequality,
h(a

we see that 17( W‘:)) — 1) > 0 which proves 2.1 with ¢ = a;. [ |

Proof of Theorem[I.2] Suppose first that {#(§ — a) | a € K} does not have a maxi-
mum element. Then by Proposition[2.]] either K(6) /K is an immediate extension or
there exists 7 belonging to K \ K with deg7 < deg# such that v(6 — a) = v(1) — a)
for every a in K. If K(0)/K is an immediate extension, then we take v = 6, other-
wise, applying Proposition[ZI]to 1 we see that there exists 3 belonging to K \ K with
deg 8 < degn such that either K(3)/K is an immediate extension or v(5 — a) =
v(n — a) = v(0 — a) for every a in K. The above process must terminate after a finite
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number of steps, giving us an element ~ belonging to K \ K with degy < deg# such
that K(y)/K is an immediate extension and v(y—a) = v(6 — a) for every a belonging
to K.

Conversely, suppose that there exists v belonging to K \ K such that K(y)/K is an
immediate extension and #(y — a) = #(6 — a) for every a in K. We now show that
the set S = {#(y — a) | a € K} has no maximum element. Suppose to the contrary
that #(y — ¢), ¢ € K is the maximum element of S. Since K(vy)/K is an immediate
extension, there exists b in K such that 7#(y — ¢) = v(b); also we can find d € K such
that the 7-residue of WT_C equals the #-residue of d, i.e., #(== — d) > 0, which implies

b
that #(y — ¢ — bd) > v(b) = #(y — ¢). This contradicts the choice of 7(y — ¢). [ |

Proof of Theorem[I.1I] The equivalence of (i) and (ii) follows immediately from The-
orem[L.2l
(ii) = (iii). Let f(x) = H:':I(x — o) be any monic irreducible polynomial

over K having a root « in K. There exists ¢ belonging to K such that v(ao — ¢) =
max{v(« — a) | a € K}. Since (K, v) is Henselian for any a in K, we have

v(f(@) = nv(a — a) < mla — ¢) = v(f(©)).

(iii) = (iv). Let f(x) be any polynomial belonging to K[x] with the factoriza-
tion b f(x)™ f,(x)™ - - - f,(x)™ into powers of distinct monic irreducible polynomi-
als over K. Let n; denote the degree of f;(x) and 6; be a root of fi(x). By (iii), there
exist ¢; belonging to K for 1 < i < r such that v(fi(¢;)) = max{v(f;(a)) | a € K},

i.e, v(0; — ¢;) = max{v(0; — a) | a € K}. It will be proved that for each d belonging
to K, we have

(2.2) v(f(d)) < giagxr{V(f(Ci))}
Fix any d in K. Choose an index j > 1 such that

(2.3) v(cj—d) = llglgigr{v(c,- —d)}.

We are going to prove that v(f(d)) < v(f(c;)), which is the same as showing
Z min;v(d — 0;) < Z m;n;v(c; — 6;).
i1 i=1

This will follow as soon as it is shown that
(2.4) vid—0;) <vic;—0;), 1<i<r

Note that v(¢; — d) > min{v(¢; — 6;),v(0; — d)} = v(6; — d). In view of 23] and
the above inequality, we have

vici—d) = vic—d) =>v0; —d), 1<i<r
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which gives v(c; — 6;) > min{v(c; —d),v(d —0;)} = v(d — 0;). Thus (Z.4) and hence
[2.2) is proved.

(iv) = (ii). Let 6 be an element of K \ K and f(x) be its minimal polynomial over
K of degree n. By hypothesis, there exists an element as belonging to K such that
v(f(ay)) = v(f(a)) for each ain K. Since (K, v) is Henselian, the above inequality is
equivalent to saying that v(0 — as) = max{v(§ —a) | a € K}. [ |

3  Proof of Theorem 1.3l

We retain the notations introduced in the opening lines of the second section. For a
subfield L of K, let v; denote the valuation of L obtained by restricting . As usual,
def(L/K) will stand for the defect of a finite extension L of (K, v) defined by

def(L/K) = [L:K]/ef,

where e, f are the index of ramification and the residual degree of v, /v.
As in [6], a pair (¢, ) of elements of K is called a distinguished pair (more pre-
cisely, a (K, v)-distinguished pair) if the following three conditions are satisfied:
* degf > degoy
« #6 — B) < (0 — a) for every 3 in K with deg 3 < deg6;
e whenever v € K with degvy < dega, then ¥(6 — v) < ¥(6 — «).

Remark 3.1 If (0,«) is a distinguished pair and degf = #, then the set M,,_,(60)
defined by (L)) has a maximum element, viz. #(6 — «;). Conversely if « is an element
of smallest degree over K for which #(6 — ) is the maximum of M,,_; (), then clearly
(0, ) is a distinguished pair.

The following already-known result will be used in the sequel; its proof is omitted
[} 83, p. 223], [2) Theorem 1.1(iii)].

Theorem A Let (0, o) be a (K, v)-distinguished pair. Then
def(K(0)/K) = def(K()/K).

We now prove the following.

Lemma 3.2 Let (0, ) bea (K, v)-distinguished pair with deg ov = n,. Then M;(0) =
Mi(a) for1 < j<n — 1L

Proof Let v be any element of K with degy < j < n; — 1. Then by the definition
of a distinguished pair #(6 — ) < 7#( — «); consequently, by the strong triangle law
(o — ) = min{#(a — 6),¥(0 — v)} = #(@ — ), which proves the lemma. [ ]

The result stated below is proved implicitly in [I} §4] and explicitly in [2, Theorem
2.4]. Its proof is omitted.

Lemma 3.3 Suppose that K(0)/K is a defectless extension of degree n > 1. Then the
set M,,_1(0) has a maximum element.
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Lemma 3.4 Let (0,«) be a (K, v)-distinguished pair. Let f(x), g(x) be the minimal
polynomials over K of v, 0 respectively of degree ny and n. Then for any -y belonging to
K with deg~y < ny — 1, one has #(g(y)) = n—”]V(f('y)).

Proof Let h(x) belonging to K[x] be the minimal polynomial of y of degree m. Write
g(x) = H';:l(x —09), h(x) =TI/~ (x — v'). Since g(x), h(x) are irreducible over
the Henselian valued field (K, v), it follows that

(3.1)  wgy") = w(g(), FhEOD)) =#(h@)), 1<i<m1<j<n

Keeping in view (3.1)) and the equality [, g(v*) = & H;‘:l h(6D), it follows that
mv(g(y)) = nv(h(0)), i.e.,

(3.2) 7g() = —7(h(0)).
Writing f(x) =[]}, (x — a(F) and arguing as above, it can be seen that
(3:3) () = o(h(e).

Since degw < n; — 1, it follows from the definition of a distinguished pair that
#(0 — %) < #(0 — «); consequently by the strong triangle law

#(a — ") = min{#(a — 0), 90 — )} = #0 — 7).

On summing over i, we see that #(h(«)) = #(h(6)), which combined with (382 and
(B3) proves the lemma. ]

The following lemma, needed for the proof of Theorem[I.3] is also of independent
interest as pointed out in Remark[3.6

Lemma 3.5 Let (0,c) be a (K,v)-distinguished pair and let g(x) be the minimal
polynomial of § over K of degree n. For any (3 belonging to K with deg 8 < n — 1, one
has 7(g(83)) < 7(g(a)).

Proof Let 3 be as above. Since #(g(83)) = #(g(8’)) for every K-conjugate 5’ of 3, it
may be assumed without loss of generality that

(3.4) 70 — B) = max{#(@ — B’) | B’ runs over all K-conjugates of 3}.
Write g(x) = H?:l(x — 69). It will be shown that for 1 <i < n,

(3.5) 78— 0") < #(a — 9.

Since (0, o) is a distinguished pair and deg 8 < n — 1, we have

(3.6) #a — B) = min{#(a — ), 9(0 — B)} = (0 — B).
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Fix any i, 1 < i < n. Since (K,v) is Henselian, #(0") — 3) = #(0 — ') for some
K-conjugate 8’ of 8. Therefore, using (3.6) and (3.4), we obtain

(3.7) Ha—B) = 90— B) = 70— ") =0 - B).
It follows from (3.7) and the triangle law that
#a —09) > min{#(a — ), %8 — 0} = #(5 — 07,

which proves (3.5) and hence the lemma. [ |

Proof of Theorem 1.3 We prove the equivalence of (i) and (ii) and then of (ii) and
(iii) by induction on #.

(i) = (ii). If K(#)/K is a defectless extension of degree 2, then the set M;(6) =
{v(6 — a) | a € K} has a maximum element in view of Proposition 21l Assume
that the result holds for all elements of degree not exceeding #n — 1 and that K(¢)/K
is a defectless extension of degree n > 3. Now by Lemma[3.3land Remark[3.1] there
exists an element 6; belonging to K such that (6, 6;) is a distinguished pair. Let 1,
denote the degree of 6;. Applying Theorem A, we see that K(6;)/K is a defectless
extension. By Lemma 3.2} M;(0) = M;(0,) for 1 < j < n — 1. Therefore by
induction hypothesis, M;(6;) and hence M;(6) has a maximum element for 1 < j <
ny — 1. Also it is clear from the definition of a distinguished pair that v(6 — 6,) is the
maximum element of M;(6) when n; < j < n — 1, which completes the proof that
(i) implies (ii).

(ii) = (i). When n = 2, then using the hypothesis that the set {v(§ — a) | a € K}
has a maximum element and arguing as in the last lines of the proof of Theorem[I.2}
we conclude that K()/K is not an immediate extension and hence it is a defectless
extension of degree 2. Suppose that 6 has degree n and the result is true for all el-
ements of degree < n — 1. Since M,,_1(#) has a maximum element, there exists an
element 6, of degree n; (say) such that (0, 0;) is a distinguished pair. By Lemma[3.2}
M;(0) = M;(6,) for 1 < j < n; — 1 and hence M;(6;) has a maximum element.
Therefore by induction hypothesis, K(6;)/K is a defectless extension, and hence so is
K(#)/K, in view of Theorem A.

(ii) = (iii). Let ¢ be an element of K such that v(6 — ¢) = max{v(§ —a) | a € K}.
Then in the case n = 2, the set N1(g) = {v(g(a)) | a € K} has 2v(6 —¢) as maximum.
Suppose that 6 has degree n and the result is true for all elements of smaller degree.
In view of the hypothesis, there exists an element 6 belonging to K such that (6, 6;)
is a distinguished pair with deg ), = n, (say). Then by Lemmal[3.2} M;(6,) = M;(0)
for 1 < j < mn; — 1. Therefore, by induction hypothesis, if f(x) is the minimal
polynomial of 8, over K, then the set N;(f) = {v(f(B)) | B € K,deg3 < j} will
have a maximum element for 1 < j < n; — 1. Recall that by virtue of Lemmal[3.4] for
B belonging to K with deg8 < m — 1,v(g(pB)) = n—”]v(f(ﬂ)). So it follows that the
sets N;j(g) will also have a maximum element for 1 < j < n; — 1. Furthermore, by
Lemma[3.5 v(g(6;)) is the maximum of N,,_;(g), and hence it is also the maximum
of N;j(g) when n; < j < n — 1, which completes the proof of the desired assertion.

(iii) = (ii). For n = 2, the set Ni(g) = {2v(6 — a) | a € K} has a maximum
by (iii), and hence M;(f) has a maximum element. Suppose that degf = n and
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the result holds for elements of lower degree. Let o be an element of degree not
exceeding n — 1 such that v(g(«)) is the maximum of the set N,,_1(g). Replacing «
by its K-conjugate, we can assume that

(3.8) v(0 — o) = max{v(f — a’) | @’ runs over all K-conjugates of a}.

We claim that M, (6) has v(§ — a) as maximum element. Suppose to the contrary
that there exists an element y belonging to K of degree < n — 1 such that

(3.9) (0 —a) < v(0— ).

We shall obtain the desired contradiction by showing that

(3.10) v(g(7)) > v(g(a)).

To verify (B.10)), note that in view of and the strong triangle law, we have
(3.11) v(y — @) = min{v(y — 6),v(0 — a)} = v(0 — ).

Let ) be any K-conjugate of . Keeping in mind (3.11)), (3.8)), and the fact that
v — 0D) = v(a' — 0) < v(a — 0), we have

v(y — 09) > min{v(y — ), v(a — )} = v(a — 7).

Summing over all K-conjugates ") of @ and using (3.9)), we obtain (B.10). Hence the
claim is proved.

So there exists 0; in K such that (0,0:) is a distinguished pair. Let f(x) be the
minimal polynomial of 6, over K of degree n,. Then by virtue of Lemma[3.4] for any
/3 belonging to K with deg 3 < n; — 1, we have

(3.12) v(g(B)) = %v( £(3)).

By hypothesis, the sets N;(g) have a maximum element for 1 < j < n — 1. It now
follows from that N;(f) = {v(f(B)) | B € K,deg 8 < j} has a maximum
element for 1 < j < n; — 1. Therefore by induction hypothesis, M;(6;) and hence
M ;(0) will have a maximum element for 1 < j < n;—1. Asv(0—0;) is the maximum
element of M;(0) for n; < j < n — 1, we see that (iii) = (ii). [ |

Remark 3.6 Suppose that K(6)/K is a defectless extension. In view of Lemma[3.3]
there exists 6, such that (0, 0;) is a distinguished pair. By successive applications of
Lemmal[3.2] there exist distinguished pairs (8, 0,), (61, 65), ..., (6,_1,0,) with 8, in K
and deg 0; = n; (say). Using induction on ny = deg6 and applying Lemmas[3.5]and
34} it can be quickly shown (as in the proof of (ii) = (iii) above) that max N;(g) =
v(g(0;)) whenn; < j<m_;—1,1<i<r.
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