An addition to a note of mine

Kurt Mahler

A recent improvement by H. Guggenheimer of the lower bound for the product of the volumes of a pair of polar reciprocal convex bodies is used to replace one of the results of Kurt Mahler, "Polar analogues of two theorems by Minkowski", Bull. Austral. Math. Soc. 11 (1974), $121-129$ by a best possible one. A similar improvement can be made for the other theorems in my note.

In my note [2], I established three theorems on the connection between symmetric convex bodies in R^{n} and hyperplane lattices in R^{n}. The proofs of these theorems were based on the inequality

$$
V(K) V\left(K^{*}\right) \geq n^{-n / 2} \pi^{n} \Gamma((n / 2)+1)^{-2}
$$

for the volumes of a pair of polar reciprocal convex bodies K and K^{*}.
Recently, Guggenheimer [1] has replaced this inequality by

$$
V(K) V\left(K^{*}\right) \geq 4^{n} / n!,
$$

which is best possible; for equality holds if one of the two bodies K, K^{*} is an n-dimensional parallelepiped.

On using this improved lower bound in the proofs of ny note, but without further changes, my first theorem takes now the following simple form.

THEOREM 1. Let $K: F(x) \leq 1$ be a symmetric convex body of volume

$$
V(K) \geq 2^{n} / n!
$$

Then there exists an integral vector $u \neq 0$ such that $F(x) \geq 1$ at all
Received 11 February 1976.
real points x satisfying u.x $=1$.
This theorem is best possible as is immediately seen when K is the octahedron

$$
\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1,
$$

and u is the vector $(1,0, \ldots, 0)$.
Theorem 1 implies the following analogue to Minkowski's Theorem on linear forms.

Let

$$
y_{h}=a_{h 1} x_{1}+\ldots+a_{h n} x_{n} \quad(h=1,2, \ldots, n)
$$

be n linear forms with real coefficients of determinant 1 . Then there exist integers u_{1}, \ldots, u_{n} not all zero such that
$\left|y_{1}\right|+\ldots+\left|y_{n}\right| \geq 1$ for all real x_{1}, \ldots, x_{n} satisfying
$u_{1} x_{1}+\ldots+u_{n} x_{n}=1$.
The same change allows one to improve the other two theorems of my note.

References

[1] H. Guggenheimer, "Polar reciprocal convex bodies", Israel J. Math. 14 (1973), 309-316.
[2] Kurt Mahler, "Polar analogues of two theorems by Minkowski", Bull. AustraZ. Math. Soc. 11 (1974), 121-129.

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.

