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Abstract  Some new inequalities for quotients of modified Bessel functions of the first and second
kinds are deduced. Moreover, some developments on bounds for modified Bessel functions of the first
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1. Introduction and preliminaries

Let us consider the second-order modified Bessel differential equation
2. 1 / 2 2 _
w7y (z) + ay'(x) — (27 +v7)y(z) = 0,

which differs from the classical Bessel differential equation only in the coefficient of y.

This differential equation frequently occurs in problems of mathematical physics and its

linearly independent solutions are called modified Bessel functions of the first and second

kinds. In what follows let us, as usual, denote by I,, and K, the modified Bessel functions

of the first and second kinds, respectively, of order v. It is well known that the modified

Bessel function of the first kind I, can be represented as the infinite series [76, p. 77]
Gor  (La)

_ _ 1.2
o= n2>:o Wl +n+1) - T+t i Lar), (L1

where o F7 is the hypergeometric series (function), defined by

1 z»
OFl(a7x) = Z 7N

7'7
= (a)n n!
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and (a)o =1fora # 0, (a), = a(a+1)---(a+n—1) = I'(a+n)/I'(a) foralln € {1,2,...}
is the well-known Pochhammer (or Appell) symbol, defined in terms of Euler’s gamma
function. Now, let us consider the modified Bessel function of the second kind (which is
sometimes called the MacDonald or Hankel function) K, defined by [76, p. 78]

2 sinvm

where the right-hand side of this equation is replaced by its limiting value if v is an inte-
ger or zero. In the last few decades many inequalities and monotonicity properties for the
functions I, and K, and their several combinations have been deduced by many authors,
motivated by various problems that arise in wave mechanics, fluid mechanics, electrical
engineering, quantum billiards, biophysics, mathematical physics, finite elasticity, prob-
ability and statistics, special relativity, etc. For example, an inequality for the ratio of
K, /I, was used in 1962 by Rosenthal [68], and later in 1970 by Ross [69], in order
to determine the stability of fluid motion. Recently, the monotonicity of the function
xz +— I,(z)K,(x) has been studied by Penfold et al. [62], motivated by a problem that
arises in biophysics. There is also an extensive literature dealing with lower and upper
bounds for the ratios I,,(z)/I,(y) and K, (z)/K,(y), and related monotonicity problems.
The interested reader is referred to [4,17,21,26,41,48,49,51,58,59,61,70,73,74] and
the references therein. Although the inequalities involving the above quotients are inter-
esting in their own right, recently the lower and upper bounds for the ratio I, (z)/I,(y)
received increasing attention, since they play an important role in the problem of bound-
ing the generalized Marcum @Q-function, which frequently arises in radar signal process-
ing. Motivated by these applications, new lower and upper bounds have recently been
deduced for the above ratio by Baricz and Sun [17,21] and the results have been applied
to obtain tight bounds for the generalized Marcum Q-function. In this paper we continue
the study from [17,21]. However, our aim is twofold: to present a brief summary on
the known bounds of I,,(z)/I,(y) and K, (z)/K,(y) and to compare them with the new
results by applying these results to a special function that arises in finite elasticity. The
detailed content is as follows: in §2 we review the known results on the bounds for the
ratio I, (z)/I,(y) and we discuss in detail the related problems concerning higher-order
monotonicity properties of several functions involving modified Bessel functions of the
first kind. Furthermore, in §2 we improve some known results from [48,49,51] by using
a result of Biernacki and Krzyz [23], providing a criterion for the monotonicity of the
quotient of two Maclaurin series. For the sake of completeness, in §3 we offer a brief
summary on the results concerning the bounds for the ratio K, (z)/K,(y). In §4 we use
the results from §2 to improve the bounds stated in [51] for a function that involves
the modified Bessel function of the first kind. Moreover, in §4 we discover a new Turan-
type inequality involving modified Bessel functions of the first kind. It is worthwhile
noting that some of the main results of this paper, namely Theorem 2.2, have important
applications [22] to the problems of bounding the above-mentioned generalized Marcum
@-function. Finally, note that, at the end of §§2-4 we present certain open problems,
which may be of interest for further research.
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We close these preliminaries with the following definitions, which will be used in the
paper. By definition, a function f: (0,00) — R is said to be completely monotonic
(CM) if f has derivatives of all orders and satisfies (—1)"f(™)(z) > 0 for all 2 > 0 and
n € {0,1,2,...}. Note that strict inequality always holds in the above inequality unless
f is constant [31]. If for all z > 0 and n € {0,1,2,...} we have (—1)"f(") (z) > 0, then
f is said to be strictly completely monotonic (SCM). For more information on complete
monotonicity, the interested reader is referred to [1,2,39,57,79] and the references
therein. Similarly, a function g: (0,00) — R is said to be absolutely monotonic (AM) if
g has derivatives of all orders and satisfies (™) (x) > 0 for all > 0 and n € {0,1,2,... }.
If for all z > 0 and n € {0,1,2,...} we have ¢g(™(z) > 0, then g is said to be strictly
absolutely monotonic (SAM). For more details on absolute monotonicity we refer the
reader to [79].

2. Bounds for quotients of modified Bessel functions of the first kind

2.1. Overview of known results and related comments

In 1984, Paris [61] proved that the function & — x "I, (z) is strictly increasing on (0, c0),
while the function  — e~z "I, (z) is strictly decreasing on (0, o) for allv > —1  i.e. for
a110<x<yand1/>—% we have

(3] << (2]

The right-hand side of (2.1) was rediscovered in 1990 by Robert [67] for v > 0 and in
1991 by Joshi and Bissu [48] for v > —%. We note that, using the power-series expansion
(1.1), we immediately have that the function z — 27”1, (x) is in fact strictly increasing
on (0,00) for all ¥ > —1, i.e. the right-hand side of (2.1) holds for all v > —1. Moreover,
it is easy to see that the function & — z7"I,(z) is actually SAM on (0,00) for each
v>—1.

Now let us consider the left-hand side of (2.1). Searching in the literature, we have
found that this basic inequality is not as widely known as it should be, and it has been

rediscovered several times. For v > 0 this result was also deduced independently by
Bordelon [26] and Ross [70] in 1973. More precisely, they proved that for all v > 0 and
0 < z < y the following inequalities hold:

() <im<() &

It is worth mentioning here that the left-hand side of (2.1) (or (2.2)) was proved in 1991
by Joshi and Bissu [48] for v > —% and, by using the same method independently, by
Laforgia [51] for v > —1. We note that the method used in [48,51] is based on the
inequality

I(x) > I,41(x), (2.3)

which was proved for v > —1 and z > 0 by Soni [74] in 1965 and extended to the

case when v > —% by Nasell [58] in 1974. Note that inequality (2.3) was also proved by
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Gupta [37] and later by de Sitter and Goovaerts [30]; furthermore, it was extended to
Whittaker functions by Lorch [54]. Results that are stronger than (2.3) for v > 0 and
x > 0 were given by Cochran [29] in 1967 and by Jones [47] and Reudink [66] in 1968.
More precisely, Jones proved that I,,(x) < I,,(x) holds for all z > 0 and v > p > 0, while
Cochran and Reudink established the inequality 01, (z)/0v < 0 for all z,v > 0. Moreover,
tighter bounds for the ratio I,4+1(z)/I,(x) can be found: see, for example, [4,59,63].

We note here that if the function a — e %2~ VI, () is strictly decreasing on (0, 00) for
all v > —1, then clearly we have that

™" Z, ()] = e "L, (x) = ()] < O

for all v > f% and x > 0, where for simplicity we have used the familiar notation

2n
_ 1,.2\ _ ov —v _ €
L(x) =oFi(v +1,327) = 2"T'(v + 1)z~"1,(z) = Z:O 4nnl(v +1),°
Now, since from the above series representation for all v # —1,—2,... and z € R we

have the well-known differentiation formula
T

I, (x) = m

Iv+1(x)v

it follows that the inequality I, (z) > I,41(z) holds for all v > —1 and x > 0. However,
it is easy to see from (1.1) that in the above inequality we cannot have equality when
z>0and v > f%. More precisely, if we were have equality, then this would imply that
Z,(z) = e” for positive x, which would contradict the inequality Z, (z) < e*, where > 0
and v > —3. Here we have used once again that « — e~*Z,(x) is strictly decreasing on
(0,00) and Z,,(0) = 1. The above argument actually yields that the left-hand side of (2.1)
is equivalent to the inequality (2.3) of Soni [74].

Taking into account the above discussion, a natural question that arises is the following:
what happens to the left-hand side of (2.1) when v € (—1,—1)? Using some known
upper bounds for the ratio I, 1(x)/I,(z), it is easy to see that for small = the function
x+— e Tax VI, (x) is still strictly decreasing when v € (—1, —%) However, for large values
of z, the derivative of  — e "z, (z) changes sign.

It is also important to note here that the function z — e 7z~"I,(z) is in fact SCM
on (0,00) for all v > —3. For v > —1 this statement was proved by Nasell [59] in 1978
by using the Schléfli integral representation [76, p. 79]

_ (li ! 42 1/71/2efxt
I, (x) = ﬁﬁ(H%) L(l ) dt,

which implies that the function z — e~z ~"I,(z) is a Laplace transform, and hence by
the classical Bernstein—-Widder Theorem it is SCM. For v > —%, another approach to
prove the above complete monotonicity is to use the integral representation [28]

() = Ir2v+1) /1(15 _ t2)u71/26m(2t71) dt
v FZ(I/ + %) 0 '
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This was done recently in [21] by Baricz and Sun, and it was pointed out that for
v = —3 the function z — e7%Z,(z) is also SCM on (0,00). From the above discussion
it follows that when v € (—1,—3) the function = — e~*Z,(z) is not SCM on (0, c0).
A strongly related result was proved in 1990 by Ismail [43], who proved, by using the
Weierstrassian infinite product representation of the modified Bessel function of the first
kind, that if » > 1, then the function z — 2"I'(v + 1)2/?I,(y/z)e” V¥ is the Laplace
transform of an infinitely divisible distribution. Clearly, in particular we have that x +—
2V (v + 1)x7"/21,(y/x)e V" is SCM on (0,00) for all v > 4. We point out here that,
in fact, the above statement holds for all v > —%. More precisely, it is known [25] that
if fis SCM and g is non-negative with an SCM derivative, then the composite function
f ogis also SCM. Now, since the function z — e %z~ ¥I,(z) is SCM on (0, c0) for all
v > —% and z — [/z]' is SCM on (0, 00), the required result immediately follows. This
completes the result of Ismail in the case when |v| < 3.

Furthermore, it is also worth noting a significant consequence of Nasell’s result. Since
an SCM function is strictly log-convex, from the above discussion we immediately have
that the function x — e™*Z,(z) and hence the function x — Z, () is strictly log-convex
on (0,00) for all v > —3. Now, since the function = — Z,(z) is even, we obtain that
x — Z,(x) is strictly log-convex on R for all v > —%. For v = 0, this result was
proved implicitly in 1967 by Boyd [27] and for v > —% it was proved explicitly in
1992 by Neuman [60] by using the above integral representation of the function Z,. Not
knowing about the above results, Kayumov [50] reproduced the log-convexity of Zo = I
in 2005 by using the classical Holder-Rogers inequality. We note that Neuman’s result
was slightly improved recently in [19] and it was conjectured that the function z — Z,, ()
is strictly log-convex on R for all v > —1. In [15] the case when = € [—j,1,J,,1] was
settled by Baricz. However, the strict log-convexity of z — Z,(x) on R\ [—j,.1, ju1] for
all v € (-1, f%) is still unproved. Here j, 1 is the first positive zero of the vth-order
Bessel function of the first kind. Moreover, in [13] it was proved that, for all v > —1 and
0 <z < +/2(v+1)(v+2), the function z — Z, () is strictly log-convex. Finally, we note
that, in 1996, Giordano et al. [35] presented an alternative proof of the log-convexity
of Z,, for v > f% by using the classical Holder—-Rogers inequality and claimed that all
derivatives of x — Z,(x) with respect to x are strictly log-convex on R for all v > —%.
However, in 1997 Ismail [44] pointed out that in fact just the derivatives of even order
of the function Z,, would be strictly log-convex. Recall that Z_; /5(x) = coshx; thus, in
this case it is clear that for all natural numbers k the function

x I(_zf/)z(ac) = coshz

is strictly log-convex on R and

v 290D (w) = sinh
is strictly log-concave on (0,00). Motivated by the above particular cases, Baricz [13]
recently conjectured the following: for each natural number & the function = +— I,S%) (z)
is strictly log-convex on R for all v > —1, while the function x +— I£2k+1)(m) is strictly
log-concave on (0, 00) for all v > —1.
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Now let us focus on the right-hand side of the inequality (2.2), which states that the
function = — e"z "I, (x) is strictly increasing on (0,00) for all v > 0. We observe that
using (1.1) in fact the function  — eI, (z) is not only strictly increasing on (0, 00)
for all v > —1, but even SAM.

Another upper bound for the ratio I, (z)/I,(y) which may be of interest is due to
Laforgia [51], who showed, by using Soni’s inequality (2.3), that for all v > § and
0 <z <y we have

<)

An alternative way to deduce (2.4) is the following: owing to Gronwall [36], it is known
that the inequality

a1}, (x) 1
4 — = 2.5
holds for all z > 0 and v > % This in turn implies that for all z > 0 and v > % we have

e L @) )
e v~ (x)  I,(x)

1
tv—z>r—5+v—220,

i.e. the function z — e~"2”I,(x) is strictly increasing on (0,00) for all v > 1. Further-
more, it is important to note here that by using the idea from [48,51], i.e. dividing by
x > 0, changing x to s, and after integrating on [z, y] both sides of Gronwall’s inequal-
ity (2.5), we obtain that for all v >  and 0 <z <y

Lu»<emy<yj”7 26)

i.e. the function z — e~®x/21, (z) is strictly increasing on (0, 00) for all v > L. However,
this follows also directly by observing that, by using Gronwall’s inequality (2.5) for all
v > 3 and z > 0, we obtain

—x,.1/2 / /
e @) el 1
e~ *x~1/2],(x) I(x) 2

Observe that the new upper bound in (2.6) is tighter than the upper bound of Laforgia
in (2.4).

When v € (0, %), graphs and numerical computations suggest that the function z —
e *x¥I,(x) is not strictly increasing on (0, 00), but is strictly increasing only on (0, €)
for sufficiently small e. However, since the product of two SCM functions is also SCM,
it can easily be seen that the function z — e *z¥I,(z) is SCM, and hence strictly
decreasing on (0,00) for all v € [—3,0]. Here we have used that z — e *z7"I,(x) is
SCM on (0,00) for all v > —% and x — 2" is also SCM on (0,00) for all v € [-3,0).
Consequently, when v € [—3, 0], we have that the inequality (2.4) is reversed. However,
this reversed inequality is weaker than the left-hand side of (2.1). The remaining part,
when v € (—1,—1), is stated at the end of this section as an open problem. Similarly,
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computer-generated pictures suggest that for v € (-1, %) the derivative of the function
x+— e *2'/2],(x) changes sign.

A strongly related result to inequality (2.4), deduced recently by Baricz and Sun [21],
is as follows: the function x +— 2¥Tte=*1I,(x) is strictly increasing on (0, co) for all v > 0,
i.e. for each 0 < z < y and v > 0 one has

Lix) ewy<y)y+1. (2.7)

Clearly, Laforgia’s upper bound in (2.4) is tighter than the upper bound in (2.7). However,
the inequality (2.7) is valid for all v > 0, not just for v > 3. Numerical experiments
suggest that the derivative of the function z — z¥*1e=*I,(z) changes sign on (0, 00)

when v € (—3,0); however, the case when v € (—1, —1] is stated below as another open

problem. It is also worth mentioning here that (2.7) can be improved as follows [17]: for
all v > 0 and 0 < z < y we have

I,(z) sinhx [y ok
£ <y (2) &

i.e. the function x + (sinhz)~1z*1I, () is strictly increasing on (0, 00) for all v > 0.
However, since the function x +— e™%Z; j5(z) = ez lsinhx is strictly decreasing on
(0,00) we observe that for v >  the upper bound in (2.8) is still weaker than the upper
bound in (2.4). Analogously, numerical experiments suggest that the derivative of the
function @ + (sinhz) 'z 11, (z) changes sign on (0, 00) for v € (—3,0), while the case
when v € (-1, —%] is stated below as an open problem.

Now, let us reconsider the left-hand side of (2.1). Tighter lower bounds of this kind
were established in 1991 by Joshi and Bissu [48], by using Nasell’s inequality [58], which
states that

(1 + Z)I,,H(x) < I(z) (2.9)

for all v > —1 and = > 0. Observe that for ¥ > 0 Nasell’s inequality (2.9) improves
Soni’s inequality (2.3). The result stated in [48] is as follows: the function z — 2% (z +
v)¥e "I, (x) is strictly decreasing on (0,00) for all v > —1, i.e. for all 0 < z < y and

v > —1 we have
v v I
e’”—y(y+”) (x) < @) (2.10)
r+v) \y L(y)

This lower bound is clearly tighter than the lower bound in (2.1) if ¥ > 0. Another lower
bound which is tighter than the lower bound in (2.1) was deduced recently by Baricz [17],
who showed that the function z + (e®+\,) "tz 7"1, () is decreasing on (0, c0) for all v >
0, where A, = f(p,) is the largest positive constant and f,(x) = e*[I,(x)/I,+1(x) — 1],
while p, is the unique positive root of the equation (x 4+ 2v + 1)I,11(x) = zI,(x).
Equivalently, we have that for all ¥ > 0 and 0 < z < y the following inequality holds:

e+, (z\  IL(v)
— . 2.11
ey—i-/\y(y) < (2.11)
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We note that in (2.11) the constant A, is the best possible, i.e. cannot be changed by
any larger constant.

Finally, let us discuss some other types of bounds that we have found in the literature.
An interesting approach was given in 1990 by Ifantis and Siafarikas [41], who proved by
using operator techniques that the right-hand side of (2.1) can be improved as follows:

-2
I, g 3 Jo,1/4(v+1)

(2) (x> (2321) : (2.12)
1, (y) y) \y2+3i2,
where j, 1 is the first positive zero of the vth-order Bessel function of the first kind,

v > —1and 0 < z < y. Moreover, in 1996 Joshi and Bissu [49] proved that, for all
r>—-land0<zx <y,

P {4<_+yl>} @) < Ty <o {Z<2u_+ylz> S e D } (Zj) (213)

However, these bounds are tighter than those presented in (2.1) only for a strong assump-

tion on the order v, and hence they are not very useful. All the same, an alternative idea
for deducing the left-hand side of (2.13) will be useful in order to deduce new lower and
upper bounds, as we can see in the next subsection. More precisely, the left-hand side
of (2.13) can be reformulated as follows: the function x — exp{—2?/[4(v + 1)]}z~" 1, ()
is strictly decreasing on (0, 00) for all v > —1, and this can be proved directly by using
the following old result of Biernacki and Krzyz [23].

Lemma 2.1. Consider the power series f(x) = ag + a1z + -+ + aza2™ + -+ and
g(x) = bo + byx + -+ + bya™ + -+ -, where, for all n > 0, integer a,, € R and b, > 0,
and suppose that both converge on R. If the sequence {ay, /by }n>0 is (strictly) increasing
(decreasing), then the function = — f(x)/g(x) is also (strictly) increasing (decreasing)
on (0,00).

For different proofs and various applications of this result the interested reader, is
referred to [3,5,7-10,12,40,60,65] and the references therein. We note that we can see
easily that the above result remains true if we get even and odd functions, i.e.

() f(x) =ao+aa®+ -+ apz® + -+ and g(z) = by + b1a® + -+ + by2?" + -+ -
(i) f(z) = apz+arz®+ - +a,x®" 14+ and g(x) = box +bya® +- - - +bz?H 4. .-

Now, using the power-series representation of the functions x — exp{z?/[4(v + 1)]} and
= TI,(x), ie.

IV(LL') _ LL’Qn .’)32"
exp{z2/[4(v +1)]} Z 4nrnl(v + l)n/g) 4npl(v 4+ 1)n7

n=0

in view of Lemma 2.1, to prove the left-hand side of (2.13) it is sufficient to prove that
the sequence {a, }rn>0 = {(¥ +1)" /(v + 1), }n>0 is strictly decreasing. Since ap = a3 =1
and, for all integers n > 2, the condition «;,, > ay,41 is equivalent to v +n+1> v + 1,
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the required result follows easily. Observe that by using the monotonicity of the function
x + exp{—2?/[4(v + 1)]}Z,(x) we immediately have an upper bound for the modified
Bessel function of the first kind, i.e. for all v > —1 and x > 0 one has

:L.l/

_ 2 P/t
EETAUESIN

L(z)

However, this result can be rewritten as follows:

22 22
Stos (14 ) <3
n>1 ]V,n n>1 Ju,n

which follows easily by using the well-known inequality e* > « + 1. Here j, ,, is the nth

positive zero of the vth-order Bessel function of the first kind and we have used the
known formulae [76]

Iu(x):H(H_‘f) and Z%:ﬁ.

n>1 v,n

A similar result for Bessel functions of the first kind was proved for a real argument by
Ismail and Muldoon [46] in 1986, for a complex argument in the open disc {z € C: |z] <
Ju1} by Sitnik [73] in 1995 and, recently, for a complex argument in the closed Cassinian
oval by Pogdny [64]. It is also worthwhile noting that Andrds and Baricz [6] recently
deduced a similar result for the complex argument in the open unit disc.

We close this subsection with the following results of Sitnik [73]:

(x)”[x2+2(u+1)(u+3) (v+3)/4(w+2) {x2—y2}
exp

v) 2 +20+ D +3) 8(v +2)

L(@) _ <w>[x +Av+ (v + 2)}”*2
Ly ~\y) ly+4v+)@+2)]
where 0 < < y and v > —1. For more general inequalities of this kind we refer also

to [73]. We note that for v > —1 the above upper bound improves the Paris upper bound
in (2.1).

<

2.2. Some new results and related comments

By using the idea of the proof of the left-hand side of (2.13), we obtain the following
result, which is mainly based on Lemma 2.1.

Theorem 2.2. Let v, > —1 and let k be a natural number. The following assertions
are then true.

(i) If v < p (v > p), then the function x — Z,(z)/Z,(x) is strictly increasing
(decreasing) on (0, 00).

(ii) The function z I,E%)(:U)/coshx is strictly increasing on (0,00) for all v < —3
and strictly decreasing on (0,00) for all v > —%.
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(iii) The function z — Il(,zkﬂ)(x)/sinha: is strictly increasing on (0,00) for all v < —3
and strictly decreasing on (0,00) for all v > f%.

(iv) The function x — x~I,(x)/coshz is strictly increasing on (0,00) for all v < —%
and strictly decreasing on (0,00) for all v > —%.

(v) The function  — x'~"I,(z)/sinhx is strictly increasing on (0,00) for all v < 1
and strictly decreasing on (0,00) for all v > %

(vi) The following inequalities hold for all > 0:

Iu+1(93)

I, <tanhz <1 for allv > —1, (2.14)
1,
+18)  anhz > 0 for all v < —1, (2.15)
1, ()
I, 1
+1(@) < cothz — = <tanhz <1 forallv> %, (2.16)
I,(x) x
I, 1
18 othe— L 50 for all v < . (2.17)
I,(x) x

Proof. (i) By using the power-series representation of the functions Z, and Z,,, in
view of Lemma 2.1 we need only study the monotonicity of the sequence {ay,}n>0 =
{(+1)n/ (v + 1) }r>0. However, by the ascending factorial notation we have that (v +
n)a, = (u+n)a,—1 for all n > 1. Consequently, we obtain that «,, < a,—1 foralln > 1
if and only if 4 < v, and a,, > a1 for all n > 1 if and only if u > v.

(i), (iii) Using the power-series representation of the function Z,, it is easy to show

that
(2k) ()" 2
% (x) = (2n+1) ",
;}O Fw+1),, . (n+ k)
(2k+1) Z (i)nﬂcﬂ 2n+1
Z, (x) = (2n + 2) e
n>0 P )0+ k1))
On the other hand, we know that
e” _’_ef:r x2n 2n+1
he=———= — d sinhx =
coshz 5 7; )] and sinhx = ; S 1]

In view of Lemma 2.1 we need to study the monotonicity of sequences {c,}n>0 and
{Bn}n>0, defined by

l)n—&-k (l)n+k(2n+ Qk)'
_ 4 1= 24
= O D ) e T o Dt Y
(3ynthtt (1)" T (2n 4 2k + 2)!

Brn = (2n + 2)2k11 2n+ 1) =

(v + 1)n+k+1<n+k+ 1)! (V+Dpirpr(n+Ek+1)!
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for all natural numbers n and k. Observe first that for all n € N we have 3, = an41,
which implies that it is sufficient to study the monotonicity of the sequence {a, }n>0. By
the ascending factorial notation for all n, k € N and v > —1 we have

2n + 2k +1
«a
2n + 2k + 2v + 2

Apt1 = ne

Consequently, o, +1 < ay, holds for all n € N if and only if v > —%7 and ay41 > o, holds
for all n € N if and only if v < f%. In view of Lemma 2.1 these complete the proof of
parts (ii) and (iii).

(iv) This follows from part (i) by taking u = —1 and noticing that Z_; j5(z) = coshz.
Furthermore, this statement can also be deduced from part (ii) by choosing k& = 0.

(v) Similarly, this follows from part (i) by taking 1 = % and noticing that Z; 5(z) =

x~ 1 sinh z. However, by using the well-known recurrence relation [76, p. 79] 21,1 (z) =
I (z) — vI,(x), we obtain the formula

I, (z) =2"T(v+ 1)z " I,41 (), (2.18)
which in turn yields from part (iii) that the function x — "I, ;1(x)/sinhx is strictly

increasing on (0, 00) for all v < —3 and is strictly decreasing on (0,00) for all v > —1.
Now, replacing v by v — 1 we obtain the second proof of part (v).

(vi) Using (2.18), we obtain the relation
[cosh? 2][Z,, () /cosh z] = 2" T (v + 1)z ™" [I, 41 (x) cosh x — I,,(z) sinh z],

and from part (iv) we immediately obtain the inequalities (2.14) and (2.15). On the other
hand, we know that

TV(&) = 2T (0 + Dl—va™ Ly () + 27T, (0)
=2 D | ae) = L (o)
=2"T'(v+1)z™" [Il,+2(x) + ;IVJF]_(J:)] ,

which in turn implies that

)
¥ sinh” x

Lzlil(}ic;]’ _2T(v+1)

{ {L,Jrz(x) + ;Iyﬂ(x)] sinhz — I, 41 () coshx}.

Using part (iii) for k = 0, these relations imply the inequalities (2.16) and (2.17). All that
it remains to prove is the inequality cothz — 1/z < tanhz for > 0. But this inequality
can be rewritten as x < (sinhx)(coshx), i.e. Z_y/2(2)Z1/2(x) > 1, which clearly holds,
since for all z > 0 and v > —1 we have Z, (x) > 1. With this the proof is complete. O
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First let us focus on the first part of Theorem 2.2. By (2.18) we get that

Bﬂg;] _ [ ;]{E: i 32—4 [Iu+1(x)fu(xgzzxf)wl(x)fu(ﬂ?) 7

and by using Theorem 2.2 (i) we obtain that, for all 4 > v > —1 and = > 0,
the Turdn-type inequality I,yq(z)I,(z) — Iu41(x)I,(z) > 0 holds. Now, choosing
= v+ 1 in the above inequality, we obtain the well-known Turdn-type inequality
12, (z) = I4o(z)1,(x) > 0, where v > —1 and z > 0. This inequality is known in litera-
ture as Amos’s inequality [4] and it was deduced in 1974. However, its equivalent form had
already been deduced in 1932 by Gronwall [36], as was pointed out recently by Baricz [16].
For more details on Turdn-type inequalities on Bessel, modified Bessel and hypergeomet-
ric functions and related results, the interested reader is referred to [11,14,15,18,54].
Recall that from the second (or fourth) part of Theorem 2.2 we obtain the result
that the function 2 — Z,(z)/cosha is strictly decreasing on (0,00) for all v > —31.
Consequently, we immediately have that for all z > 0 and v > f% the inequality Z, (x) <
cosh z holds. This inequality is actually also an immediate consequence of the result [15,
Theorem 1] that v — Z,(x) is decreasing on (—1,00) for each fixed x > 0. However, an
alternative derivation of the above inequality was given in 1972 by Luke [56, p. 63], by

using a completely different approach.
Clearly, Theorem 2.2 (iv) can be rewritten as follows:

coshz (zY  I,(x)
il 2.19
coshy(y) < ( )

where 0 < x < y and v > —%. Moreover, the above inequality is reversed when v €
(=1,—3). It is worth mentioning that since the function & — ¢™*Z_; 5(x) = ¢~ * coshx
is decreasing on (0, 00), clearly the bound in (2.19) is tighter than the bound in the left-
hand side of (2.1) or (2.2). Similarly, since the function x — Z_; j5(x) = cosh z is strictly
increasing on (0,00), we obtain that, when v € (—1,—1), the reversed form of (2.19)
improves the right-hand side of (2.1). All the same, the inequalities (2.11) and (2.19)
cannot be compared on the whole interval (0, c0), due to their different natures.
Analogously, the fifth part of Theorem 2.2 can be rewritten as follows:

sinh z (;)”_1 _ (@) (2.20)

sinhy L(y)’
1

where 0 < x < y and v > 5. Furthermore, the above inequality is reversed, when

€ (=1, %). We note that, since the function « — e™*Z; jo(2) = e"*x~! sinhz is decreas-
ing on (0, 00), clearly the bound in (2.20) is tighter than the bound in the left-hand side
of (2.1) or (2.2). Similarly, since the function z — Z; j2() = 2~ ' sinh z is strictly increas-
ing on (0, 00), we obtain that when v € (—1, 1) the reversed form of (2.20) improves the
right-hand side of (2.1) and completes (2.8).

Now, let us compare the inequalities (2.19) and (2.20). From the first part of Theo-
rem 2.2 we know that the function 2 — Z_; /5(x)/Z; /2(z) is strictly increasing on (0, c0).
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This in turn implies that for v > % the lower bound in (2.20) is tighter than the lower
bound in (2.19). However, by using the above argument for v < —% the reversed form
of (2.19) is better than the reversed form of (2.20).

Observe that for v > —% the inequality (2.14) improves Soni’s inequality (2.3). More-
over, for v > % the inequality (2.16) improves the inequality (2.14). Although the bounds
given in (2.14) and (2.16) are weaker than the more accurate bounds given in [4,59,63],
they have the advantage of being easily evaluated numerically, since they do not depend
on v. Furthermore, numerical experiments suggest that for v € (—%, 0) the upper bound
in (2.14) is very tight and, similarly, for v € (%, 1) the upper bound in (2.16) is also tight.
This is in agreement with the fact that, as the order v increases, sharper upper bounds
than in (2.14) and (2.16) for the ratio I,4+1(z)/I,(x) can be obtained using higher even-
and odd-order derivatives of the function « — Z, (x) together with parts (ii) and (iii) of
Theorem 2.2. We note that it is easy to see that, from the inequality (2.14), by using the
recurrence formula [76, p. 79] I}, (x)/I,(xz) = v/z + I,4+1(x) /1, (x), after integration we
obtain the inequality (2.19). Analogously, from the inequality (2.16), after integration we
get the inequality (2.20). Taking into account the proof of Theorem 2.2 (vi), these in turn
imply that in fact the inequality (2.14) is equivalent to (2.19), while the inequality (2.16)
is equivalent to (2.20).

Finally, we propose some open problems which are related to the problems discussed
in this section.

(a) Is the function z +— 2¥e~*1,(x) SCM on (0, 00) for all v € (—1,—1)?

(b) Is the function x +— z¥*te=2I,(z) SCM on (0,00) for all v € (—1,—1]?

1
s 9l

(c) Is the function z + (sinhz)~tz¥*11,(x) SCM on (0,c0) for all v € (—1,—2]?

1
2

3. Bounds for quotients of modified Bessel functions of the second kind

In 1984 Paris [61] proved the inequality

S G

which holds for all v > —% and 0 < = < y. However, this result also appeared in [26,70]
in 1973. Inequality (3.1) was also derived by Laforgia [51] in 1991. The above result
actually states that the function x — x7e* K, (z) is strictly decreasing on (0, 00) for all
v > —1. We note that it is well known [57] that the function z — e*K, () is SCM on
(0,00) for all v € R. Now, since the function z — 2~ is SCM on (0, 00) for all v > 0,
it follows that the function z — 27 "e" K, (x) for all v > 0 is not only strictly decreasing
but even SCM on (0, 00). Moreover, since, due to Miller and Samko [57], the function
z +— x¥e"K,(z) is SCM on (0,00) for all v € (0, %), we easily obtain that the function
z +— z77e"K,(z) is SCM on (0,00) for all v € (—3,0) and hence for all v > —1. Here
we have used the well-known fact that the function v — K, (x) is even. Observe that,
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since the function = — e* K, () is strictly decreasing, as we have mentioned above, we
get the following inequality [51]:

K, ()
K, (y)

where 0 < z < y and v is an arbitrary real number. If v > 0, then (3.2) is more stringent
than (3.1). Now, using the fact that the function x — K, (z)/I,(x) is strictly decreasing
on (0, 00) for all v > —1, as a product of two strictly decreasing functions, in view of (2.1)
Joshi and Bissu [48] in 1991 deduced the inequality

at]

where v > —% and 0 < x < y. Clearly, this lower bound is weaker than the lower bound
n (3.1). We note that the function z — e *2 VK, (x) is not only strictly decreasing on
(0, 00) for all v > f% but is actually SCM, as a product of the SCM functions x +— e~2*
and z — 77" K, ().

Another result related to the inequalities (3.1) and (3.2) was proved in 1991 by Laforgia

[61], who showed that
K, (x) — 9
Ko ) > e (a: , (3.3)

where v € (0, 3) and 0 < = < y. Observe that for v € (0, 3) the inequality (3.3) improves
(3.1). As we have pointed out above, the function z — x7"e*K,(z) is SCM on (0, c0)
for all v > —%. From this we easily obtain that, in fact, the function z — z"e* K, (x) is
also SCM on (0, 00) for all v < %. This completes the above-mentioned result from [57]
for the case when v < 0, and in particular implies that the inequality (3.3) holds for all
v<i

It is important to note here that Ismail [43] proved in 1990 that = — eVZ2"/2K, (/)
is the Laplace transform of a generalized gamma convolution for each v € (0, %) Clearly,
in particular, this yields that z — eV®2"/2K, (\/z) is SCM on (0, 00) for all v € (0, 3).
However, since z — z"e”K, (z) is SCM on (0, 00) for all v < 1, we immediately obtain
that @ — eV®2"/2K,(y/z) is SCM on (0,00) for all ¥ < %. This completes the result
of [43]. Surprisingly, when v > %, the function x — z”e* K, (x) becomes strictly increas-
ing on (0, 00), and hence for v > % the inequality (3.3) is reversed, as was stated in [51].
Furthermore, using again the recursive relation K, (x) = K_, (), from this we deduce
that the function z +—» 27 "e"K, () is strictly increasing on (0,00) for all v < —1. In
other words, for v < —% we have that the inequality (3.1) is reversed. We note that the
reversed form of (3.3) was deduced by Laforgia from Soni’s inequality K, 11(z) > K, (z),
which holds for all v > —3 and x > 0. However, as was observed in [51], the function
v — K, (x) is strictly increasing on (0, 0o) for all fixed « > 0. In addition, since it is even,
the function v — K, (z) is strictly decreasing on (—o0,0) for all fixed x > 0.

In 1996 Joshi and Bissu [49] deduced the inequality

() o

> Ve, (3.2)
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where v > —4 and 0 < # < y. We note that, clearly, for |v| < %, the lower bound in (3.3)
is more stringent than the lower bound in (3.4). However, the inequality (3.4) holds for
all v € R. To see this, just recall that the function z — z"e”K,(x) is also SCM on
(0,00) for all v < £ and the function z — e~ is SCM on (0, 00). From these we obtain
that z — 2V K, (z) is SCM on (0,00) for all ¥ < 3, and hence it is strictly decreasing.
We note that the monotonicity of x — z” K, (z) for all v € R is actually an immediate
consequence of the well-known derivative formula [76, p. 79] [V K, (x)] = =2V K, _1(x).
Notice also that, in order to prove the infinite divisibility of Student’s ¢-distribution, in
1978 Hartman [38] proved that the function z +— z¥/2K,(v/z) is SCM on (0, 00) for all
v > f%. Appealing again to the fact that if a function f is SCM and g is non-negative
with an SCM derivative, then the composite function f o g is also SCM, and by using the
result that = — 2" K, (z) is SCM on (0, 00) for all v < 1, we obtain that z — 2/2K, (,/z)
is actually SCM on (0, c0) for all ¥ € R. This completes the result of Hartman [38].
Another result which may be of interest appears in [78]:

L1/2-a o0 4—1/2
K, (z) = —— / e 'K, (t)dt,
Fv+5)I(z-v)Jo =+t

where z > 0 and v € (0, %) This formula is actually a special case of a more general
result for Whittaker functions obtained by Gargantini and Henrici [34] and states that
the function z + /2K, (z) is a Stieltjes transform and, in particular, it is CM on
(0,00) for all v € (0, ). We note that since the function  — 2~1/2 is SCM on (0, co) we
obtain that  + 2~ /2e* K, () is SCM on (0, c0) for all v € R, as a product of two SCM
functions. This completes the result from [78]. In particular, for allv e Rand 0 < z < y

one has
e o2 6

Observe that for v > 3 the lower bound in (3.5) is tighter than the lower bound in (3.1),
but is weaker for |v| < 1. However, for v < —1,
form of (3.1).

Let us mention that [57] the function z — z'/2e* K, (z) is also SCM on (0, 0o) for all
v > 1. By using the recursive relation K, (z) = K_, (), we obtain that z — z'/2e* K, (z)
is also SCM on (0,00) for all v < —3. In particular, for all [v| > % and 0 < 2 < y we

have
()"

The right-hand side of (3.6) is more stringent than the lower bound in (3.3) for v < —1.
However, in the case when v > % the inequality (3.6) completes the inequality (3.3) and
resembles the inequality (2.6). Furthermore, for all |v| > 1 the lower bound in (3.6) is
better than the lower bound in (3.5). In the case when |v| < %, based on some numerical
experiments, we conjecture the following: the function z — z'/2e* I, (z) for all |v| < % is
a Bernstein function, i.e. its derivative with respect to « is SCM on (0, oo) for all [v] < 3.
If this result were true, then this would imply that for all [v| < % the inequality (3.6)

inequality (3.5) completes the reversed
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is reversed, and this reversed inequality would complete the reversed version of (3.1)
and (3.3).

4. Bounds for quotients of some special functions that arise in
finite elasticity

4.1. The monotonicity and convexity of w, and related comments

Let us consider the function w,: (0,00) — R, defined by

wy(z) = 1, (x)/1,41(x),

which is of special interest in finite elasticity [71,72]. In 1984 Simpson and Spector [71]
proved that w, is strictly increasing and strictly convex for all v > 0. The function wg
and a special inequality were used to prove that a nonlinearly elastic cylinder eventually
becomes unstable in uniaxial compression. Moreover, they proved that for any v > 0 the
function w, has application in the buckling and necking of such cylinders. For more details
the interested reader is referred to [72] and the references therein. Other inequalities for
the function w, were deduced in [19, 60]. We note that the monotonicity property of
w, was actually also deduced in 1983 by Watson [77], by showing that x — 1/w,(x) is
decreasing on (0, c0) for all ¥ > 0, and this result was used by Robert [67] in 1990 in the
study of a Bayesian estimation problem. It is worth mentioning here that, in fact, w, is
strictly increasing for all ¥ > —1 and consequently the function x — 1/w,(z) is strictly
decreasing on (0, 00) for all v > —1. To prove this, observe that by using (1.1) we have

2n

W) = 3 > -
v nll(n + v+ 1)22ntv enll(n+v+ 2)22ntv+1”

n=0

2n

and in view of Lemma 2.1 it is enough to show that the sequence {ay, }n>0, defined by

n!l(n + v+ 2)22ntvtl
n!l(n+ v+ 1)22n+v

= =2(n+v+1)

foralln € {0,1,2,...}, is strictly increasing for all v > —1, which is clearly true. This was
stated in 2007 by Baricz and Neuman [19]. However, another way to deduce the above
monotonicity property involves the series expansion of z +— 1/w, (x). More precisely, by
using the Mittag—Leffler expansion [33, Equation (7.9.3)]

Iu-i-l(x) _ Z 2

L) ~ 2,

one has
1V { 2 }’ { 2 }’ Az
— = 5 .5 = 5> . .5 = - g < 0
[wu(w)} ; 2+ 32, ; 2+ 52, ; (2 +42,)*

forallv > —1 and > 0, as we required. These remarks complete the results from [71,77].
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Moreover, we note that the monotonicity of x — w, (z) can also be deduced directly
from the first part of Theorem 2.2. To be more precise, recall that the function x —
x* VI, (x)/1,(x) is strictly increasing on (0, c0) for all u > v > —1. Choosing p =v +1,
the asserted result immediately follows. A related, much more deep result was deduced
in 1979 by Ismail and Kelker [45], who, in order to introduce a new continuous infinitely
divisible probability distribution, showed that the function x + 2=#/21,(\/z)/I,(v/7)
is SCM on (0,00) for all g > v > —1. We note that the first-order monotonicity of
x = xWW/2] (\/x)/1,(y/T) also follows from the first part of Theorem 2.2 and, as
in [71], it was pointed out that this in particular yields that  — 1/w,(y/x), and hence
x — 1/w,(x) is strictly decreasing on (0, 0o) for all v > —1. Motivated by the above result
of Ismail and Kelker, we conjecture that the function x +— x¥~*I,(x)/I,(x) is SCM on
(0,00) for all 4 > v > —1. From this we would again obtain Theorem 2.2 (i) and the
above result in [45].

Another interesting fact here is that for 2 > 0 the inequality w/,(x) > 0 is equivalent to
aI)(x)/I,(x) > z—1. The latter inequality was proved recently by Baricz and Sun [21] for
v > 0, by using some results of Gronwall [36] and Nasell [58]. From the above discussion
we deduce that the inequality xI)(z)/I,(z) > = — 1 actually holds for all v > —1 and
& > 0. This inequality was the crucial fact in the proof of (2.7) and implies that the
function x — e *xl,(x) is strictly increasing on (0, 00) for all v > —1. Indeed, since

el (@) ol()

= 1 —
@)~ L 170

the asserted result follows. Consequently, we have that, for all v > —1 and 0 < = < y,

<o (2)

Observe that this upper bound for v > 1 improves Laforgia’s upper bound (2.4); for
v > 1 (4.1) is weaker than (2.6) and for v > 0 (4.1) is more stringent than the upper
bound in (2.7). Moreover, since the function = — z¥/sinhz is strictly decreasing on
(0,00) for all v € [0, 1], we conclude that for v € [0, 1] the upper bound in (2.8) is more
stringent than the upper bound in (4.1). However, for v > 1 the bounds in (2.8) and (4.1)
are not directly comparable, since for v > 1 the derivative of the function x +— ¥ /sinh z
changes sign on (0, 00). All the same, the inequality (4.1) has the virtue that it holds for
all v > —1, while the others do not.

We note that, in the proof of (2.11), the key tool [17] was the fact that the function
w,, is strictly increasing and strictly convex for all v > 0. Now, since the function w,
is actually strictly increasing for all v > —1, it is natural to ask whether it is strictly
convex for all ¥ > —1. Based on numerical experiments, we conjecture the following: the
function w, is strictly convex for all v > —1. If this conjecture were true, then following
the proof from [17] would imply that (2.11) holds for all v > —1.

Now, let us study the monotonicity of w, with respect to v. Recall that by using
Theorem 2.2 (i) we obtain that, for all 4 > v > —1 and x > 0, the Turdn-type inequality
I (x)1,(z) — Iy (z)I,(x) > 0 holds. Clearly, this is equivalent to w,(z) > w,(z),
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where ¢ > v > —1 and z > 0, i.e. the function v — w,(x) is strictly increasing on
(—=1,00) for each fixed x > 0. See also the proof of (2.8) in [17] for further details.
Actually, this can also be deduced from the above Mittag—Lefller expansion in view of

aa{l} —8{222»2} —28[22»2] :—Z% <0,
v w,(z) ov 1L +Jin 1 ov z*+ 77, 1 (% +J2n)

where v > —1 and =z > 0. Here we have used the well-known fact that the function
V> jun is strictly increasing [24] on (—1, 00) for each n € {1,2,3,...} fixed. Moreover,
by using the above idea in what follows, we show that the function v — w,(z) is log-
concave on (—1,00) for all z > 0 fixed. This can be verified by proving that v — 1/w, (x)
is log-convex on (—1,00) for all z > 0 fixed. More precisely, due to [32] it is known
that v — j,, is concave on (—n,00) for all n € {1,2,3...} and, consequently, we have
that v — j,, and v — logj,, are concave on (—1,00) for all n € {1,2,3,...}. This
in turn implies that for each n € {1,2,3,...} and = > 0 the function v ~ 2% + jE,n is
log-concave, and hence each term in the above expansion of 1/w, (x) is log-convex with
respect to v. Because the sum of log-convex functions is log-convex too, it follows that
indeed v +— 1/w,(x) is log-convex on (—1,00) for all z > 0 fixed. Since, v — w,(z) is
log-concave, it follows that the following new interesting Turdn-type inequality:

W2y (@) > w@wpia(e) = Bay@)lale) > L)L ()
holds for all ¥ > —1 and = > 0. This completes the results from [12,15,16,48,55].

4.2. Bounds for quotients of the function w,

Now, let us focus on some inequalities involving the ratio w, (x)/w, (y), where 0 < z <
y. By using the left-hand side of (2.1) or (2.2), the inequality (2.4) and the relation

w,,(x) EIV(x) IV—H(y)

wy(y)  y L(y) L (z)

Laforgia [51] deduced the following result:

wy(@) (x)wm’ )

which holds for all v > —% and 0 < x < y. By using a similar approach, Joshi and
Bissu [49] proved another result, i.e.

w, () - <y>,, I,(x) (4.3)

which holds for all v > —% and 0 < z < y.

Furthermore, Joshi and Bissu [49] claimed that for all v > —% and 0 < z < y their
lower bound in (4.3) is more stringent than the lower bound in (4.2). We point out here
that the above statement is not true. More precisely, observe that it is enough to show
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that the function & — z3~2[,(x) is strictly decreasing on (0,00) for all v > —1. Recall
that for all v > —1 the function e~ %271, (z) is strictly decreasing on (0, 00). Now, since
the function o — e®2~2(*+1) is also strictly decreasing for all v > —1 and x < 2(v + 1),
we obtain that indeed the function @ + 273721, (z) is strictly decreasing for all v > —1
and © < 2(v + 1). Consequently, if 0 < z < y < 2(v + 1), then (4.3) does indeed
improve (4.2). However, for larger values of z and y the situation is reversed. This is
justified by the following fact: the function x ++ x~2**1T, (x) maps (0, c0) into (0, 00),
is strictly log-convex and hence is strictly convex on (0, 00) for all v > —1. Moreover, it
is easy to see that

lim 22TV, (2) = lim 27207, (2) = co.

z—0 T—>00
Hence, there exists an z¢ € (0,00) such that the function = — z73*~2[,(z) becomes
strictly increasing on (zg, 00), and this means that in this domain actually (4.2) improves
(4.3). Here we have used the well-known fact that  — 2 =21 is strictly log-convex on
(0,00) for all v > —1 and « — Z,(x) is strictly log-convex on (0, c0) for all v > —1 [60].
All the same, by combining the inequalities (2.6) and (2.19) we obtain that

wy(x) _ eYcoshz [z v+3/2
> —
w,(y) = e®coshy \ y

(4.4)

holds for all v > —% and 0 < < y. Since the function z — z~Y~1/2e~% cosh z is strictly
decreasing on (0, 00) for all v > —%, as a product of the strictly decreasing functions
x+ 277712 and x + e~ cosh x, we obtain that for v > f% the lower bound in (4.4) is
tighter than the lower bound in (4.2). Furthermore, by using (2.6) and (2.20) for v > £

the inequality (4.4) can be improved in the following way:

wy(x)  e¥sinhzx [ v1/2
> - —
wy(y) = eTsinhy \ y

where v > % and 0 < z < y. Here we have used that from the first part of Theorem 2.2
we know that the function x + 7 j5(x)/Z_1 2(7) is strictly decreasing on (0, c0).

Another improvement of (4.2) reads as follows:

w,(z) _ e¥(e + A, x v+3/2
woy) ~ er(ertA) (y) ’

(4.5)

where v > 0 and 0 < z < y. This can be deduced by combining the inequalities (2.11)
and (2.19). Now, since the function z — (1 + A\,e~%)z~~/2 is strictly decreasing on
(0,00) for all v > 0, we deduce that for v > 0 the inequality (4.5) improves (4.2)
significantly. Here we have used that for all v > 0 the constant A, is strictly positive [17].
Moreover, if the above conjecture on the convexity of w, is true, then (4.5) holds for all
v > —1 and still improves (4.2).

Now, combining once again the left-hand side of (2.1) or (2.2) with the inequality (2.4)

we obtain [51] 2
wy (@) _ (y>V (4.6)
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for all v > £ and 0 < # < y. In [49] Joshi and Bissu showed that (4.6) can be improved

as follows:
wl’(x) y—x g VIV(:E)
w,(y) ~° (a?) L(y)’ )

where v > —% and 0 < z < y. By using the inequality (2.4) we obtain immediately that
for v > % the upper bound in (4.7) is more stringent than the upper bound in (4.6).
It is worth mentioning that by combining the inequalities (2.6) and (2.19) we get the
inequality

(4.8)

wy (x) - e® coshy (y)”_1/2
z )

w,(y)  eYcoshz \ x

which holds for all v > % and 0 < x < y. Since the function z +— z"+1/2e”/coshz
is strictly increasing on (0,00) we obtain that the upper bound in (4.8) is tighter
than the upper bound in (4.6). However, since the derivative of the function z +—
e~ 2y =1/2], () cosha changes sign for v > 1, the inequalities (4.7) and (4.8) are not
directly comparable on (0,00). Observe that by using the inequalities (2.6) and (2.20)

the inequality (4.8) can be improved as follows:

wy, () - e’sinhy [y v=3/2
wy(y) ~ evsinhz \ z ’

(4.9)
where v > % and 0 < x < y. Similarly, since the derivative of the function = +—
e~ 2y =3/2],(z) sinha changes sign for v > 1, the inequalities (4.7) and (4.9) are not
directly comparable on (0, c0).

Combining (2.6) with (2.11) we obtain the inequality

wy(x)  e"(e¥ + Apt1) <y>"+1/2

< =
wy(y) —ev(e” + Ay1) \@

(4.10)

where v > % and 0 < 2 < y. Since the function x +— (1 + A, 1e~®) "1z ~1/2 is strictly

increasing on (0,00) for all v > %, as a product of the increasing function x — a¥~1/2
and the strictly increasing function x + (1 + A\,;1e7%)"1, we deduce that the upper
bound in (4.10) is tighter than the Laforgia upper bound in (4.6). However, since the
derivative of the function z — (e® + A 1167 2%)z!/2], (z) changes sign for v > 3, the
inequalities (4.7) and (4.10) are not directly comparable on (0, c0).

Finally, we note that some other bounds were deduced in [49] by using the inequal-
ity (2.13). Moreover, more lower and upper bounds that are tighter than in [49,51] can
be deduced for the ratio w, (x)/w,(y) in the same manner by using the inequality (4.1)
instead of (2.6).

4.3. Further open problems and related comments

As in the section above we close this discussion with an interesting open problem.
For this recall that, by definition [75], a sequence {ay}n>0 of real numbers is called
completely monotone (CM) if AFa,, > 0 for alln, k € {0,1,2,...}, where A¥a,, is defined
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inductively by Aq,, = a,, and AFa,, = A*a,, — A¥a,, ;. Note that for a CM sequence
{an}ns0 we always have A*q,, > 0 unless a1 = az = a3 = ---. A sequence {a, },>0 that
satisfies A*a,, > 0 for all n,k € {0,1,2,...} is said to be strictly completely monotone
(SCM). Note that a sequence {ay,}n>0 is said to be convex if, for all n € {0,1,2,...},
we have A2q,, > 0 and is said to be concave if A2q,, < 0. Similarly, a sequence {Bn}n>o0
is said to be log-convex if BELH < BnfBniz for all n € {0,1,2,...}, and is log-concave
if the above inequality is reversed. If the above inequalities are strict, then we say that
the corresponding sequence is strictly convex (concave) and log-convex (log-concave),
respectively. Now, let us consider the Maclaurin series f(x) = ap+arx+---+ax™+---
and g(z) = by +byz+ -+ byz™ + - - -, where, for all integers n > 0, a,, € R and b,, > 0,
and suppose that both converge on (—r,r), where 0 < r < co. Motivated by the previous
open problems of this paper we ask the following questions.

(a) If the sequence {a,/by}n>0 is (strictly) convex (concave), is the function x
f(z)/g(x) also (strictly) convex (concave) on (0,r)?

(b) If the sequence {a,/by}n>0 is (strictly) log-convex (log-concave), is the function
x+— f(x)/g(x) also (strictly) log-convex (log-concave) on (0,7)?

(c) If the sequence {an /by tn>0 is SCM (CM), is the function = — f(x)/g(x) also SCM
(CM) on (0,7)?

These problems seem to be quite difficult to solve and we note that by solving any one of
them many other interesting open and known problems in the theory of special functions
could be proved simply and uniquely. Clearly, part (a) and the first-order monotonicity,
stated in Lemma 2.1, are included in part (¢). Thus, part (¢) actually asks whether or
not the lemma of Biernacki and Krzyz can be generalized in a natural way. If this part
were to be true, then we would easily have that the function  — «¥7#I,(x)/I,(x) is
indeed SCM on (0, 00) for all g > v > —1. It would be enough to show that the sequence
{Bn}n>0, defined by 5, = (v +1),/(n+1),,, is SCM. However, for all n € {0,1,2,...}
we have (u+n+1)B,41 = (v +n+1)3, and, by using mathematical induction, this in
turn implies that ( )

k K=V
A= Gz ?
for all n,k € {0,1,2,...} and p > v > —1. Similarly, question (b) would imply that the
function w,, is strictly log-concave and strictly convex for all v > —1.
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Note added in proof.

After this paper was already in the press we found the papers [42, 52, 53], which
are closely related to this paper. In these papers some other interesting bounds were

https://doi.org/10.1017/50013091508001016 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091508001016

596 A. Baricz

obtained for the quotients I,,(z)/I,(y) and K, (z)/K,(y). The inequalities (2.14) and
(2.19) also appear in [42]; however, the proofs given there are completely different from
those in this paper. Finally, we note that the monotonicity property of the function x —
exp{—2%/[4(v+1)]}Z,(x), proved here, has recently been used by Baricz and Ponnusamy
[20] in the study of the starlikeness and convexity of generalized Bessel functions.
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