J. Austral. Math. Soc. (Series A) 52 (1992), 175-184

LOCAL UNIQUENESS OF SOLUTIONS OF THE CHARACTERISTIC CAUCHY PROBLEM

GERSON PETRONILHO

(Received 16 May 1990; revised 13 September 1990)

Communicated by E. N. Dancer

Abstract

Local uniqueness of solutions of the characteristic Cauchy problem is shown for operators which are perturbations of operators which already have such a uniqueness.

1991 Mathematics subject classification (Amer. Math. Soc.): 35 L 15, 35 A 07. Keywords and phrases: Local uniqueness, characteristic, concatenations, Carleman inequality.

1. Introduction

This work is related to discrete phenomena in the local uniqueness of solutions of the characteristic Cauchy problem for operators with double characteristics at a point of the initial curve.

On this type of phenomena F. Treves [5] furnished an example, that is, the Cauchy problem for the equation

$$(\partial_t + t\partial_x)(\partial_t - t\partial_x)u - c\partial_x u = 0$$

with data given in x = 0, and proved that for the problem in the upper halfplane x > 0 there is uniqueness of solutions, if and only if $c \neq 0, 2, 4, ...$

A. P. Bergamasco and H. S. Ribeiro [1] and A. Menikoff [3], extended this study for operators of the form

$$(\partial_t + at^k \partial_x)(\partial_t - bt^k \partial_x) - ct^{k-1} \partial_x$$

The author was partially supported by CNPq (Brazil).

© 1992 Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

where k is an odd natural number. In [1], a = b < 0 and $c \in \mathbb{R}$, while in [3], a, b > 0 and $c \in \mathbb{C}$.

We extend for operators of the form

$$P(c_1, c_2) = (\partial_t + a_1 t^k \partial_x + a_2 t^k)(\partial_t - b_1 t^k \partial_x - b_2 t^k)$$
$$- c_1 t^{k-1} \partial_x - c_2 t^{k-1}$$

where k is an odd natural number, $c_1, c_2 \in \mathbb{C}$, $a_1, b_1 > 0$, and $a_2, b_2 \le 0$.

In Section 2 we prove, under suitable assumptions, the local uniqueness, in the class C^3 , of solutions of the characteristic Cauchy problem for the operators $P(c_1, c_2)$. The essential point in the proof is getting an appropriate Carleman inequality.

In Section 3, by using the results of Section 2 and a variation of concatenations in O. R. B. Oliveira [4], we prove that there is an integer *m* depending only on $\operatorname{Re}(c_1)$ such that the local uniqueness of solutions in the class C^m holds in the characteristic Cauchy problem for the operators $P(c_1, c_2)$ if $\operatorname{Re}(c_1) \neq j(k+1)\delta_1$, $\operatorname{Re}(c_1) \neq j(k+1)\delta_1 + \delta_1$, $j = 0, 1, 2, \ldots$ and $\delta_1 = a_1 + b_1$.

If $a_2 = b_2 = c_2 = 0$ then $P(c_1, c_2)$ is the operator studied in [3].

We show also that the uniqueness for the operators $P(c_1, c_2)$ holds (when $a_1, b_1 < 0$ and $a_2, b_2 \ge 0$) if $\operatorname{Re}(c_1) \ne -\delta_1[k + j(k + 1)]$, $\operatorname{Re}(c_1) \ne -\delta_1(j + 1)(k + 1)$. This result contains part of [1, Theorem 3.1].

We observe also that the local uniqueness of solutions in the class of distributions holds for these operators (see [1] and B. Birkeland and J. Persson [2]).

2. A Carleman inequality and uniqueness

In this section, we prove a Carleman inequality which is needed in order to prove local uniqueness of solutions of the characteristic Cauchy problem for operators of the form

(2.1)
$$P = P(c_1, c_2) = XY - c_1 t^{k-1} \partial_x - c_2 t^{k-1}$$

where

$$X = \partial_t + a_1 t^k \partial_x + a_2 t^k,$$

$$Y = \partial_t - b_1 t^k \partial_x - b_2 t^k,$$

$$a_1, b_1 > 0, a_2, b_2 \le 0,$$

 c_1, c_2 are complex numbers, k is an odd natural number and $(t, x) \in [-T, T] \times \mathbb{R}, T > 0$.

The characteristic Cauchy problem

Since

$$\begin{split} P(c_1, c_2) &= \partial_t^2 - a_1 b_1 t^{2k} \partial_x^2 + (a_1 - b_1) t^k \partial_t \partial_x - (c_1 + b_1 k) t^{k-1} \partial_x \\ &- (a_1 b_2 + a_2 b_1) t^{2k} \partial_x - (c_2 + b_2 k) t^{k-1} - a_2 b_2 t^{2k} \\ &+ (a_2 - b_2) t^k \partial_t \,, \end{split}$$

if

$$f(t) = -\frac{1}{2} \int_0^t (a_2 - b_2) s^k \, ds$$

and

$$u(t, x) = \exp[f(t)] \cdot v(t, x)$$

we obtain

(2.2)
$$P(c_1, c_2)u = \exp[f(t)] \cdot Q(c_1, c_2)v$$

where

$$(2.3) Q = Q(c_1, c_2) = \partial_t^2 - a_1 b_1 t^{2k} \partial_x^2 + (a_1 - b_1) t^k \partial_t \partial_x - (c_1 + b_1 k) t^{k-1} \partial_x - \frac{1}{2} (a_1 + b_1) (a_2 + b_2) t^{2k} \partial_x - \left[c_2 + \frac{k}{2} (a_2 + b_2) \right] t^{k-1} - \frac{1}{4} (a_2 + b_2)^2 t^{2k}.$$

The purpose of introducing the integrating factor $\exp[f(t)]$ was to obtain a new operator, Q, in which the term $(a_2 - b_2)t^k \partial_t$ is not present.

By using the formula (2.2), we can see that the local uniqueness of solutions of the characteristic Cauchy problem holds for P if and only if it holds for Q.

LEMMA 2.1. Let $Q(c_1, c_2)$ be given by (2.3). If $\text{Re}[c_1 + (k/2)(a_1 + b_1)] \le 0$, $\text{Re}[c_2 + (k/2)(a_2 + b_2)] \ge 0$ and Q_{τ} is the operator

$$Q_{\tau} = \exp(\tau x) \cdot Q \cdot \exp(-\tau x)$$

then the following inequalities hold for all $v \in C_c^3(\mathbb{O}; \mathbb{R})$ and for $\tau \ge 1$, where $\mathbb{O} \subset \{(t, x) \in \mathbb{R}^2 : |t| \le T\}$ is a nonempty bounded open subset of \mathbb{R}^2 .

I-1:
$$\operatorname{Re} < Q_{\tau} v, \ (\partial_x - \tau) v \ge a_1 b_1 \iint_{O} t^{2k} |v|^2 \, dt \, dx$$

where \langle , \rangle is the usual inner product of $\mathbb{L}^{2}(\mathbb{O}; \mathbb{R})$.

$$\mathbf{I}-2: \qquad \iint_{\mathbf{0}} a_1 b_1 t^{2k} \exp(2\tau x) |v|^2 dt dx \leq \iint_{\mathbf{0}} \exp(2\tau x) |Qv \cdot \partial_x v| dt dx.$$

PROOF. Since

$$\begin{aligned} Q_{\tau}v &= \partial_{t}^{2}v - a_{1}b_{1}t^{2k}(\partial_{x} - \tau)^{2} + (a_{1} - b_{1})t^{k}\partial_{t}(\partial_{x} - \tau) - (c_{1} + b_{1}k)t^{k-1}(\partial_{x} - \tau) \\ &- \frac{1}{2}(a_{1} + b_{1})(a_{2} + b_{2})t^{2k}(\partial_{x} - \tau) - \left[c_{2} + \frac{k}{2}(a_{2} + b_{2})\right]t^{k-1} \\ &- \frac{1}{4}(a_{2} + b_{2})^{2}t^{2k} \end{aligned}$$

integrations by parts show that

$$\begin{aligned} \operatorname{Re}\langle Q_{\tau}v\,,\,(\partial_{x}-\tau)v\rangle &= \tau \iint_{\mathbf{0}} |\partial_{t}v|^{2} \,dt \,dx + a_{1}b_{1}\tau \iint_{\mathbf{0}} t^{2k}(|\partial_{x}v|^{2} + \tau^{2}|v|^{2}) \,dt \,dx \\ &- \operatorname{Re}\left[c_{1} + \frac{k}{2}(a_{1} + b_{1})\right] \iint_{\mathbf{0}} t^{k-1}(|\partial_{x}v|^{2} + \tau^{2}|v|^{2}) \,dt \,dx \\ &- \frac{1}{2}(a_{1} + b_{1})(a_{2} + b_{2}) \iint_{\mathbf{0}} t^{2k}(|\partial_{x}v|^{2} + \tau^{2}|v|^{2}) \,dt \,dx \\ &+ \operatorname{Re}\left[c_{2} + \frac{k}{2}(a_{2} + b_{2})\right] \tau \iint_{\mathbf{0}} t^{k-1}|v|^{2} \,dt \,dx \\ &+ \frac{1}{4}(a_{2} + b_{2})^{2} \tau \iint_{\mathbf{0}} t^{2k}|v|^{2} \,dt \,dx \\ &\geq a_{1}b_{1} \iint_{\mathbf{0}} t^{2k}|v|^{2} \,dt \,dx \,.\end{aligned}$$

The proof of I - 1 is complete.

We prove I - 2, as follows:

$$\begin{split} \iint_{\mathbf{0}} a_1 b_1 t^{2k} \exp(2\tau x) |v|^2 \, dt \, dx &\leq \operatorname{Re} \langle Q_{\tau} [\exp(\tau x) v], \, (\partial_x - \tau) [\exp(\tau x) v] \rangle \\ &= \operatorname{Re} \langle \exp(\tau x) Q v \,, \, \exp(\tau x) \partial_x v \rangle \\ &\leq \iint_{\mathbf{0}} \exp(2\tau x) |Q v \cdot \partial_x v| \, dt \, dx \,. \end{split}$$

By using inequality I-2 and following the proof of [6, Theorem 2.3], we can prove

THEOREM 2.1. Let Q be given by (2.3) and assume that

 $\operatorname{Re}[c_1 + (k/2)(a_1 + b_1)] \le 0$

and

$$\operatorname{Re}[c_2 + (k/2)(a_2 + b_2)] \ge 0.$$

Let $\mathbb{F} \subset \mathbb{O}$ be a closed subset such that

 $\mathbb{K} = \mathbb{F} \cap \{(t, x) \in \mathbb{O} : x \ge 0\}$

is compact. Then there is an open neighborhood \mathbb{U} of \mathbb{K} such that any function $u \in C^3(\mathbb{O}; \mathbb{R})$ satisfying

$$Qu = 0$$
 in \mathbb{O} ; supp $u \subset \mathbb{F}$

must vanish in U.

3. Concatenation and uniqueness

Theorem 2.1 guarantees local uniqueness for the operator $Q(c_1, c_2)$ and therefore for $P(c_1, c_2)$ if $\operatorname{Re}(c_1 + (k/2)\delta_1) \leq 0$ and $\operatorname{Re}(c_2 + (k/2)\delta_2) \geq 0$, where $\delta_1 = a_1 + b_1$ and $\delta_2 = a_2 + b_2$, that is, if $\operatorname{Re}(c_1)$ is small and $\operatorname{Re}(c_2)$ is large.

To prove uniqueness when $\text{Re}(c_1)$ is large and any c_2 , we shall use the method of concatenations.

Note that we have

(3.1)
$$[X, Y] = -kt^{k-1}(\delta_1\partial_x + \delta_2)$$

(3.2)
$$[t(\delta_1\partial_x + \delta_2), YX] = -(\delta_1\partial_x + \delta_2)(X+Y)$$

(3.3)
$$[t(\delta_1\partial_x + \delta_2)Y, t^{k-1}(c_1\partial_x + c_2)]$$
$$= (k-1)t^{k-1}(\delta_1\partial_x + \delta_2)(c_1\partial_x + c_2)$$

Since $Y = X - t^k (\delta_1 \partial_x + \delta_2)$, we have

(3.4)
$$Y^2 = XY - t^k (\delta_1 \partial_x + \delta_2) Y.$$

We shall try to find operators

$$T = t(\delta_1\partial_x + \delta_2)Y + (A_1\partial_x + B_1), \quad S = t(\delta_1\partial_x + \delta_2)Y + (A_2\partial_x + B_2)$$

so that

(3.5)
$$TP(c_1, c_2) = P(c_1', c_2')S.$$

By using (3.1)–(3.4) we have

$$\begin{split} TP(c_1, c_2) &= [t(\delta_1\partial_x + \delta_2)Y + (A_1\partial_x + B_1)](XY - c_1t^{k-1}\partial_x - c_2t^{k-1}) \\ &= t(\delta_1\partial_x + \delta_2)YXY - t(\delta_1\partial_x + \delta_2)Yt^{k-1}(c_1\partial_x + c_2) \\ &+ (A_1\partial_x + B_1)XY - (A_1\partial_x + B_1)t^{k-1}(c_1\partial_x + c_2) \\ &= -(\delta_1\partial_x + \delta_2)XY - (\delta_1\partial_x + \delta_2)Y^2 + YXt(\delta_1\partial_x + \delta_2)Y \\ &- [t(\delta_1\partial_x + \delta_2)Y, t^{k-1}(c_1\partial_x + c_2)] \\ &- t^{k-1}(c_1\partial_x + c_2)t(\delta_1\partial_x + \delta_2)Y \\ &+ (A_1\partial_x + B_1)XY - (A_1\partial_x + B_1)t^{k-1}(c_1\partial_x + c_2) \\ &= [-2(\delta_1\partial_x + \delta_2) + (A_1\partial_x + B_1)]XY + (\delta_1\partial_x + \delta_2)t^k(\delta_1\partial_x + \delta_2)Y \\ &+ (XY - [X, Y])t(\delta_1\partial_x + \delta_2)Y \\ &- (k-1)t^{k-1}(\delta_1\partial_x + \delta_2)(c_1\partial_x + c_2) \\ &- t^{k-1}(c_1\partial_x + c_2)t(\delta_1\partial_x + \delta_2)Y - (A_1\partial_x + B_1)t^{k-1}(c_1\partial_x + c_2) \\ &= XYt(\delta_1\partial_x + \delta_2) + (A_1\partial_x + B_1)]XY \\ &+ t^{k-1}(\delta_1\partial_x + \delta_2)t(\delta_1\partial_x + \delta_2)Y \\ &- (k-1)t^{k-1}(\delta_1\partial_x + \delta_2)Y - (A_1\partial_x + B_1)t^{k-1}(c_1\partial_x + c_2) \\ &= XYt(\delta_1\partial_x + \delta_2)t(\delta_1\partial_x + \delta_2)Y \\ &- (k-1)t^{k-1}(\delta_1\partial_x + \delta_2)Y - (A_1\partial_x + B_1)t^{k-1}(c_1\partial_x + c_2) \\ &= \{XY - t^{k-1}[(c_1\partial_x + c_2) - (k-1)(\delta_1\partial_x + \delta_2)]\} \\ &\circ [t(\delta_1\partial_x + \delta_2)Y - 2(\delta_1\partial_x + \delta_2) + (A_1\partial_x + B_1)] \\ &+ t^{k-1}[(c_1\partial_x + c_2) - (k-1)(\delta_1\partial_x + \delta_2)] \\ &- [-2(\delta_1\partial_x + \delta_2) + (A_1\partial_x + B_1)] \\ &- (k-1)t^{k-1}(\delta_1\partial_x + \delta_2)(c_1\partial_x + c_2) - (A_1\partial_x B_1)t^{k-1}(c_1\partial_x + c_2) \\ \end{aligned}$$

If we choose $A_1 = 2\delta_1 - c_1$ and $B_1 = 2\delta_2 - c_2$, we obtain (3.5), that is,

$$\begin{split} & [t(\delta_1\partial_x + \delta_2)Y + 2(\delta_1\partial_x + \delta_2) - (c_1\partial_x + c_2)][XY - t^{k-1}(c_1\partial_x + c_2)] \\ & = \{XY - t^{k-1}[(c_1\partial_x + c_2) - (k+1)(\delta_1\partial_x + \delta_2)]\} \\ & \circ [t(\delta_1\partial_x + \delta_2)Y - (c_1\partial_x + c_2)]. \end{split}$$

Now, we shall try to find operators Q and R so that

(3.6)
$$QS + RP(c_1, c_2) = (c_1\partial_x + c_2)[(\delta_1\partial_x + \delta_2) - (c_1\partial_x + c_2)].$$

. .

To obtain (3.6) write

$$\begin{split} XS &= X[t(\delta_1\partial_x + \delta_2)Y - (c_1\partial_x + c_2)] = Xt(\delta_1\partial_x + \delta_2)Y - X(c_1\partial_x + c_2) \\ &= (\delta_1\partial_x + \delta_2)Y + t(\delta_1\partial_x + \delta_2)XY - (c_1\partial_x + c_2)X \,. \end{split}$$

Then

$$\begin{split} XS - t(\delta_1\partial_x + \delta_2)P(c_1, c_2) \\ &= XS - t(\delta_1\partial_x + \delta_2)XY + t(\delta_1\partial_x + \delta_2)t^{k-1}(c_1\partial_x + c_2) \\ &= (\delta_1\partial_x + \delta_2)Y - (c_1\partial_x + c_2)X + t^k(\delta_1\partial_x + \delta_2)(c_1\partial_x + c_2). \end{split}$$

Since $X - Y = t^k (\delta_1 \partial_x + \delta_2)$ we have

$$XS - t(\delta_1\partial_x + \delta_2)P(c_1, c_2) = [(\delta_1\partial_x + \delta_2) - (c_1\partial_x + c_2)]Y$$

and therefore

$$\begin{split} & [t(\delta_1\partial_x+\delta_2)X+(c_1\partial_x+c_2)-(\delta_1\partial_x+\delta_2)]S-t^2(\delta_1\partial_x+\delta_2)^2P(c_1,c_2)\\ & = (c_1\partial_x+c_2)[(\delta_1\partial_x+\delta_2)-(c_1\partial_x+c_2)]. \end{split}$$

Then (3.6) holds with

$$Q = t(\delta_1\partial_x + \delta_2)X + (c_1\partial_x + c_2) - (\delta_1\partial_x + \delta_2)$$

and

$$R = -t^2 (\delta_1 \partial_x + \delta_2)^2.$$

The computations above yield the following result.

LEMMA 3.1. For j, l = 0, 1, 2, ..., let

$$\begin{split} c_{1j} &= c_1 - j(k+1)\delta_1, \qquad c_{2l} = c_2 - l(k+1)\delta_2 \\ T_{j,l} &= t(\delta_1\partial_x + \delta_2)Y + 2(\delta_1\partial_x + \delta_2) - (c_{1j}\partial_x + c_{2l}) \\ S_{j,l} &= t(\delta_1\partial_x + \delta_2)Y - (c_{1j}\partial_x + c_{2l}) \\ P(c_{1j}, c_{21}) &= XY - t^{k-1}(c_{1j}\partial_x + c_{2l}) \\ Q_{j,l} &= t(\delta_1\partial_x + \delta_2)X + (c_{1j}\partial_x + c_{2l}) - (\delta_1\partial_x + \delta_2) \,. \end{split}$$

Then

(3.7)
$$T_{j,l}P(c_{1j}, c_{2l}) = P(c_{1,j+1}, c_{2,l+1})S_{j,l}$$

and we can find operators $Q_{i,l}$ such that

(3.8)
$$Q_{j,l}S_{j,l} + RP(c_{1j}, c_{2l}) = (c_{1j}\partial_x + c_{2l})[(\delta_1\partial_x + \delta_2) - (c_{1j}\partial_x + c_{2l})].$$

Consider the statement, $\mathbf{A}_{j,l}^m$: Every $u \in C^m(\mathbb{O})$ which satisfies $P(c_{1j}, c_{2l})u = 0$ in \mathbb{O} with $\sup u \subset \mathbb{F}$ must vanish in Ω , where Ω is an open neighborhood of \mathbb{K} . (Here, \mathbb{O} , \mathbb{F} and K are as in Theorem 2.1 and $m \ge 3$).

Gerson Petronilho

LEMMA 3.2. If $c_{1j} \neq 0$ and $c_{1j} \neq \delta_1$ then $\mathbb{A}_{j+1,l+1}^m$ implies $\mathbb{A}_{j,l}^{m+2}$.

PROOF. Let $u \in C^{m+2}(\mathbb{O})$ so that $P(c_{1j}, c_{2l}) = 0$ in \mathbb{O} and $\text{supp} u \subset \mathbb{F}$. Since

$$T_{j,l}P(c_{1j}, c_{2l}) = P(c_{1,j+1}, c_{2,l+1})S_{j,l}(\text{see} (3.7))$$

we have

$$P(c_{1,j+1}, c_{2,l+1})(S_{j,l}u) = 0 \text{ in } \mathbb{O}$$

Since $S_{j,l}$ is a second order linear operator we have $S_{j,l} u \in C^m(\mathbb{O})$ and therefore by hypothesis

$$S_{i} u = 0$$
 in Ω .

By (3.8) there are operators $Q_{i,l}$ and R such that

$$Q_{j,l}S_{j,l}u + RP(c_{1j}, c_{2l})u = (c_{1j}\partial_x + c_{2l})[(\delta_1 - c_{1j})\partial_x + (\delta_2 - c_{2l})]u$$

and therefore

$$(c_{1j}\partial_x + c_{2l})[(\delta_1 - c_{1j})\partial_x + (\delta_2 - c_{2l})]u = 0 \quad \text{in } \Omega.$$

Since $c_{1j} \neq 0$ we have local uniqueness of solutions of the noncharacteristic Cauchy problem for the operator $c_{1j}\partial_x + c_{2l}$ and therefore

$$[(\delta_1 - c_{1l})\partial_x + (\delta_2 - c_{2l})]u = 0 \text{ in } \mathbf{W},$$

where W is an open neighborhood of K.

Now, since by the hypothesis $c_{1j} \neq \delta_1$, the uniqueness for the operator $(\delta_1 - c_{1j})\partial_x + (\delta_2 - c_{2l})$ implies u = 0 in U, where U is an open neighborhood of K.

THEOREM 3.1. Suppose that $c_1 \neq j(k+1)\delta_1$ and $c_1 \neq j(k+1)\delta_1 + \delta_1$, j = 0, 1, 2, ... and $c_2 \in \mathbb{C}$. Let \mathbb{O} , \mathbb{F} and \mathbb{K} be as in Theorem 2.1. Then there is an integer *m* depending only on $\operatorname{Re}(c_1)$ and an open neighborhood \mathbb{U} of \mathbb{K} such that every $u \in C^m(\mathbb{O}, \mathbb{R})$ with support in \mathbb{F} which satisfies

$$P(c_1, c_2)u = 0$$
 in \mathbb{O}

must vanish in U.

PROOF. Let $c_1, c_2 \in \mathbb{C}$ and $c'_1 = c_1 + (k/2)\delta_1, c'_2 = c_2 + (k/2)\delta_2$.

If $\operatorname{Re}(c_1') \leq 0$ and $\operatorname{Re}(c_2') \geq 0$ then Theorem 2.1 guarantees for the operator $Q(c_1, c_2)$, and therefore for $P(c_1, c_2)$, the uniqueness result stated in Theorem 3.1 with m = 3.

If $\operatorname{Re}(c_1') \leq 0$ and $\operatorname{Re}(c_2') < 0$, let l_0 be the smallest natural number such that $\operatorname{Re}[c_{2l} + (k/2)\delta_2] \geq 0$ where $c_{2l_0} = c_2 - l_0(k+1)\delta_2$. Thus,

182

 $\operatorname{Re}[c_{1l_0} + (k/2)\delta_1] < 0$ where $c_{1l_0} = c_1 - l_0(k+1)\delta_1$ and therefore as in the preceding case, A_{l_0,l_0}^3 holds.

We apply Lemma 3.2 l_0 times and conclude that $\mathbb{A}_{0,0}^{3+2l_0}$ holds; in this case $m = 3 + 2l_0$.

If $\operatorname{Re}(c_1') > 0$ and $\operatorname{Re}(c_2') \le 0$, let j_0 and l_0 be the smallest natural numbers such that $\operatorname{Re}[c_{1j_0} + (k/2)\delta_1] \le 0$ and $\operatorname{Re}[c_{2l_0} + (k/2)\delta_2] \ge 0$.

If $j_0 < l_0$ we have $\operatorname{Re}[\tilde{c}_{1l_0} + (k/2)\delta_1] \le 0$ and therefore as in the first case, A_{l_0, l_0}^3 holds. We apply Lemma 3.2, l_0 times and conclude that $A_{0,0}^{3+2l_0}$ holds; in this case $m = 3 + 2l_0$.

If $j_0 > l_0$ we have $\operatorname{Re}[c_{2j_0} + (k/2)\delta_2] \ge 0$ and as in the preceding case, $A_{0,0}^{3+2j_0}$ holds; in this case $m = 3 + 2j_0$.

If $\operatorname{Re}(c_1') > 0$ and $\operatorname{Re}(c_2') > 0$, let j_0 be the smallest natural number such that $\operatorname{Re}[c_{1j_0} + (k/2)\delta_1] \leq 0$. Thus, $\operatorname{Re}[c_{2j_0} + (k/2)\delta_2] > 0$ and therefore as in the preceding case, $A_{0,0}^{3+2j_0}$ holds; in this case $m = 3 + 2j_0$. The proof is complete.

REMARK 3.1. Now consider the operator $P(c_1, c_2)$ with $a_1, b_1 < 0$ and $a_2, b_2 \ge 0$. We can write

$$\begin{split} P(c_1, c_2) &= (\partial_t + a_1 t^k \partial_x + a_2 t^k) (\partial_t - b_1 t^k \partial_x - b_2 t^k) - c_1 t^{k-1} \partial_x - c_2 t^{k-1} \\ &= [\partial_t + (-b_1) t^k \partial_x + (-b_2) t^k] [\partial_t - (-a_1) t^k \partial_x - (-a_2) t^k] \\ &- (c_1 + k \delta_1) t^{k-1} \partial_x - (c_2 + k \delta_2) t^{k-1} \,. \end{split}$$

If $\operatorname{Re}(c_1) \neq -\delta_1[k+j(k+1)]$ and $\operatorname{Re}(c_1) \neq -\delta_1(j+1)(k+1)$, $j = 0, 1, 2, \ldots$, then Theorem 3.1 ensures local uniqueness for the operator $P(c_1, c_2)$.

In the case that $a_2 = b_2 = c_2 = 0$ and $b_1 = a_1$ we obtain part of [1, Theorem 3.1].

REMARK 3.2. As the operator $P(c_1, c_2)$ belongs to the class of operators considered in [1, Theorem 4.1], this ensures its uniqueness in the class of distributions.

References

- A. P. Bergamasco and H. S. Ribeiro, 'Uniqueness in a doubly characteristic Cauchy problem', *Pacific J. Math.* 136 (1989), 229-240.
- [2] B. Birkeland and J. Persson, 'The local Cauchy problem in R² at a point where two characteristic curves have a common tangent', J. Differential Equations 30 (1978), 64-88.

- [3] A. Menikoff, 'Uniqueness of the Cauchy problem for a class of partial differential equations with double characteristics', *Indiana Univ. Math. J.* 25 (1976), 1–21.
- [4] O. R. B. de Oliveira, 'Estudo de uma Classe de Operadores Diferenciais Parciais Lineares que se degeneram sobre uma Reta e têm Característica Múltipla fora dela' Ms. C., Instituto de Matemática e Estatística da Universidade de São Paulo, 1989.
- [5] F. Treves, 'Discrete phenomena in uniqueness in the Cauchy problem', Proc. Amer. Math. Soc. 46 (1974), 229-233.
- [6] F. Treves, Linear partial differential equations with constant coefficients: existence, approximation and regularity of solutions, (Math. and its Applications Vol. 6, Gordon and Breach, New York, 1966).

Universidade Federal de São Carlos (UFSCar) Departamento de Matemática Caixa Postal 676 13560 - São Carlos - SP - Brazil