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Abstract

In this paper, we investigate finite solvable tidy groups. We prove that a solvable group with order divisible
by at least two primes is tidy if all of its Hall subgroups that are divisible by only two primes are tidy.
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1. Introduction

In this paper, all groups are finite. We will refer to [8] for standard group theory results
but nearly all of the results we refer to will be in any standard group theory text. Let G
be a group and let x ∈ G. Define CycG(x) = {g ∈ G | 〈x, g〉 is cyclic}. It is not difficult
to find examples of a group G and an element x where CycG(x) is not a subgroup.

Following [11], a group G is said to be tidy if CycG(x) is a subgroup of G for every
element x ∈ G. As far as we can determine, tidy groups were introduced in [11] and
in a second paper [10]. In [11], the authors study tidy groups that satisfy additional
hypotheses. Perhaps the most interesting result is that if G is any group where all the
Sylow subgroups are cyclic or generalised quaternion, then G is tidy. In [10], they
prove that if G and H are groups of coprime order, then G × H is tidy if and only if
both G and H are tidy. Applying this to nilpotent groups, it follows that a nilpotent
group is tidy if and only if all of its Sylow subgroups are tidy.

In this paper, we focus on tidy solvable groups. It is not difficult to see that the tidy
condition is inherited by subgroups; so the Sylow subgroups of tidy groups are tidy.
Unlike the nilpotent case, we will present an example of a solvable group where all
the Sylow subgroups are tidy, but the group is not tidy. However, recall that a solvable
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group G has a Hall π-subgroup for every set of primes π. It turns out that the Hall
π-subgroups of G, where π has size 2, play a critical role in establishing the tidiness of
the whole group G. In particular, we prove the following theorem.

THEOREM 1.1. Suppose G is a solvable group, let σ(G) be the set of primes dividing
|G| and assume |σ(G)| ≥ 2. If G has a tidy Hall ρ-subgroup for each subset ρ ⊆ σ(G)
of size 2, then G is tidy.

As the theorem shows, one of our methods of analysing tidy groups is in terms of
their Hall subgroups. To obtain many of our results, we also need a second method of
analysis. This method involves studying the elements of prime power order. We will
show in Section 2 that it is sufficient to check whether the elements of prime power
order satisfy the condition of the definition to determine if a group is tidy.

Tidy groups have also been studied in [6] where it is shown that a partitioned
group is tidy if and only if the subgroups in the partition are tidy. The study of tidy
groups with a partition is continued in [1–3]. Both [3, 6] consider infinite tidy groups.
However, [1, 2] consider a specialisation of tidy groups. We note that the term ‘tidy
group’ appears to have been used to refer to a very different concept in [13].

It appears that tidy groups were initially studied in their own right. However, we
believe it is helpful to think of tidy groups in the context of their cyclic graphs, often
called enhanced power graphs. Given a group G, the cyclic graph of G is the graph
whose vertex set is G \ {1} and there is an edge between x, y ∈ G \ {1} if 〈x, y〉 is cyclic.
It follows that CycG(x) \ {1} is x and its set of neighbours in the cyclic graph. Hence,
tidy groups are the groups where x, its neighbours and the identity form a subgroup of
G for all x ∈ G. We note that [9] considers the relationship between the sets CycG(x)
and the cyclic graph of G.

2. Elements of prime power order

In this section, we explore the relationship between tidiness and the elements of
prime power order. We begin by showing that we only need to consider the elements
of prime power order to demonstrate tidiness.

Before presenting our preliminary lemmas, we mention an elementary result that
lies at the heart of our arguments. Let G be a group and let g ∈ G. Write o(g) = nm,
where the positive integers n and m are coprime. Then, there exist commuting elements
x and y such that g = xy, o(x) = n and o(y) = m. Moreover, this factorisation of g is
unique; in particular, the elements x and y are powers of g. This fact is easy to prove
and appears in [12, Exercise 7].

In the first lemma, we examine a central element.

LEMMA 2.1. Suppose G is a group. Let x ∈ Z(G) and write p1, . . . , pn for the prime
divisors of o(x). If x = x1 · · · xn, where each xi is a power of x and has pi-power order,
then CycG(x) =

⋂n
i=1 CycG(xi).
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PROOF. Consider c ∈ CycG(x). This implies that 〈x, c〉 is cyclic. For each i, xi is a
power of x, so xi ∈ 〈x, c〉. It follows that 〈xi, c〉 is a subgroup of 〈x, c〉. We deduce that
〈xi, c〉 is cyclic, so c ∈ CycG(xi). We conclude that CycG(x) ⊆ ⋂n

i=1 CycG(xi).
Conversely, suppose c ∈ ⋂n

i=1 CycG(xi). We can write c = c1 · · · cn · c′, where
c1, . . . , cn, c′ are powers of c and each ci has pi-power order and c′ has π′-order
where π = {p1, . . . , pn}. Since they are all powers of c, we see that c1, . . . , cn, c′ all
commute. For each i, by hypothesis, c ∈ CycG(xi) and so 〈c, xi〉 is cyclic. Notice that
ci ∈ 〈c, xi〉, so 〈ci, xi〉 is cyclic. Now, ci and xi commute and have pi-power order;
then we have c∗i ∈ {xi, ci} so that 〈c∗i 〉 = 〈ci, xi〉. Since the xi are central and the ci
and c′ commute with each other, we conclude that the c∗i and c′ commute with each
other. Let c∗ = c∗1 · · · c

∗
n · c′. Observe that each c∗i will be a power of c∗. Because

xi and ci are both powers of c∗i , we obtain xi, ci ∈ 〈c∗〉 for i = 1, . . . , n. Also, c′ is
a power of c∗. This implies that as x = x1 · · · xn and c = c1 · · · cn · c′, we have both
x, c ∈ 〈c∗〉 and 〈x, c〉 ≤ 〈c∗〉. We conclude that c ∈ CycG(x). This proves the result that
CycG(x) =

⋂n
i=1 CycG(xi). �

We now show that if the elements of prime power order in the group satisfy the tidy
condition, then all elements do. Note that if x ∈ G, then CycG(x) ⊆ CG(x). Replacing
G by CG(x), we can think of x as being central in G and apply Lemma 2.1.

LEMMA 2.2. Suppose G is a group. If every element 1 � x ∈ G having prime power
order satisfies the condition that CycG(x) is a subgroup of G, then G is a tidy group.

PROOF. Fix the elements g ∈ G and x ∈ CG(g). We obtain the equation CycCG(g)(x) =
CycG(x) ∩ CG(g). Applying this observation to the nonidentity elements of prime
power order in CG(g), we see that CG(g) satisfies the hypotheses of our lemma. Thus,
we may proceed in the group H = CG(g), and so g ∈ Z(H). Let p1, . . . , pn be the
prime divisors of o(g) and write g = g1 · · · gn, where g1, . . . , gn are powers of g and
gi has pi-power order for all i. By Lemma 2.1, CycH(g) =

⋂n
i=1 CycH(gi) and since

each CycH(gi) is a subgroup, we conclude that CycH(g) = CycG(g) is a subgroup of H
and thus a subgroup of G. Since g was arbitrarily chosen, we conclude G is tidy. �

With this in mind, we can focus on the elements of prime power order. Since
subgroups of tidy groups are tidy, we need to focus on tidy Sylow p-subgroups. A
characterisation of the tidy p-groups is given in [10, Theorem 14] gives. In [4], we use
this characterisation to obtain a classification of the tidy p-groups.

THEOREM 2.3. Let G be a p-group for some prime p. Then G is a tidy group if and
only if one of the following occurs:

(1) G has exponent p;
(2) G is cyclic;
(3) p = 2 and G is dihedral or generalised quaternion.

We first consider central elements of order p when the Sylow subgroup has
exponent p.
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LEMMA 2.4. Let G be a group and let p be a prime. Suppose x ∈ Z(G) has order p and
a Sylow p-subgroup of G has exponent p. Then CycG(x) is a subgroup of G if and only
if G has a normal p-complement. In this case, CycG(x) = 〈x〉K, where K is the normal
p-complement of G.

PROOF. Suppose first that CycG(x) is a subgroup of G. Let P be a Sylow p-subgroup
so that P ∩ CycG(x) is a Sylow p-subgroup of CycG(x). Observe that P ∩ CycG(x) =
CycP(x) = 〈x〉 since P has exponent p. Let q be a prime other than p and let Q be
a Sylow q-subgroup of G, and consider y ∈ Q. Since x and y have coprime orders
and commute, we see that 〈x, y〉 is cyclic. Thus, y ∈ CycG(x), so Q ≤ CycG(x). Hence,
CycG(x) contains a Sylow q-subgroup of G for every prime q other than p. Hence,
|G : CycG(x)| is a p-power.

Observe that 〈x〉 is central in CycG(x) and is a Sylow p-subgroup. By Burnside’s nor-
mal p-complement theorem [8, Theorem 5.13], CycG(x) has a normal p-complement
K and, since 〈x〉 is central, CycG(x) = 〈x〉 × K. Now, K is characteristic in CycG(x).
Notice that CycG(x) is uniquely determined by x in G. Since x is central in G, it follows
that CycG(x) is normal in G. Because CycG(x) is normal in G and has p-power index
in G, we deduce that K is a normal p-complement of G as desired.

Conversely, suppose that G has a normal p-complement K. Since x is central in G,
we see that 〈x〉K = 〈x〉 × K. This implies that 〈x〉 is the unique subgroup of 〈x〉K that
has order p. We deduce that x is a power of every element in 〈x〉K whose order is
divisible by p. Consider an element g ∈ 〈x〉K. If p | o(g), then x is a power of g and
〈x, g〉 = 〈g〉. Otherwise, o(g) is coprime to p = o(x) and g commutes with x, so 〈x, g〉
is cyclic. In either case, g ∈ CycG(x). Hence, 〈x〉K ⊆ CycG(x).

Now, suppose c ∈ CycG(x). We can write c = hk, where h and k are powers of c,
and h has p-power order and k has order coprime to p. We know that 〈x, c〉 is cyclic
and h ∈ 〈x, c〉. Thus, 〈x, h〉 is cyclic. Now, x and h commute and have p-power orders.
Thus, 〈x, h〉 is a p-subgroup of G. Since a Sylow p-subgroup of G has exponent p and
〈x, h〉 is cyclic, we see that 〈x, h〉 has order p. This implies that h ∈ 〈x〉. Since k has
p′-order and G has a normal p-complement K, we see that k ∈ K. We conclude that
c = hk ∈ 〈x〉K. We deduce that CycG(x) ⊆ 〈x〉K and we obtain the desired equality. �

We are now able to give examples of solvable groups where all the Sylow subgroups
are tidy, but the groups are not tidy. A specific example is G = S3 × Z3. Observe that
the Sylow subgroups of G are elementary abelian. Also, 3 divides |Z(G)| and G does
not have a normal 3-complement, so by Lemma 2.4, G is not tidy. In fact, if p and q are
primes so that p divides q − 1 and G = F × Zq, where F is a nonabelian group of order
p times q, then the Sylow subgroups of G will be elementary abelian so the Sylow
subgroup are tidy. Also, q divides |Z(G)|, but G does not have a normal q-complement,
so again Lemma 2.4 implies that G is not tidy.

When G has a cyclic Sylow p-subgroup and a central element of p-power order,
then we show that G = CycG(x) and we use Burnside’s normal p-complement theorem
and Fitting’s theorem [8, Theorem 4.34] to show that G has a normal p-complement.
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LEMMA 2.5. Let G be a group and let p be a prime. If G has a cyclic Sylow p-subgroup
and p divides |Z(G)|, then G has a normal p-complement.

PROOF. Take P to be a Sylow p-subgroup of G and note that P ≤ CG(P). Thus,
|NG(P) : CG(P)| is not divisible by p. Let q be a prime that is different than p and Q be
a Sylow q-subgroup of NG(P). Consider the action of Q on P and note that Fitting’s
theorem applies. Hence, P = [P, Q] × CP(Q). By our hypothesis, Z(G) has an element
x of order p, and so, 〈x〉 is a normal p-subgroup of G. In particular, 〈x〉 ≤ CP(Q). Since
P is cyclic, 〈x〉 is the only subgroup of order p in P. This forces [P, Q] = 1, and so,
Q ≤ CG(P). We have now shown that NG(P) = CG(P), so P ≤ Z(NG(P)). We may now
appeal to Burnside’s normal p-complement theorem to conclude that G has a normal
p-complement. �

For the next result, the proof is nearly the same for generalised quaternion Sylow
subgroups as for cyclic subgroups, so we include both here.

LEMMA 2.6. Let G be a group and let p be a prime. Suppose 1 � x ∈ Z(G) has p-power
order. If a Sylow p-subgroup of G is either cyclic or generalised quaternion, then
G = CycG(x).

PROOF. Let o(x) = pn. We know 〈x〉 is central in G. When a Sylow p-subgroup is
cyclic, 〈x〉 is the unique subgroup of G having order pn, and when a Sylow p-subgroup
is generalised quaternion, the centre of a Sylow 2-subgroup has order 2 and is the
unique subgroup of order 2 in the Sylow subgroup. It is not difficult to see that 〈x〉 will
be the unique subgroup of order 2 in G.

Let g ∈ G. We can write g = hk, where h and k are powers of g, and h has p-power
order and k has order coprime to p. Observe that h and x commute, so 〈h, x〉 is a
p-group. If the Sylow subgroup is cyclic, it is obvious that 〈h, x〉 is cyclic. However,
when we have a generalised quaternion Sylow subgroup and x is in the centre, it is not
difficult to see that 〈h, x〉 must be cyclic. Now, 〈h, x〉 is a cyclic p-group in both cases,
and it follows that either h or x must generate this subgroup. Thus, we choose h∗ ∈ {h, x}
so that 〈h∗〉 = 〈h, x〉. Notice that h∗ commutes with k in either case. Since h∗ and k have
coprime orders and commute, we see that 〈h∗, k〉 is cyclic. Now, x, h, k ∈ 〈h∗, k〉 implies
that 〈x, g〉 ≤ 〈h∗, k〉 which is cyclic. We conclude that g ∈ CycG(x), so G ⊆ CycG(x).
Since the other containment is obvious, we have the desired conclusion. �

We next consider a central element of order 2 in a group whose Sylow 2-subgroups
are dihedral and there is a normal 2-complement. In the next lemma, we make use of
a result proved by Gorenstein and Walter in [7] regarding groups that have a dihedral
subgroup as a Sylow 2-subgroup.

LEMMA 2.7. Let G be a group and let x ∈ Z(G) have order 2. Suppose a Sylow
2-subgroup T of G is dihedral and write D for the cyclic subgroup of index 2 in T.
Then G has a normal 2-complement K and CycG(x) = DK. In particular, CycG(x) is a
subgroup of G.
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PROOF. As in [7, Lemma 8], Burnside’s normal p-complement theorem implies that
any group that has a dihedral Sylow 2-subgroup and a central element of order 2 will
have a normal 2-complement. Thus, G has a normal 2-complement K. Notice that DK
has a cyclic Sylow 2-subgroup. By Lemma 2.6, DK = CycDK(x) ⊆ CycG(x). Suppose
c ∈ CycG(x). We can write c = hk, where h and k are powers of c, h has 2-power order
and k has 2′-order. We know that 〈x, c〉 is cyclic. Since h is a power of c, we have
h ∈ 〈x, c〉, and so 〈x, h〉 is cyclic. We see that x and h commute, so 〈x, h〉 is a cyclic
2-group. This implies that 〈x, h〉must lie in a conjugate of D. Since D has index 2 in T,
we see that DK has index 2 in G and so is normal in G. Thus, h ∈ DK. Since K is a
normal 2-complement and k has 2′-order, we see that k ∈ K. Hence, c = hk ∈ DK. We
have shown that CycG(x) ⊆ DK. We conclude CycG(x) = DK, as desired. �

Groups where all Sylow subgroups are cyclic or generalised quaternion are tidy (see
[11, Theorem 6]). We can extend this to include Sylow subgroups that are dihedral.

COROLLARY 2.8. Suppose G is a group where all Sylow subgroups are cyclic,
generalised quaternion or dihedral. Then G is tidy.

PROOF. By Lemma 2.2, it suffices to prove that CycG(x) is a subgroup whenever
1 � x ∈ G has prime power order. Suppose 1 � x has p-power order for some prime
p. Then a Sylow p-subgroup of CG(x) is either cyclic, generalised quaternion or
dihedral. By Lemmas 2.6 and 2.7, this implies that CycG(x) is a subgroup, proving the
result. �

We now come to the proof of Theorem 1.1. To prove this theorem, we use the idea of
a Sylow system. Let G be a group. Following the terminology in [8], a Sylow system in
G is a collection S consisting of exactly one Sylow p-subgroup of G for each prime p
that divides |G| such that PQ = QP for every P, Q ∈ S. By [8, Problem 3C.3(b)], every
solvable group has a Sylow system. We shall use this fact in the following proof. (For
a further discussion of Sylow systems and related concepts in finite solvable groups,
see the comprehensive treatment in [5].)

PROOF OF THEOREM 1.1. By Lemma 2.2, it suffices to show that CycG(x) is a
subgroup of G for all 1 � x ∈ G such that x has prime power order. Suppose that
1 � x ∈ G has p-power order for some prime p. Notice that CG(x) has tidy Hall
ρ-subgroups for each subset ρ ⊆ σ(G) with |ρ| = 2. Since CycG(x) = CycCG(x)(x), we
may assume that G = CG(x). In particular, we assume that x is central in G. Also, since
we are assuming that all Hall ρ-subgroups of G are tidy when ρ is a two element subset
of σ(G), we see that G must have a tidy Sylow p-subgroup. If a Sylow p-subgroup of G
is either cyclic or generalised quaternion, we have the result by Lemma 2.6. Next, if a
Sylow p-subgroup of G is dihedral, then we may apply Lemma 2.7 to see that CycG(x)
is a subgroup. Thus, by Theorem 2.3, we may assume that a Sylow p-subgroup of G
has exponent p. By Lemma 2.4, it suffices to prove that G has a normal p-complement.
Write σ(G) = {p1 = p, p2, . . . , pn} and let {Pi | i = 1, . . . n} be a Sylow system for G.
That is, Pi ∈ Sylpi

(G) and PiPj is a subgroup for all i, j. In particular, P1Pi is a Hall

https://doi.org/10.1017/S0004972723000710 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000710


348 N. F. Beike et al. [7]

{p, pi}-subgroup of G; so by hypothesis, it is tidy. Applying Lemma 2.4, we see that
P1Pi must have a normal p-complement. That is, P must normalise Pi. This implies
that P normalises N = P2 · · ·Pn and we see that N is a normal p-complement. This
proves the desired conclusion. �

Since nonsolvable groups generally do not have Hall {p, q}-subgroups for all primes
p and q, one cannot expect to remove the hypothesis that G is solvable from Theorem
1.1 and have any hope that the conclusion is still true. However, we wonder if the
following might be true. Let G be a group. If all of the {p, q}-subgroups of G are tidy
for all primes p and q, then will G be tidy?
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