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On Polarized K3 Surfaces of Genus 33

Ilya Karzhemanov

Abstract. We prove that the moduli space of smooth primitively polarized K3 surfaces of genus 33
is unirational.

1 Introduction

Let S be a K3 surface (i.e., smooth, projective, simply-connected surface with trivial
ûrst Chern class). One can regard such surfaces as two-dimensional counterparts of
elliptic curves. In fact, K3 surfaces turn out to be favourably endowed with geometric,
arithmetic, and group-theoretic properties (cf. [2, 4, 24–26]).

In this paper, we study birational geometry of the moduli space of primitively po-
larized K3 surfaces over C. Namely, we consider the pairs (S , L), where S is a com-
plex K3 surface and L is an ample divisor on S (L is called a polarization of S) cor-
responding to some primitive vector in the Picard lattice Pic(S). Once the integer
g ∶= (L2)/2 + 1 (called the genus of (S , L)) is ûxed, the pairs (S , L), when considered
up to isomorphisms preserving L, are parameterized by the moduli spaceKg .

Recall thatKg is a quasi-projective algebraic variety (see [1,27]). In particular, one
can study such basic questions of birational geometry for Kg as rationality, unira-
tionality, rational connectedness, Kodaira dimension estimate, etc.

S.Mukai’s vector bundle method, developed in order to classify higher-dimen-
sional Fano manifolds of Picard number 1 and coindex 3 (see [15, 18]), allowed him to
prove the unirationality ofKg for g ∈ {2, . . . , 10, 12, 13, 18, 20} (see [16, 17, 19, 21, 22]).
At the same time, the variety Kg turned out to be non-unirational for g ⩾ 41, with
g /= 42, 45, 46, and 48 (see [7, 13, 14]).

In this paper, applying the methods (mainly) from [15, 19], we prove the following
theorem.

_eorem 1.1 _e moduli spaceK33 is unirational.

Let us brie�y outline the proof of_eorem 1.1. It follows from [12, Corollary 1.5] (cf.
Proposition 2.8) that there exists a K3 surface S such that Pic(S) is generated by some
very ample divisor H and a (−2)-curve C, satisfying (H2) = 70 and H ⋅ C = 2. _us,
(S ,H) is a primitively polarized K3 surface of genus 36. (Note that all such (S ,H)
form a hypersurface KR

36 in K36.) Furthermore, the divisors H − kC, 1 ⩽ k ⩽ 4, also
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provide primitive polarizations on S (see Lemma 2.9 and Remark 2.10) such that the
surfaces (S ,H−kC) are BN general (seeDeûnition 2.1, Lemma 2.11, andRemark 2.12).
In particular, according to S.Mukai there exists a rigid vector bundle E3 on S of rank
3 such that the ûrst Chern class c1(E3) is equal to H − 4C and dimH0(S , E3) = 7
(see _eorem 2.5 and Deûnition 2.6). _is E3 is unique and determines a morphism
ΦE3 ∶ S → G(3, 7) into the GrassmannianG(3, 7) ⊂ P(⋀3 C7) (cf. Remark 2.4). More-
over, ΦE3 coincides with the embedding S ↪ P12 given by the linear system ∣H − 4C∣,
and the surface S = ΦE3(S) ⊂ G(3, 7) ∩ P12 can be described by explicit equations on
G(3, 7) (see_eorem 2.13). In fact, one can run these arguments for any (BN) general
polarized K3 surface (S22 , L22) of genus 12, which implies that the moduli spaceK12
is unirational (see Remark 2.14).
Further, vector bundle E3⊗OS(C) turns out to be rigid of rank 3 as well, satisfying

c1(E3)⊗OS(C) = H−C and dimH0(S , E3⊗OS(C)) = 14 (see Lemma 3.1). _en again
we get a morphism ΦE3⊗OS (C)∶ S → G(3, 14) ⊂ P(⋀3 C14), which is the embedding
S ↪ P33 given by ∣H − C∣. Working a bit more with the space H0(S , E3 ⊗ OS(C))
(cf. Proposition 3.2 and Corollary 3.4) we ûnd two projective subspaces, Π and Λ,
in P(⋀3 C14) (see 3.3 below for their construction) such that the following holds (cf.
Lemma 3.6).

_eorem 1.2 _e surface S = ΦE3⊗OS (C)(S) coincides with Zariski closure of the locus
Ŝ ∖Π in

Ŝ ∶= G(3, 14) ∩ Λ ∩ ( λ = σ1 = σ2 = σ3 = 0)
for some global sections

λ ∈ H0(G(3, 14),
3
⋀E14) ≃

3
⋀C14 and σi ∈ H0(G(3, 14),

2
⋀E14) ≃

2
⋀C14

of the universal bundle E14 on G(3, 14).

Now, any general polarizedK3 surface (S64 , L64) of genus 33 can be embedded into
G(3, 14) the same way as S above, and represented in G(3, 14) in the form similar to
that in _eorem 1.2 (see Subsection 4.1 and Lemma 4.5 for details). _e latter allows
one, by using the preceding results, to construct a birational map K33 ⇢ K12 (see
Lemma 4.6 and Proposition 4.7) and to ûnish the proof of _eorem 1.1.
Finally, the paper concludes with Remark 4.8, where we sketch a related approach

to prove unirationality ofK36.

2 Preliminaries

2.1 In this section, we recall some notions and facts about (primitively) polarized K3 sur-
faces, which will be used through the rest of the paper (see also [6, 8, 9] for other
standard notation, notions, and facts employed below). We also establish several aux-
iliary results. _e ground ûeld will be C.

Deûnition 2.1 (see [19, Deûnition 3.8]) A polarized K3 surface (S, L) of genus g
is called BN general if h0(S, L1)h0(S, L2) < g + 1 for all non-trivial line bundles
L1 , L2 ∈ Pic(S) such that L = L1 + L2.
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Example 2.2 A generic point in the moduli spaceKg corresponds to a BN general
K3. All BN general K3 surfaces of genus g form a Zariski open subset in Kg .

Deûnition 2.3 Let W be a smooth projective variety and E a vector bundle on
W . _en E is said to be generated by global sections if the natural homomorphism of
OW-modules evE ∶H0(W , E) ⊗ OW → E is surjective (one identiûes E with its sheaf
of sections as usual).

Remark 2.4 (cf. [15, Section 2]) In the setting of Deûnition 2.3, if E is gener-
ated by global sections, then one gets a natural morphism ΦE ∶W → G(r,N). Here
r ∶= rank(E), N ∶= h0(W , E), and G(r,N) (or (G(r,CN )) is the Grassmannian
of r-dimensional linear subspaces in CN . Morphism ΦE sends each x ∈ W to
the subspace E∨x ⊂ H0(W , E)∨ (E∨x is the dual to the ûber Ex ⊂ E). In particu-
lar, we have the equality E = Φ∗

E (E) for the universal vector bundle E on G(r,N)
so that H0(W , E) = H0(G(r,N),E). Furthermore, if the natural homomorphism
⋀r H0(W , E) → H0(W ,⋀r E) induced by the r-th exterior power of evE is surjec-
tive, then ΦE coincides with embedding Φ∣c1(E)∣∶W ↪ P ∶= P(H0(W , c1(E))∨) given
by the linear system ∣c1(E)∣. More precisely, the diagram

ΦE ∶W Ð→ G( r,N) ∩ P ⊂ G( r,N)
∩ ∩
P ↪ P( ⋀r H0(W , E)∨)

commutes, where G(r,N) ⊂ P(⋀r H0(W , E)∨) is embedded via Plücker.

_eorem 2.5 (see [15, 19, 20, 23]) Let (S, L) be a polarized K3 surface of genus g.
Assume that (S, L) is BN general. _en for every pair of integers (r, s), with g = rs,
there exists a (Gieseker) stable vector bundle Er onS of rank r, such that the following
hold:
(i) c1(Er) = L;
(ii) H i(S, Er) = 0 for all i > 0 and h0(S, Er) = r + s;
(iii) Er is generated by global sections and the natural homomorphism

r
⋀H0(S, Er) Ð→ H0(S,

r
⋀ Er) = H0(S, L)

is surjective (cf. Remark 2.4);
(iv) every stable vector bundle on S that satisûes (i) and (ii) is isomorphic to Er .

Deûnition 2.6 _e bundle Er in _eorem 2.5 is called a rigid vector bundle.

Remark 2.7 One can replace _eorem 2.5(ii) by the condition

χ(S, Er) = r + s.

2.2 Let X be the Fano threefold with canonical Gorenstein singularities and anticanonical
degree (−KX)3 = 70 (see [9–11]). Recall that divisor −KX is very ample, and the linear
system ∣ − KX ∣ gives an embedding of X into P37. We also have

Pic(X) = Z ⋅ KX and Cl(X) = Z ⋅ KX ⊕Z ⋅ Ê
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for the quadratic cone Ê ⊂ X ⊂ P37 (see [12, Corollary 3.11]).
_e next result was proved in [12]:

Proposition 2.8 (see [12, Corollary 1.5]) A generic element S ∈ ∣−KX ∣ is aK3 surface
such that the lattice Pic(S) is spanned by some very ample divisor H ∼ −KX ∣S and a
(−2)-curve C ∶= Ê∣S . Furthermore, we have (H2) = 70, H ⋅C = 2, and the pairs (S ,H)
form a unirational hypersurfaceKR

36 ⊂K36.

Let S be the K3 surface as in Proposition 2.8.

Lemma 2.9 H − 4C is an ample divisor on S.

Proof Let Z ⊂ S be an irreducible curve such that (H − 4C) ⋅ Z ⩽ 0. Write

Z = aH + bC
in Pic(S) for some a, b ∈ Z. Note that a > 0, since Z /= C, the linear system ∣m(H+C)∣
is basepoint-free for m ≫ 1 (it provides a contraction of C) and (H + C) ⋅ Z = 72a.
On the other hand, we have

0 ⩾ (H − 4C) ⋅ Z = 62a + 10b,

which implies that b < −6a. But in this case we get

(Z2) = 70a2 + 4ab − 2b2 ⩽ −26a2 < −2,
a contradiction.

Hence, (H − 4C) ⋅ Z > 0 for every curve Z ⊂ S. _en H − 4C is ample by the
Nakai–Moishezon criterion and because of (H − 4C)2 = 22.

Remark 2.10 Using the same arguments as in the proof of Lemma 2.9, one can show
thatH−kC, 1 ≤ k ≤ 3, is an ample divisor on S as well, which provides a polarization of
genus 36−2k− k2.1 It is also possible to see this via geometric arguments. Namely, let
p1∶P37 ⇢ P34 be the linear projection from the plane Π, passing through the conic C.
_e blowup f1∶Y1 → X ofC resolves indeterminacies of p1 on X and gives amorphism
g1∶Y1 → X1 ∶= p1(X). It can be easily checked that Y1 is a weak Fano threefold and
X1 ⊂ P34 is an anticanonically embedded Fano threefold of genus 33 (cf. the proof
of [10, Proposition 6.12]). Moreover, we obtain Pic(Y1) = Z ⋅ KY1 ⊕ Z ⋅ E f1 , where
E f1 ≃ F4 is the f1-exceptional divisor, and the morphism g1 contracts the surface
f −1
1∗ (Ê) to a point. In particular, the singular locus Sing(X1) consists of a unique point,

Pic(X1) = Z⋅KX1 andCl(X1) = Z⋅KX1⊕Z⋅E (1), where E (1) ∶= g1∗(E f1). One canprove
that E (1) is the cone over a rational normal curve of degree 4 such that E (1) = X1∩P5.
In particular, there exists a rational normal curve C1 ⊂ X1 ∖Sing(X1) of degree 4 with
C1 = X1∩Π1 for some linear space Π1 ≃ P4. Proceeding with X1, Π1, etc. the sameway
as with X, Π, etc. above, we get threemore anticanonically embedded Fano threefolds
X2 ⊂ P29, X3 ⊂ P22, X4 ⊂ P13 of genera 28, 21, 12, respectively, such that Sing(Xk)
consists of a unique point, Pic(Xk) = Z ⋅KXk and Cl(Xk) = Z ⋅KXk ⊕Z ⋅E (k) for all k,

1 It follows fromProposition 2.8 that these (S,H−kC) form hypersurfacesKR
36−2k−k2 ⊂K36−2k−k2

(birationally) isomorphic to KR
36 for all k.
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where E (k) is the cone over a rational normal curve of degree 2+2k. By construction,
S is isomorphic to a surface Sk ∈ ∣−KXk ∣, 1 ⩽ k ⩽ 4. Furthermore, identifying Swith Sk ,
we ûnd that −KXk ∣Sk ∼ H−kC is an ample divisor on S, which provides a polarization
on S of genus 36 − 2k − k2.

Lemma 2.11 _e polarized K3 surface (S ,H − 4C) (of genus 12) is BN general.

Proof Suppose that H − 4C = L1 + L2 for some non-trivial L1 , L2 ∈ Pic(S) (cf. Deû-
nition 2.1). Onemay assume that both h0(S , L1), h0(S , L2) > 0. Write L i = a iH+b iC
in Pic(S) for some a i , b i ∈ Z. Note that a i ⩾ 0 (cf. the proof of Lemma 2.9), hence we
get a1 = 1, a2 = 0, say. _e latter implies that b2 /= 0.

Now, if b2 < 0, then h0(S , L2) = 0, and we are done. Finally, if b2 > 0, then b1 ⩽ −5
and hence

h0(S , L1)h0(S , L2) = h0(S ,H + b1C) < h0(S ,H − 4C) = 13,

since h0(S , L2) = h0(S , b2C) = 1.

Remark 2.12 Using the same arguments as in the proof of Lemma 2.11, one can
show that the polarized K3 surfaces (S ,H − kC), 0 ⩽ k ⩽ 3 (cf. Remark 2.10), are also
BN general.

Lemmas 2.9 and 2.11 and_eorem 2.5 imply that there exists a rigid rank 3 vector
bundle E3 on S, such that c1(E3) = H −4C and h0(S , E3) = 7. _en from Remark 2.4
we get the morphism ΦE3 ∶ S → G(3, 7) ∩ P12 ⊂ P(⋀3 C7), which coincides with em-
bedding Φ∣H−4C∣∶ S ↪ P12. We also have E3 = Φ∗

E3
(E7) for the universal vector bundle

E7 on G(3, 7).
Let us recall the explicit description of the image ΦE3(S).

_eorem 2.13 (see [19, _eorem 5.5]) _e surface S = ΦE3(S) coincides with the
locus

G(3, 7) ∩ ( λ = 0) ∩ (σ1 = σ2 = σ3 = 0)
for some global sections

λ ∈
3
⋀H0(S , E3) = H0(G(3, 7) ,

3
⋀E7) ≃

3
⋀C7

and

σ1 , σ2 , σ3 ∈
2
⋀H0(S , E3) = H0(G(3, 7) ,

2
⋀E7) ≃

2
⋀C7 .

Remark 2.14 (see [15, 19,22]) One can repeat literally the preceding considerations
in the case of any BN general polarized K3 surface (S22 , L22) of genus 12. Namely,
S22 can be embedded into G(3, 7) ∩ P12, where it coincides with the locus G(3, 7) ∩
(α = 0) ∩ (τ1 = τ2 = τ3 = 0) for some α ∈ ⋀3 C7 and τ1 , τ2 , τ3 ∈ ⋀2 C7 (so that
OS22(L22) ≃ OG(3,7)(1)∣S22 ). Conversely, any such locus, for generic α and τ i , de-
ûnes a genus 12 BN general polarized K3 (cf. Example 2.2). _is construction also
shows that (S22 , L22) is uniquely determined by the PGL(7,C)-orbits of α and τ i .
One then arrives at a birational map between K12 and a P13-bundle over the orbit
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space G(3,⋀2 C7)//PGL(3,C). From the latter fact it is easy to deduce that variety
K12 is unirational.

Remark 2.15 Recall that there exists an isomorphism δ∶G(3, 7) → G(4, 7) induced
by the canonical bijection between the projective spacesP(⋀3 C7) andP(⋀4 C7) (see
[3, Ch. III, §11.13]). _en the composition Ψ ∶= δ ○ ΦE3 ∶ S → G(4, 7) coincides with
embedding Φ∣H−4C∣∶ S ↪ P12. Let E∗7 be the universal vector bundle on G(4, 7). _en
we have Ψ = ΦE∗7 ∣S by identifying S with Ψ(S). _e latter implies that E∗7 ∣S =∶ E4 for
the rigid rank 4 vector bundle E4 on S, such that c1(E4) = H − 4C and h0(S , E4) = 7
(cf. _eorem 2.5). Indeed, the inclusion S = Ψ(S) ⊂ G(4, 7) ∩ P12 coincides with the
morphism ΦE4 (see the construction in Remark 2.4), which gives E4 = E∗7 ∣S . Further-
more, it follows from _eorem 2.13 that the surface S ⊂ G(4, 7) ∩ P12 coincides with
the locus

(λ∗ = 0) ∩ (σ∗1 = σ∗2 = σ∗3 = 0)
for some λ∗ ∈ H0(G(4, 7),⋀4 E∗7) and σ∗i ∈ H0(G(4, 7),⋀2 Q∗7), where Q∗7 is the
dual of the universal quotient vector bundle on G(4, 7). _e same applies to any BN
general polarized K3 surface (S22 , L22) (cf. Remark 2.14).

2.3 Let us now establish several properties of the vector bundle E3 on the K3 surface S
introduced in Subsection 2.2.

Proposition 2.16 E3 is (H − C)-stable.2

Proof First, since E3 is stable, it is (H − 4C)-semistable (see [5, Ch. 4]). Moreover,
E3 is actually (H − 4C)-stable, for otherwise there exists a coherent subsheaf F ⊆ E3
such that 0 < rank(F) < 3 and

c1(F) ⋅ (H − 4C) = 22
3

rank(F) /∈ Z,

which is impossible.
Further, if E3 is not (H − C)-stable, then the (H − 4C)-stability of E3 implies that

there is a cycle Z = aH + bC, a, b ∈ Z, such that

(H − 4C) ⋅ Z < 0 ⩽ (H − C) ⋅ Z(2.1)
and

− rank(E3)2
4

B(E3) ⩽ (Z2) < 0(2.2)

for the Bogomolov number

B(E3) ∶= 2 rank(E3) c2(E3) − (rank(E3) − 1) c1(E3)2

(see [5, Ch. 9]). We have

rank(E3) = 3, c1(E3) = H − 4C , χ(S , E3) = 7;

hence c2(E3) = 10 by the Riemann–Roch formula, and so B(E3) = 16. _en it follows
from (2.2) that

2 We employ the terminology from [5, Ch. 4].
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(2.3) −18 ⩽ 35a2 + 2ab − b2 = 36a2 − c2

for c ∶= a − b. At the same time, (2.1) gives

(2.4) 36
5
a − c < 0 ⩽ 18a − c,

and thus a, c > 0. From (2.3) and (2.4) we obtain

−18 < 36a2 − (36
5
)2a2 ,

or equivalently,
−1 < −22

25
a2 ,

i.e., a = 1. Now (2.4) implies that c ∈ {8, 9, . . . , 18}. But for such values of a, c we get
−18 ⩽ (6 − c)(6 + c) < −18

(see (2.3)), which is a contradiction.
Proposition 2.16 is completely proved.

Lemma 2.17 E3∣C = OP1(a) ⊕OP1(b) ⊕OP1(c) for some a ⩾ b ⩾ c ⩾ 0.

Proof Indeed, if a < 0, say, then s1 ∧ s2 ∧ s3 = 0 on C for all s1 , s2 , s3 ∈ H0(S , E3),
which is impossible by the construction of embedding ΦE3 (cf. Remark 2.4).

Lemma 2.18 For any two (distinct) generic global sections s1 , s2 ∈ H0(S , E3), the zero
locus of the global section s1 ∧ s2 ∈ H0(S ,⋀2 E3) is of codimension at least 2 on S.

Proof Lemma 2.17 implies that one can assume the zero locus of s1 ∧ s2 to be of
codimension at least 1. Suppose s1 ∧ s2 = 0 on a curve Z ⊂ S. Note that s1 ∧ s2 /= 0
everywhere on C by Lemma 2.17 and the results from [21, Section 1]. We get Z ⋅C = 0
and Z ∼ m(H + C) for some m ∈ N. On the other hand, the condition s1 ∧ s2 = 0 on
Z implies that Z ⊆ (s1 ∧ s2 ∧ s′ = 0) for any s′ ∈ H0(S , E3); i.e., we have H − 4C −
m(H + C) ⩾ 0, a contradiction.

Remark 2.19 Running the same arguments as in the proof of Proposition 2.16 and
Lemmas 2.17 and 2.18, we arrive at similar results for the rigid vector bundle E4 on S
(see Remark 2.15). Namely, one can show that E4 is H-stable and for any three generic
global sections s1 , s2 , s3 ∈ H0(S , E4), the zero locus of the global section s1 ∧ s2 ∧ s3 ∈
H0(S ,⋀3 E4) is of codimension at least 2 on S.

3 Proof of Theorem 1.2

3.1 Fix S and E3 as in Section 2.

Lemma 3.1 E3 ⊗OS(C) is a rigid vector bundle of rank 3 such that
● c1(E3 ⊗OS(C)) = H − C;
● h0(S , E3 ⊗OS(C)) = 14.
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Proof _e equality c1(E3) = H − 4C implies that
c1(E3 ⊗OS(C)) = H − C

for the rank 3 vector bundle E3. Consider the exact sequence
0Ð→ OS(E3) Ð→ OS(E3 ⊗OS(C)) Ð→ OC(E3(−2)) Ð→ 0.

From χ(S , E3) = 7 and the Riemann–Roch formula on C, we deduce
χ(S , E3 ⊗OS(E)) = χ(S , E3) + χ(C , E3(−2)) = 7 + 7 = 14

because deg(E3(−2)) = (H − C) ⋅ C = 4 for the rank 3 vector bundle E3(−2) ∶=
(E3 ⊗OS(C))∣C on C ≃ P1.
Further, since E3 is (H − C)-stable (see Proposition 2.16), E3 ⊗ OS(C) is also

(H − C)-stable, and hence E3 ⊗OS(C) is stable (see [5, Ch. 4]). _en, as (S ,H − C)
is BN general of genus 33 (see Remark 2.12), _eorem 2.5 and Remark 2.7 complete
the proof.

Put Ẽ3 ∶= E3 ⊗ OS(C). Lemma 3.1 and _eorem 2.5 imply that the morphism
ΦẼ3 ∶ S → G(3, 14) ⊂ P(⋀3 C14) coincides with embedding Φ∣H−C∣∶ S ↪ P33. In what
follows, we identify S with its image

ΦẼ3(S) ⊂ G(3, 14) ∩ P33 ⊂ P(
3
⋀C14)

and Ẽ3 with E14∣S , where E14 is the universal vector bundle on G(3, 14).

3.2 Let us ûnd the deûning equations for S ⊂ G(3, 14).
Choose a basis {s1 , . . . , s7} inH0(S , E3) for some global sections s i (to be speciûed

later). Let also t ∈ H0(S ,OS(C)) be the unique (up to a C∗-multiple) global section.
_en {ts1 , . . . , ts7 , ξ1 , . . . , ξ7} is a basis in H0(S , Ẽ3) for some global sections ξ i of Ẽ3
(cf. Lemma 3.1).

Proposition 3.2 For every i, there exists λ i ∈ H0(S ,⋀3 E3) such that

ξ i ∧ ts i1 ∧ ts i2 = t3λ i ,
with appropriate s i1 , s i2 ∈ H0(S , E3) (depending on i).

Proof Consider an aõne cover {Uα} of S such that E3∣Uα is trivial and tα ∶= t∣Uα ∈
O(Uα) for all α. Put also s j,α ∶= s j ∣Uα for all j. By Lemma 2.18, we can complete
{s1,α , s2,α} to a basis of E3∣Uα∖Γ for each α, a�er choosing s1 , s2 appropriately. Here
Γ is a codimension ⩾ 2 subset in S. _en the construction of embeddings ΦE3 , ΦẼ3

yields

ξ i ∣Uα∖Γ = f1,α s1,α + f2,α s2,α + fα s′α
for all i , α and some s′α ∈ H0(S , E3). (Here all f j,α , fα ∈ O(Uα) depend on i, and s′α a
priori depends on both i and α.) In particular, we have

( ξ i ∧ ts1 ∧ ts2) ∣Uα∖Γ = fα s′α ∧ tα s1,α ∧ tα s2,α =∶ Fi ,α ,
so that the collection {(Fi ,α ,Uα ∖ Γ)} deûnes a global holomorphic section of
OS(H − C) on S ∖ Γ, hence on S.
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Lemma 3.3 One can choose s1 =∶ s i1 and s2 =∶ s i2 in such a way that Fi ,α = t3αλ i ∣Uα

for all α and some λ i ∈ H0(S ,⋀3 E3) (not depending on α).

Proof We have s′α ∧ ts1 ∧ ts2 ∈ H0(S ,OS(H − 2C)). _is implies that

fα =
Fi ,α

s′α ∧ tα s1,α ∧ tα s2,α
= ξ i ∧ ts1 ∧ ts2

s′α ∧ ts1 ∧ ts2
∣Uα = tα g i

for some meromorphic function g i ∈ C(S) (depending on ξ i). Let us choose g i to
have no poles along C.

Note that any global section of Ẽ3∣C = E3(−2) extends to an appropriate ξ i (apply
_eorem 2.5(ii) to the exact sequence from the proof of Lemma 3.1). Furthermore,
since h0(C , E3(−2)) = 7, one can see that b + c ⩽ 6 and b ⩽ 4 in Lemma 2.17, with
c ⩾ 2 as well by construction of ΦẼ3 .

Now s1 , s2, a�er restricting to C, can be brought to either of the forms (same for
both j) s i j = (∗, ∗, 0) or s i j = (∗, 0, ∗). We assume without loss of generality that
ξ i = (0, 0, 1) and s1 , s2 are (∗, 0, ∗). _is yields ξ i ∧ s1 ∧ s2 = 0 on C ∩ Uα , and so g i
does not have poles along C.

_us, we obtain ξ i ∧ ts1 ∧ ts2 = g i ts′α ∧ ts1 ∧ ts2 = t3λ i , with λ i ∶= g i s′α ∧ s1 ∧ s2 ∈
H0(S ,⋀3 E3), because t3λ i = ξ i ∧ ts1 ∧ ts2 is a regular section of Ẽ3 and λ i does not
have poles along C.

Lemma 3.3 proves Proposition 3.2.

Corollary 3.4 For all indices i, there exist λ′i , λ′′i ∈ H0(S ,⋀3 E3) (in addition to λ i
from Proposition 3.2) such that

ξ i ∧ ts i2 ∧ ts i3 − t3λ′i = ξ i ∧ ts i3 ∧ ts i1 − t3λ′′i = 0,

with appropriate linearly independent s i1 , s i2 , s i3 ∈ H0(S , E3).

Proof We retain the notation from the proof of Proposition 3.2. Note that since
ΦE3(C) ⊂ P10 ∩ G(3, 7), one can assume that s1 ∧ s2 ∧ s3 = 0 on C, a�er possibly
replacing S by another surface projectively equivalent to it. _en regarding s1 , s2 , s3
as vectors in a 3-dimensional linear C(C)-space, we obtain s i j ∶= s j , 1 ⩽ j ⩽ 3, such
that ξ i ∧ s i1 ∧ s i2 = ⋅ ⋅ ⋅ = ξ i ∧ s i3 ∧ s i1 = 0 on C ∩Uα . _is implies the claim exactly as
in the proof of Lemma 3.3.

Remark 3.5 Given two generic ξ i /= ξ j as above, we observe that for all 1 ≤ k, k′ ≤ 3,
the pairs (s ik , s ik′) are distinct from the corresponding pairs (s jk , s jk′). Indeed, the
only place where dependence on i for s i1 , s i2 appears is in the proof of Lemma 3.3
(same for j and other k), when we have put ξ i = (0, 0, 1). Using the generality of
ξ i , ξ j , it is then possible to set ξ j = (1, 0, 0), say, which allows one to take s j1 , s j2 in the
form (∗, ∗, 0) for instance. _is establishes our assertion.

3.3 Take λ, σ1 , σ2 , σ3 as in _eorem 2.13 and write

λ = ∑
1⩽ j1 , j2 , j3⩽7

α j1 , j2 , j3 s j1 ∧ s j2 ∧ s j3 , σr = ∑
1⩽i , j⩽7

α(r)i , j s i ∧ s j
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for some α j1 , j2 , j3 , α
(r)
i , j ∈ C. We assume that

λ ∈
3
⋀H0(S , E3 ⊗OS(C)) = H0(G(3, 14) ,

3
⋀E14) ≃

3
⋀C14

and

σ1 , σ2 , σ3 ∈
2
⋀H0(S , E3 ⊗OS(C)) = H0(G(3, 14) ,

2
⋀E14) ≃

2
⋀C14

by identifying λ and σr with

∑
1⩽ j1 , j2 , j3⩽7

α j1 , j2 , j3 ts j1 ∧ ts j2 ∧ ts j3 and ∑
1⩽i , j⩽7

α(r)i , j ts i ∧ ts j ,

respectively.
Let also Λ be the linear subspace in P(⋀3 C14) given by the equations from Corol-

lary 3.4 for various 1 ⩽ i ⩽ 7. _en we get

S ⊆ G(3, 14) ∩ Λ ∩ (λ = σ1 = σ2 = σ3 = 0) =∶ Ŝ ,

by construction.
Fix s i j as in Corollary 3.4 once and for all. Let U ⊂ G(3, 14) be the open subset

on which the sections ts i1 ∧ ts i2 ∧ ts i3, 1 ⩽ i ⩽ 7, do not vanish simultaneously (i.e.,
U = G(3, 14) ∖Π as in _eorem 1.2).

Lemma 3.6 _e surface S coincides with Zariski closure of the locus Ŝ ∩U.

Proof Let us regard the sections ts i , ξ i , 1 ⩽ i ⩽ 7, as vector-functions on Ŝ∩U =∶ S0.
_en, given x ∈ S0, the construction of Λ implies that the components of vectors
ξ i(x) are uniquely determined (via “ Kramer-type ” relations) by the components of
s i(x), 1 ⩽ i ⩽ 7.

Now, restricting the natural (forgetful) map π∶G(3, 14) ⇢ G(3, 7) (mapping all ξ i
to zero) onto S0, from the conditions λ(x) = σ1(x) = σ2(x) = σ3(x) = 0 we obtain
that π∣S0 ∶ S0 ⇢ π(S0) = S ⊂ G(3, 7) is a birational map onto a K3 surface of genus 12.
_is implies that S0 ⊂ S is a surface, and the result follows.

Lemma 3.6 proves _eorem 1.2.

4 Proof of Theorem 1.1

4.1 We use the same notation as in Sections 2 and 3. Let us also ûx ts1 , . . . , ts7 and
ξ1 , . . . , ξ7 in what follows as corresponding to a particular embedding G(3, 14) ⊂
P(⋀3 C14).

We begin with the following supplementary lemma.

Lemma 4.1 _e following are the irreducible (and reduced) components of the scheme
GΛ ∶= G(3, 14) ∩ Λ:
● Zariski closure of GΛ ∖Π;
● the schemes Gm of dimension 12, given (outside the rest of irreducible components of

GΛ) by the vanishing of various m-tuples, 1 ⩽ m ⩽ 7, of sections ts i1 ∧ ts i2 ∧ ts i3;
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● other irreducible components contained in I, the indeterminacy locus of π∶G(3, 14) ⇢
G(3, 7) (cf. the proof of Lemma 3.6), given by the vanishing of all sections ts i∧ts j∧tsk .

Proof _e ûrst item is clear because GΛ ∖ Π is birational to G(3, 7). As for the
remaining items, we recall that the tuples (ts ik , ts ik′), 1 ≤ k, k′ ≤ 3, are all distinct for
diòerent ξ i (see Remark 3.5).
Further, on the open chart where any two of ts ik ∧ ts ik′ /= 0, intersection GΛ ∩ I

has dimension 20, being a union of (P1)4-bundles Iα over some (ûxed) determinantal
locus Γ ⊂ G(3, 14). Now, if ts11 ∧ ts12 = ts12 ∧ ts13 = 0, say, then one gets a union of
P2 × (P1)4-bundles over a codimension 6 subset in Γ. Hence, this is a proper closed
subset in GΛ ∩ I, and so GΛ ∩ I does not acquire any other irreducible components,
besides Iα , whenever any two of ts ik ∧ ts ik′ vanish. (_e case when one (resp. two)
of ts i j vanishes is similar — one gets a P2 × (P1)4-bundle (resp. P3 × (P1)4-bundle)
over a codimension 3 (resp. 6) subset in Γ.)

Similarly, every Gm ∖ I is a (P1)m-bundle over a smooth, by generality of s i , codi-
mension m linear section Λm of G(3, 7). Indeed, this can be seen for Gm ∖ I on the
open chart where any two of ts i ∧ ts j /= 0, by “ solving the linear equations ” for Λ.
Now, if again some ts i1 ∧ ts i2 = ts i2 ∧ ts i3 = 0, then one gets a P2 × (P1)m−1-bundle
over a codimension 5+m subset in G(3, 7). Hence, this is a proper subset in Gm and
so Gm does not acquire any irreducible components (out of I) whenever any two of
ts ik ∧ ts ik′ vanish. (_e case when some of ts i j vanish is treated similarly.)
Finally, the loci GΛ ∖ Π, Gm and GΛ ∩ Iα deûne a stratiûcation on GΛ by con-

structible irreducible subsets whose Zariski closures remain irreducible. _us these
constitute all the components of GΛ .

Remark 4.2 From (the proof of) Lemma 4.1 we obtain a description of all irre-
ducible components of Ŝ. Namely, they are the surface S, (some of) the 20-dimen-
sional schemes Ŝ ∩ Iα = GΛ ∩ Iα (with λ and σi being expressed via polynomials in
ts i ∧ ts j ∧ tsk), and the loci Ŝm ∶= Ŝ ∩ Gm , which are (P1)m-bundles over S ∩ Λm
(for S being identiûed with ΦE3(S) ⊂ G(3, 7)). In particular, again by generality of
s i , the schemes Ŝm are all smooth and m ⩽ 2. _is also shows that Ŝ ∖ I is a complete
intersection (of pure dimension 2).

4.2 Consider the rigid vector bundle Ê3 on the general K3 surface (S64 , L64) of genus 33.
We have S64 = ΦL64(S64) ⊂ G(3, 14)∩P33 and Ê3 = E14∣S64 by_eorem-deûnition 2.5.
In particular, the pair (S64 , Ê3) varies in a �at family, specializing to (S , Ẽ3). Identify
S64 with the general ûber of the corresponding universal ûbration over a base F and
denote by S64/F the entire family. Similarly, considerations from Subsection 3.3 yield
a subvarietyF R ⊂ F of codimension 1 (cf.Remark 2.10), so that the induced subfamily
S/F R ⊂ S64/F has S as its general ûber.

_e linear projection π∶G(3, 14) ⇢ G(3, 7) induces a rational map

F ⇢ (
3
⋀H0(S , E3) ⊕ (

2
⋀H0(S , E3))

⊕ 3) ⊃ F R

which we again denote by π. Note that by construction π(F R) = F R at the general
point.
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Lemma 4.3 One has (generically) π(F) = F R. In particular, a typical π-ûber is an
irreducible curve in F, and F R is a π-section.

Proof Firstly, the restriction π∣F R is smooth because, again by construction, it in-
duces an isomorphism on the tangent space of F R.
Further, if π(F) /= F R and π−1(FR) ⊃ F R strictly, then π is (generically) ûnite on

F and there is a point in π−1(F R) ∖ F R such that the corresponding K3 surface S′

admits a rational dominant map

S′ ⇢ S = ΦE3(S) ⊂ G(3, 7)
induced by π. Indeed, since C(F)/C(π(F)) is a ûnite ûeld extension generated by
one primitive element, there exists λ′ ∈ ⋀3 H0(S , E3) (resp. σ ′1 , σ ′2 , σ ′3 ∈ ⋀2 H0(S , E3))
such that S′ coincides with Zariski closure of the locus

G(3, 14) ∩ Λ ∩ ((λ − λ′) = (σ1 − σ ′1) = (σ2 − σ ′2) = (σ3 − σ ′3) = 0) ∩U

(cf. Lemma 3.6).
_e restriction π∣S′ is given by some linear subsystem in ∣OS′(1)∣. Now, composing

π∣S′ with embedding S = ΦẼ3(S) ⊂ G(3, 14), we get a rational projection S′ ⇢ S
between two K3 in P33. Hence (non-degenerate) S′ and S diòer by some projective
automorphism. It is then immediate that S′ belongs to the family S/F R, and this is a
contradiction.

_us, under the assumption that π(F) /= F R, the map π must be birational on
F (with π−1(F R) = F R). In this case, the above arguments show that generic sur-
face S′ ∶= S64 projects birationally onto a K3 of genus 12 (cf. Remark 2.14), which is
obviously impossible.

We conclude that π(F) = F R is the only option.

One can assume without loss of generality that S64 ⊂ Λ for S64 ⊂ P33 ⊃ S and
Λ ⊂ H0(G(3, 14),⋀3 E14) has codimension 21. Note also that⋀2 H0(S , Ẽ3) generates
a submodule O⊕N

S ⊆ ⋀2 Ẽ3, some N > 1, which extends to a vector bundle on F.
Hence, there exist global sections

λ̂ ∈ H0(G(3, 14),
3
⋀E14) and σ̂1 , σ̂2 , σ̂3 ∈ H0(G(3, 14),

2
⋀E14)

such that S64 is contained in the Zariski closure of the locus Ŝ64 ∩U , where

Ŝ64 ∶= GΛ ∩ (λ̂ = σ̂1 = σ̂2 = σ̂3 = 0)
(compare with Lemma 3.6).

_e family S64/F extends to an algebraic family Ŝ64/F̂ ⊇ S64/F (with F̂ ⊇ F and
conventions on the notation as earlier).

Lemma 4.4 _e universal ûbration Ŝ64/F̂ → F̂ is �at at the general point.

Proof Cutting with hyperplanes, we reduce to the 2-dimensional case. _us, sup-
pose there is a smooth projective surfaceV and an algebraic family of schemes Zt ⊂ V .
One can assume the 0-dimensional part of all Zt to have the same length and local
multiplicities. _en, since the Hilbert polynomial (of a curve) has onlyZ-coeõcients,
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we obtain that the 1-dimensional part of Zt varies algebraically with t. Summing up,
all Zt have the same Hilbert polynomial, and the claim follows.

According to Lemma 4.4 we can assume that the family Ŝ64/F̂ is �at (for taking
the �at closure still leaves S64/F as a (�at) subfamily). One can also restrict to F̂ = F

and identify F withK33 via the Luna’s slice theorem (for S, S64, etc. being deûned up
to AutG(3, 14) = PGL(14,C)).

Lemma 4.5 _ere exists, as for all K3 surfaces in S64/F, a Zariski open subset U0 ⊂
G(3, 14) such that Ŝ ∩U0 = S ∩U0 and Ŝ64 ∩U0 = S64 ∩U0.

Proof Flatness and Remark 4.2 imply that all irreducible components of Ŝ64/F are
either (contained in) various GΛ ∩ Iα , or coincide with some (P1)m-bundles over
S64/F, m ≤ 2. In particular, the dimension of these components is at most

max{20, 19 + 2 + 2} = 23.

Further, all irreducible components of Ŝ64 (resp. Ŝ) diòerent from S64 (resp. S)
vary in a �at subfamily, since these residual members have the same Hilbert polyno-
mial.

_us, all of these members sweep out a proper subset in G(3, 14) of dimension
⩽ 23. Removing this yields the needed U0.

It follows from Lemma 4.3 that one can write λ̂ = λ + λ0 with λ0 being parame-
terized by an algebraic curve Z (over C(F R)). Similarly, one has σ̂i = σi + σ 0

i , with
Z-parameterized σ 0

i .
Fix some λ′ ∈ H0(G(3, 7),⋀3 E7), σ ′i ∈ H0(G(3, 7),⋀2 E7), 1 ≤ i ≤ 3, and a map

f ∶ Z → P1. _en associate with S64 a K3 surface S′64 ⊂ G(3, 7) of genus 12 given by
λ+ f (λ, z)λ′ = σ1 + f (λ, z)σ ′1 = ⋅ ⋅ ⋅ = 0 as usual (for (λ, z) ∈ Z corresponding to S64).
_is and Lemma 4.5 deliver a rational dominant map ϕ∶K33 ⇢K12.

Indeed, the fact that ϕ is dominant follows from Proposition 2.8 and a simple di-
mension count, whereas we have the following result.

Lemma 4.6 ϕ is correctly deûned.

Proof Note that the collection of Λ, λ, σi is deûned up to the automorphisms in
PGL(14,C). _en the family F and the locus U0 from Lemma 4.5 are deûned up to
PGL(14,C) as well. Hence, by the Luna’s slice theorem it suõces to show that any
τ ∈ PGL(14,C), with τ(F) = F and τ(U0) = U0, induces naturally an automorphism
on G(3, 7) (thus mapping S′64 ⊂ G(3, 7) to an isomorphic surface). But the latter is
evident according to Lemma 4.1 and the assumption on τ.

Proposition 4.7 ϕ is birational.

Proof Note that the restriction of ϕ to the hypersurface KR
33 (cf. Remark 2.10) is

smooth because by construction ϕ induces an isomorphism there on the tangent
spaces. In addition, ϕ∣K R

33
is one-to-one onto its image, and hence it suõces to show

that ϕ−1ϕ(S) = S.
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Let S64 ∈ ϕ−1ϕ(S) be another K3. _en the corresponding surface S′64 ∈ K12 has
f (λ, z) = 0 (with notation as above). _is gives a rational dominant map S64 ⇢
S = ΦE3(S) ⊂ G(3, 7) induced by the projection π∶G(3, 14) ⇢ G(3, 7). Here the
restriction π∣S64 is given by some linear subsystem in ∣OS64(1)∣. Now, composing π∣S64

with the embedding S = ΦẼ3(S) ⊂ G(3, 14), we get a rational projection S64 ⇢ S
between two K3 in P33. _is is only possible if S64 and S are isomorphic (cf. the proof
of Lemma 4.3).

_us, ϕ−1ϕ(S) = S as wanted.

Finally, _eorem 1.1 follows from Lemma 4.6, Proposition 4.7, and Remark 2.14.

Remark 4.8 We can run similar arguments as in the proof of Lemma 3.1 for the
vector bundle E4 on S (cf. Remarks 2.15 and 2.19) to show that E4 ⊗OS(C) is a rigid
rank 4 vector bundle such that c1(E4 ⊗ OS(C)) = H and χ(S , E4 ⊗ OS(C)) = 13.
_en, as in the proof of _eorem 1.2, one obtains

S ≃ ΦE4⊗OS (C)(S) ⊂ G(4, 13) ∩ P36

for OS(H) ≃ OG(4,13)(1)∣S and S = ΦE4⊗OS (C)(S). Now using Remark 2.15 we prove
that S ⊂ G(4, 13) ∩ P36 coincides with Zariski closure of the locus S̃ ∖Π inside

S̃ ∶= Λ∗ ∩ (λ∗ = 0) ∩ (σ∗1 = σ∗2 = σ∗3 = 0)
for some λ∗ ∈ H0(G(4, 13),⋀4 E13), σ∗i ∈ H0(G(4, 13),⋀2 Q∗13), where Π and Λ∗

are ûxed projective subspaces in P(⋀4 C13), E13 is the universal vector bundle on
G(4, 13), and Q∗13 is the dual of the universal quotient vector bundle on G(4, 13). Fi-
nally, applying similar arguments as in the proof of _eorem 1.1, one can show that
the same holds for any BN general polarized K3 surface of genus 36, which again leads
to the unirationality of K36. Let us stress however that the present strategy does not
apply directly to study the unirationality of K21 and K28 (cf. Remark 2.10), because
in these two cases there is no apparent relation between the rigid vector bundles on
the corresponding polarized K3 and those on the genus 12 surfaces (compare with
Lemma 3.1).
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