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Abstract. This paper is a continuation for the study of the zero-divisor graph
for the ring of Gaussian integers modulo n, �(�n[i]) in [8] (Emad Abu Osba, Salah
Al-Addasi and Nafez Abu Jaradeh. Zero divisor graph for the ring of Gaussin integers
modulo n. Comm. Algebra 36(10) (2008), 3865–3877). It is investigated, when is �(�n[i])
locally H, Hamiltonian or bipartite graph? A full characterisation for the chromatic
number and the radius is also given.
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1. Introduction. Let R be a commutative ring, Z(R) the set of zero divisors of
R, and Z∗(R) = Z(R) − {0}. The zero-divisor graph of R, �(Z∗(R)), usually written as
�(R), is the simple graph in which each element of Z∗(R) is a vertex, i.e. V (�(R)) =
Z∗(R), and two distinct vertices x and y are adjacent if and only if xy = 0. For more
details about the zero-divisor graph of a ring, the reader may refer to [1].

The set of all complex numbers a + ib, where a and b are integers, forms a Euclidean
domain with the usual complex number operations and Euclidean norm |a + ib| =
a2 + b2. This domain is denoted by �[i] and is called the ring of Gaussian integers. It is
clear that a + ib is a unit in �[i] if and only if |a + ib| = 1, which implies that the only
units in �[i] are 1,−1, i and −i.

Let n be a natural number and let < n > be the principal ideal generated by n in
�[i]. Then the factor ring �[i]� < n > is isomorphic to �n[i] = {a + i b : a, b ∈ �n},
which implies that �n[i] is a principal ideal ring. The ring �n[i] is called the ring of
Gaussian integers modulo n.

Let 2 = −i (1 + i)2, so �2m [i] is isomorphic to the local ring �[i]� < (1 + i)2m >

with only maximal ideal < 1 + i >. If q is a prime integer such that q ≡ 3 (mod 4),
then �q[i] is a field, while for m > 1, �qm [i] is a local ring, which is not a field with
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maximal ideal < q >. If p is a prime integer such that p ≡ 1 (mod 4), then there exists
a, b ∈ � such that p = a2 + b2 = (a + ib)(a − ib), both factors are Gaussian primes and
�pm [i] � (�[i]� < (a + ib)m >) × (�[i]� < (a − ib)m >) � �pm × �pm , see [5, Theorem
5]. In this paper, the integers q and qj are used implicitly to denote prime integers
congruent to 3 modulo 4, while p and ps likewise denote prime integers congruent to
1 modulo 4.

A complete graph with n vertices is denoted by Kn. A complete bipartite graph
with partite sets having n and m vertices is denoted by Kn,m. The edgeless graph with n
vertices is denoted by nK1.

In [8], the authors find the diameter and girth of �(�n[i]). They investigated, when
is �(�n[i]) complete, complete bipartite, regular, planar or Eulerian?

This paper is a continuation of the work done in [8]. We will study, when is �(�n[i])
locally H, Hamiltonian or bipartite? We will find the radius and the chromatic number
in terms of n.

For any undefined terms, the reader may contact [8] and [2].

2. When is �(�n[i]) locally H?. A graph in which all vertices have the same
degree is called a regular graph. If all vertices in a graph G have neighbourhoods that
are isomorphic to the same graph H, then G is said to be locally H, see [3]. A graph G
of diameter d is called distance regular with parameters {pk

i,j : 0 ≤ i, j, k ≤ d} if for each
triple (i, j, k) and for any pair (u, v) of vertices of G such that d(u, v) = k, the number
of vertices at distance i from u and distance j from v is pk

i,j, each of these numbers pk
i,j

is independent of the particular choice of vertices. A special class of distance regular
graphs is that of strongly regular graphs. A graph G is called strongly regular if it is
distance regular of diameter 2, see [6].

In this section we investigate the cases in which the graph �(�n[i]) is locally H.

THEOREM 1. The graph �(�n[i]) is locally H if and only if n = 2 or n = p or n = q2.

Proof. The graph �(�2[i]) contains only one vertex; namely 1 + i and so �(�2[i])
is locally φ.

If n = p, then n = a2 + b2 for some a, b ∈ �, and the vertex set of �(�n[i]) is
(〈a + ib〉 ∪ 〈a − ib〉) − {0}. In this case, �(�n[i]) is the complete bipartite graph Kn−1,n−1.
Hence the graph �(�n[i]) is locally (n − 1)K1.

If n = q2, then the vertex set of �(�n[i]) is 〈q〉 − {0}. In this case, �(�n[i]) is the
complete graph Kn−1. Hence, the graph �(�n[i]) is locally Kn−2.

It was shown in [8] that the graph �(�n[i]) is regular if and only if n = 2 or n = p
or n = q2. Hence �(�n[i]) cannot be locally H for any other case. �

Since the regular complete bipartite graph Kn,n, n ≥ 2 is strongly regular and the
complete graph Kn is distance regular, one can deduce the following corollary.

COROLLARY 2. (a)The graph �(�n[i]) is locally H if and only if it is distance regular
if and only if it is regular.

(b) The graph �(�n[i]) is strongly regular if and only if n = p.

3. When is �(�n[i]) Hamiltonian?. A component of an undirected graph is a
subgraph in which any two vertices are connected to each other by paths, and to
which no more vertices or edges can be added while preserving its connectivity, that
is, it is a maximal connected subgraph. For a graph G, let c(G) denote the number of
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components. A Hamiltonian cycle of a graph G is a cycle that contains every vertex of
G. A graph is Hamiltonian if it contains a Hamiltonian cycle.

The name ‘Hamiltonian cycle’ arises from the fact that Sir William Hamilton
investigated their existence in the dodecahedron graph. One of the major unsolved
problems of graph theory is to obtain simple characterisations for Hamiltonian graphs.
Most existing theorems have the form, ‘if G has enough edges, then G is Hamiltonian’.
Probably, the most celebrated of these is the following result because of G. A. Dirac,
see [10].

PROPOSITION 3. If G is a graph with n (≥ 3) vertices, and if deg(v) ≥ n
2 for each vertex

v, then G is Hamiltonian.

Another well-known existence theorem on Hamiltonian graphs is the following,
see, for example, [10, p. 38].

PROPOSITION 4. If G is a Hamiltonian graph and S is any non-empty proper subset
of vertices in G, then c(G − S) ≤ |S| .

We will use these two propositions to characterise when the graph �(�n[i]) is
Hamiltonian. We will show that �(�n[i]) is Hamiltonian if and only if n = p or n = q2.

THEOREM 5. For each m ≥ 1, the graph �(�2m [i]) is not Hamiltonian.

Proof. The graph �(�2[i]) is the trivial graph K1 which is not Hamiltonian. For
m > 1, the vertex set V (�(�2m [i])) = 〈1 + i〉 − {0} and in this graph (1 + i)(1 − i) = 2 �=
0 and all vertices are adjacent to (1 + i)2m−1. Also deg(1 + i) = 1 = deg(1 − i), see [8].
Let S = {(1 + i)2m−1} and let H = {1 + i, 1 − i}. Then c(�(�2m [i]) − S) ≥ |H| = 2 >

1 = |S|. So it follows by Proposition 4 that �(�2m [i]) is not Hamiltonian. �
THEOREM 6. The graph �(�pm [i]) is Hamiltonian if and only if m = 1.

Proof. Let p = a2 + b2 for some a, b ∈ �. �(�p[i]) is the complete bipartite graph
Kp−1, p−1 with the two vertex sets V1 = 〈a + ib〉 − {0} and V2 = 〈a − ib〉 − {0}. So
it is clear that �(�p[i]) is a Hamiltonian graph. Now let m > 1, �pm [i] � �pm ×
�pm , so let S = {(0, αpm−1) ∈ �pm × �pm : gcd(α, p) = 1}, H1 = {(1, αp) ∈ �pm × �pm :
gcd(α, p) = 1} and H2 = {(2, αp) ∈ �pm × �pm : gcd(α, p) = 1}. Then |H1| = |H2| ≥
p − 1 = |S|. Elements of H1 and H2 are adjacent only to elements of S. Then
c(�(�pm × �pm ) − S) ≥ |H1| + |H2| > |S|. Hence �(�pm [i]) is not Hamiltonian. �

LEMMA 7. Let m > 1 and let α, β ∈ {0, q, 2q, 3q, . . . , (q − 1)q} ⊆ �qm [i] such that
(α, β) �= (0, 0). Then the set {x + iy : (x + iy)(α + iβ) = 0, x + iy �= 0} = 〈qm−1〉 − {0}.

Proof. Assume that (aq + bqi)(x + iy) = 0, where a, b ∈ {0, 1, 2, . . . , q − 1} but not
both are zeroes. Then we have:

ax − by = qm−1l1,
bx + ay = qm−1l2.

So (a2 + b2)x = qm−1(al1 + bl2) and (a2 + b2)y = qm−1(al2 − bl1), which implies
that qm−1 | x and qm−1 | y, because if q | (a2 + b2), then (a−1b)2 ≡ −1 (mod q) which
contradicts the fact that q ≡ 3 (mod 4). Thus x + iy ∈ 〈qm−1〉 − {0}. �

THEOREM 8. The graph �(�qm [i]) is Hamiltonian if and only if m = 2.

Proof. �q[i] is a filed and so �(�q[i]) is the empty graph. �(�q2 [i]) is the complete
graph Kq2−1, see [8], which is a Hamiltonian graph. Now let m > 2. Then the
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vertex set of �(�qm [i]) is 〈q〉 − {0}. Let S = 〈qm−1〉 − {0} and let H = {α + iβ : α, β ∈
{0, q, 2q, 3q, . . . , (q − 1)q}, (α, β) �= (0, 0)}. Then H ⊆ V (�(�qm [i])) − S, and it follows
by Lemma 7 that c(�(�qm [i]) − S) > |H| = q2 − 1 = |S|. So, it follows by Proposition
4 that �(�qm [i]) is not Hamiltonian. �

LEMMA 9. If R = R1 × R2 with |reg(R1)| > 1 and |Z∗(R2)| > 1, then �(R) is not
Hamiltonian.

Proof. Let S = {(0, v) : v ∈ Z∗(R2)} and let H = {(u, v) : u ∈ reg(R1) and v ∈
Z∗(R2)}. Then the elements of H are adjacent only to elements of S and
c(�(R) − S) ≥ |H| = |reg(R1)| × |Z∗(R2)| ≥ 2 |Z∗(R2)| > |Z∗(R2)| = |S|. Thus �(R)
is not Hamiltonian. �

THEOREM 10. If an integer n is divisible by at least two distinct primes, then �(�n[i])
is not Hamiltonian.

Proof. If n = 2t with gcd(2, t) = 1, then �n[i] � �2[i] × �t[i]. Take S = {(1 + i, 0)}
and H = {(1 + i, v) : v ∈ U(�t[i])}. Then the vertices of H are adjacent only to (1 + i, 0)
and hence c(�(�2[i] × �t[i]) − S) ≥ |H| > 1 = |S|, so �(�2t[i]) is not Hamiltonian. For
the other cases, if n = mk with m, k > 2 and gcd(m, k) = 1, then �n[i] � �m[i] × �k[i].
If neither �m[i] nor �k[i] is a field, then the result follows immediately from Lemma
9. So assume that both �m[i] and �k[i] are fields with m < k. Let H = {(0, v) : v ∈
(�k[i])∗} and let S = {(u, 0) : u ∈ (�m[i])∗}. Then elements of H are adjacent only to
elements of S and c(�(�n[i]) − S) = |H| = k2 − 1 > m2 − 1 = |S|. Thus �(�n[i]) is not
Hamiltonian. �

Combining those results on Hamiltonian graphs together with Theorem 1 and
Corollary 2, we can get:

COROLLARY 11. For n > 2, the following are equivalent:
(1) �(�n[i]) is Hamiltonian.
(2) �(�n[i]) is locally H.
(3) �(�n[i]) is regular.
(4) �(�n[i]) is distance regular.
(5) n = p or n = q2.

4. The radius of �(�n[i]). The eccentricity of a vertex v of a connected graph G is
the distance between v and a vertex farthest from v. The minimum eccentricity among
the vertices of G is its radius, which is denoted by rad(G).

Abu Osba et al. have shown in [8, Theorem 19] that the domination number of
�(�n[i]) is 1 if and only if n = qm, where m > 1 or n = 2m, which implies the following
result, since a vertex in a dominating set of cardinality 1 has the minimum eccentricity.

THEOREM 12. For any integer n > 1.
(1) rad(�(�n[i])) = 0 if and only if n = 2.
(2) rad(�(�n[i])) = 1 if and only if n = 2m or qm, where m > 1.

It was shown in Anderson and Livingston [1, 2.3] that for a commutative ring R,
the graph �(R) is connected and has diameter at most 3. Therefore, in view of Theorem
12, if n �= 2m or qm, then rad(�(�n[i])) ∈ {2, 3}. Now we consider the case that n = pm.

THEOREM 13. For any integer m ≥ 1, rad(�(�pm [i])) = 2.
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Proof. Let p = a2 + b2. As shown in [8, Theorem 20], the set {(a + ib)m(a −
ib)m−1, (a + ib)m−1(a − ib)m} is a minimum dominating set of �(�pm [i]). Thus
rad(�(�pm [i])) > 1. Since (a + ib)m(a − ib)m−1 is adjacent to (a + ib)m−1(a − ib)m, we
have for any vertex α of �(�pm [i]) which is not adjacent to (a + ib)m(a − ib)m−1,
the vertex (a + ib)m−1(a − ib)m is a common neighbour of (a + ib)m(a − ib)m−1

and α. Therefore, the vertex (a + ib)m(a − ib)m−1 has eccentricity 2, and hence
rad(�(�pm [i])) = 2. �

The following result determines the radius for the remaining case in which n has
at least two distinct prime factors.

THEOREM 14. Let n be a positive integer with at least two distinct prime factors.
Then rad(�(�n[i])) = 2.

Proof. Let n = tmk, where t is a prime integer and gcd(t, k) = 1. By Theorem 12,
rad(�(�n[i])) > 1. So it would be enough to find a vertex in �(�n[i]) with eccentricity
2. We have �(�n[i]) � �(�tm [i] × �k[i]). Note that the vertex set of �(�tm [i] × �k[i]) is
A1 ∪ A2 ∪ A3 ∪ A4, where

A1 = {(x, 0) : x ∈ �tm [i] − {0}},
A2 = {( 0, y) : y ∈ �k[i] − {0}},
A3 = {(x, z) : x ∈ �tm [i] − {0}, z ∈ Z∗(�k[i])} and
A4 = {(z, y) : z ∈ Z ∗(�tm [i]), y ∈ �k[i] − {0}},

where A3 is empty when k = q1 for some q1, and A4 is empty when tm = q2 for some
q2. Consider the vertex v = (a, 0), where a is a vertex of �(�tm [i]) with minimum
eccentricity. We will show that v has eccentricity 2 in �(�tm [i] × �k[i]). Since every
vertex in A1 is adjacent to every vertex in A2, we have d(v, α) ≤ 2 for every α ∈ A1 ∪ A2.
If (x, z) ∈ A3, then there exists an element z1 ∈ Z∗(�k[i]) such that zz1 = 0, and hence
(0, z1) is a common neighbour of (a, 0) and (x, z). Thus d(v, (x, z)) ≤ 2. Finally, if
(z, y) ∈ A4, then by the choice of a and according to Theorem 12 or Theorem 13, we
have d(a, z) ≤ 2. Then either z = a or a z ∈ E(�(�tm [i])) or a and z have a common
neighbour z1 in �(�tm [i]). Therefore, if z �= a, then either (a, 0) is adjacent to (z, y), or
the vertex (z1, 0) is a common neighbour of (a, 0) and (z, y), and hence in any case we
have d(v, (z, y)) ≤ 2. So suppose that z = a. Now if tm = 2, then a = 1 + 1i = z and
(a, 0) is adjacent to (z, y), which implies that d(v, (z, y)) = 1. If tm �= 2, then a has a
neighbour x1 in �(�tm [i]), and hence (x1, 0) is a common neighbour of (a, 0) and (z, y),
which implies that d(v, (z, y)) ≤ 2. Therefore, the vertex v has eccentricity at most 2
and hence its eccentricity is 2. Thus rad(�(�n[i])) = 2. �

Summarising the results in the three theorems of this section, we have: for any
integers n > 1, m > 1 with n �= q for any q,

rad(�(�n[i])) =

⎧⎪⎨
⎪⎩

0 n = 2
1 n = 2m or qm

2 otherwise

.

5. When is �(�n[i]) bipartite?. A subset S of vertices of a graph G is called
independent if no pair of vertices of S are adjacent.

Abu Osba et al. have shown in [8, Theorem 17] that �(�n[i]) is complete bipartite
if and only if n = p or n = q1q2. In this section, we will determine all values of n for
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which �(�n[i]) is bipartite. We start by proving that �(�2q[i]) is a sequential join of four
graphs. The sequential join G1 + G2 + · · · + Gk of the graphs G1, G2, · · · , Gk is the
graph formed by taking one copy of each of the graphs G1, G2, · · · , Gk and adding in
additional edges from each vertex of Gj to each vertex of Gj+1, for j = 1, 2, . . . , k − 1,
see [2].

LEMMA 15. The graph �(�2q[i]) is isomorphic to the sequential join (q2 − 1)K1 +
K1 + (q2 − 1)K1 + 2K1.

Proof. The graph �(�2q[i]) is isomorphic to �(�2[i] × �q[i]). The vertex set of
�(�2[i] × �q[i]) is A1 ∪ A2 ∪ A3, where

A1 = {(x, 0) : x ∈ �2[i] − {0}},
A2 = {( 0, y) : y ∈ �q[i] − {0}} and
A3 = {(1 + 1i, y) : y ∈ �q[i] − {0}}.
Then the set of vertices adjacent to (1 + 1i, 0) is A2 ∪ A3. Since �q[i] is a field, we

have A2 ∪ A3 as an independent set of vertices. Obviously A1 is also an independent
set of vertices. Therefore, since the set of vertices adjacent to (1, 0) which is equal to
A2 which equals the set of vertices adjacent to (i, 0), we have �(�2[i] × �q[i]) = G1 +
G2 + G3 + G4, where G1, G2, G3, G4 are the graphs induced by A3, {(1 + 1i, 0)}, A2 and
{(1, 0), (i, 0)}, respectively. �

Since each of the sets A2 and A3 in the proof of Lemma 15 has cardinality q2 − 1,
we have the following result.

COROLLARY 16. The graph �(�2q[i]) is bipartite with partite sets of cardinalities 3
and 2(q2 − 1).

Now we are in a position to determine precisely when �(�n[i]) is bipartite. Note
that �(�2[i]) is the trivial graph K1.

THEOREM 17. For any integer n > 2, the following are equivalent:
(1) �(�n[i]) is bipartite.
(2) �(�n[i]) is triangle free.
(3) n = p or 2q or q1q2.

Proof. (1) ⇒ (2) Any bipartite graph has no triangle.
(2) ⇒ (3) Let �(�n[i]) be triangle free. Since �q[i] is a field, by [8, Theorem 14], we

have n = p or 2q or q1q2.

(3) ⇒ (1) Let n = p or 2q or q1q2. Then, by [8, Theorem 17] and Corollary 16,
�(�n[i]) is bipartite. �

Since �(�p[i]) � Kp−1,p−1, �(�q1q2 [i]) � Kq1−1,q2−1, see [8], and �(�2q[i]) � (q2 −
1)K1 + K1 + (q2 − 1)K1 + 2K1 by Lemma 15, we have the following corollary.

COROLLARY 18. For any integer n > 2, the graph �(�n[i]) is not a tree.

6. Colouring of �(�n[i]). A proper colouring of a graph G is a function that assigns
a colour to each vertex such that no two adjacent vertices have the same colour. The
graph G is m− colourable if it has a proper colouring with m different colours. The
chromatic number of G, denoted by χ (G), is the smallest number of colours necessary
to produce a proper colouring. A clique of a graph G is a maximal complete subgraph
of G.
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THEOREM 19. χ (�(�2n [i]) = 2n − 1.

Proof. �(�2[i]) is isomorphic to K1 and so χ (�(�2n [i])) = 21 − 1 = 1. Now assume
that n > 1. It was proved in [9] that �2n [i] is a local ring with maximal ideal < 1 +
i >, and the properties that |�2n [i]| = 22n and < 1 + i >2n−1 �= {0}. Since (1 + i)2n−1 =
(1 + i)2n−2(1 + i) = (2i)n−1(1 + i) �= 0, it follows by [4, Proposition 2.4] that �(�2n [i]) �
�(�22n ). Hence it follows by [7, Corollary 4.8] that χ(�(�2n [i]) = 2n − 1. �

LEMMA 20. Let R1 be an integral domain. Then

χ(�(R1 × R2)) =
{

χ (�(R2)) + 1

2

if Z∗(R2) �= φ

if Z∗(R2) = φ
.

Proof. The vertex set of �(R1 × R2) is
⋃3

k=1 Ak, where
A1 = {(x, 0) : x ∈ R1 − {0}},
A2 = {(0, y) : y ∈ R2 − {0}} and
A3 = {(x, z) : x ∈ R1 − {0}, z ∈ Z∗(R2)}.
If Z∗(R2) = φ, then A3 is empty and since each of A1 and A2 is independent in

�(R1 × R2), we have χ (�(R1 × R2)) = 2.
So suppose that Z∗(R2) �= φ. Since the only non-trivial component of the subgraph

of �(R1 × R2) induced by A2 is isomorphic to �(R2), we can colour the vertices in A2

by χ (�(R2)) colours. The vertex (1, 0) in A1 is adjacent to all vertices in A2, so (1, 0)
must have a new colour. Since R1 is an integral domain, A1 ∪ A3 is an independent set
of vertices and hence all vertices in A1 ∪ A3 can be coloured by the colour of (1, 0).
Therefore, χ (�(R1 × R2)) = χ(�(R2)) + 1. �

Iterated applications of Lemma 20 lead to the following result.

COROLLARY 21. If R is a direct product of n integral domains (n > 1), then
χ (�(R)) = n.

We now calculate the chromatic number for �(�n[i]) when n is a product of primes
congruent to 3 modulo 4. Similar proofs can be done to find the case when n is a
product of primes that are congruent to 1 modulo 4, then the general case can be
deduced easily.

THEOREM 22. Let n = ∏r
k=1 qmk

k × ∏t
k=r+1 qmk

k , mk > 1 is odd for all k ≤ r while mk

is non-zero even integer otherwise and let s = ∏t
k=1 q

2� mk
2 �

k . Then
χ(�(�n[i])) = s + r − 1.

Proof. Note first that �n[i] � ∏t
k=1 �q

mk
k

[i].

Let S = {(αk)t
k=1 ∈ ∏t

k=1 �q
mk
k

[i] : q� mk
2 �

k | αk for each k}. Then elements of S −
{(0, 0, 0, . . . , 0)} form a complete subgraph with n2

(
∏t

k=1 q
� mk

2 �
k )2

− 1 = s − 1 vertices and

hence need s − 1 different colours. If v = (βk)t
k=1 ∈ Z∗(

∏t
k=1 �q

mk
k

[i]) − S, then there

exists j such that q
� mj

2 �
j � β j. Thus Z∗(

∏t
k=1 �q

mk
k

[i]) − S = A
⋃

B, where A = ⋃t
j=1 Aj

with Aj = {(βk)t
k=1 ∈ Z∗(

∏t
k=1 �q

mk
k

[i]) − S : q
� mj

2 �
j � β j} − ⋃j−1

k=1 Ak and B = ⋃r
j=1 Bj

with Bj = {(βk)t
k=1 ∈ Z∗(

∏t
k=1 �q

mk
k

[i]) − S : β j = αq
� mj

2 �
j , where α is a unit in �q

mk
k

[i]

and q
� mk

2 �
k | βk for all k = 1, 2, . . . , t } − ⋃j−1

k=1 Bk. Elements of Aj are independent and
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can be coloured by the colour of (0, 0, . . . , q
� mj

2 �
j , . . . , 0) ∈ S. Elements of Bj are also

independent but are all adjacent to all elements in S − {(0, 0, 0, . . . , 0)} and so elements
of Bj can be coloured by a new colour say cj. Thus �(�n[i]) is (s + r − 1)−colourable
and χ (�n[i]) ≤ s + r − 1. Now (S − {(0, 0, 0, . . . , 0)}) ⋃{v1, v2, . . . , vr} form a clique in
�(�n[i]), where vj = (βk)t

k=1 with

βk =

⎧⎪⎪⎨
⎪⎪⎩

q

⌊ mj
2

⌋
j k = j

q� mk
2 �

k k �= j

.

Hence χ (�(�n[i])) = s + r − 1. �
COROLLARY 23. Let n > 1. Then

(1) χ (�(�n[i]) = m if n = ∏m
k=1 qk.

(2) χ (�(�qn [i]) = qn − 1 if n is even.
(3) χ (�(�qn [i]) = qn−1 if n is odd.

Note that �(�q2 [i]) is the complete graph Kq2−1 and so χ (�(�q2 [i]) = q2 − 1.
Since �pm [i] � �pm × �pm , then a similar argument to the proof of Theorem 22

gives the following results:

THEOREM 24. Let n = ∏r
k=1 pmk

k × ∏t
k=r+1 pmk

k , mk is odd for all k ≤ r while mk is

non-zero even integer otherwise and let s = ∏t
k=1 p

2� mk
2 �

k . Then
χ (�(�n[i])) = s + 2r − 1.

COROLLARY 25. Let n > 1. Then
(1) χ (�(�n[i]) = 2m if n = ∏m

k=1 pk.

(2) χ (�(�pn [i]) = pn − 1 if n is even.
(3) χ (�(�pn [i]) = pn−1 + 1 if n is odd.

Note that �(�p[i]) is the complete bipartite graph Kp−1,p−1 and can be coloured by
p1−1 + 1 = 2 different colours.

Combining the work done above, one can conclude the general formula for the
chromatic number of �(�n[i]).

THEOREM 26. Let n = 2l × (
∏r

k=1 qmk
k × ∏t

k=r+1 qmk
k ) × (

∏z
k=1 pnk

k × ∏c
k=z+1 pnk

k ),
mk is odd for all k ≤ r while mk is even integer otherwise, nk is odd for all k ≤ z while nk

is even integer otherwise and let s = 2l × ∏t
k=1 q

2� mk
2 �

k × ∏c
k=1 p

2� mk
2 �

k . Then

χ(�(�n[i])) = s + r + 2z − 1.
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