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ON THE P-NORM OF THE
TRUNCATED HILBERT TRANSFORM

W. MCLEAN AND D. ELLIOTT

The p-norm of the Hilbert transform is the same as the p-norm of its truncation to any
Lebesgue measurable set with strictly positive measure. This fact follows from two sym-
metry properties, the joint presence of which is essentially unique to the Hilbert transform.
Our result applies, in particular, to the finite Hilbert transform taken over ( — 1,1), and
to the one-sided Hilbert transform taken over (0, oo). A related weaker property holds
for integral operators with Hardy kernels.

1. INTRODUCTION

We denote the Hilbert transform of the function u by Hu, that is,

dy
, y - x £—o+ 7" J\y-X\>e y - •

for -oo < x < oo. A famous theorem of M. Riesz [7] asserts that, for 1 < p < oo,
there exists a constant Mp < oo such that

(1.1) / \Hu{x)\p dx ^ (Mp)
p f \u{x)\pdx

J— oo J— oo

for every function u € LP(R); hence, J? is a bounded linear operator on LP(R) with
norm ^ Mp . During the 1960s, a number of authors made progress towards establishing
the value M* of the best constant in (1.1). O'Neil and Weiss [5] gave the upper bound

where q is the conjugate exponent to p, that is, 1/p + 1/q = 1, and Gohberg and
Krupnik [3] gave the lower bound Mp ^ u(p) for p = 2n (n = 1, 2, 3, . . . ), where

/ tan(7r/2p), 1 < p < 2,
i/(p) = <

I cot (n/2p), 2 < p < oo.
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The question was settled in 1972 by Pichorides [6], who proved that M* = u{p) for
1 < p < oo. A recent book by Krupnik [4, Chapter 2] contains a lengthy discussion of
some generalisations of this result, involving weighted Lp spaces and quotient norms.

In the present paper, we consider the truncated Hilbert transform, defined by

f* JEV ~X

where £ is a measurable subset of R. The most commonly occurring cases are the
finite Hilbert transform, for which E = (—1,1), and the one-sided Hilbert transform,
for which E - (0,oo).

It is obvious that, for 1 < p < oo, there exists a constant MP<E < oo such that

/ \HEu(x)\"dx < (MP<E)P f \u{x)\Pdx
E JE

for every u £ Lp(R), and moreover the best constant M* E satisfies M* E ^ M* . We
will show that in fact equality holds, that is,

M;>E = M; = i/(p) for 1 < p < oo,

provided the Lebesgue measure of E is not zero. The method of proof involves two
symmetry properties of the Hilbert transform, and yields as a by-product a related
result for integral operators with Hardy kernels.

2. TRANSLATIONS AND DILATATIONS

Denote the norm of a function / in LP(R) by

II/IIP= / \f{*)?**) > K p <oo,
\ </-oo /

and the norm of a linear operator A : LP{R) —> LP(R) by

sup \\Au\\p.

Let XE '• LP{R) —> LP(R) be the operator of pointwise multiplication by the character-
istic function of the measurable set E C R; in other words

{ u(x), x £ E,

0, x e R \ E.
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Since / = XE/ + (1 — XE)/ , the space LP(R) is the direct sum

LP(R) = LP(E)®LP(R\E).

In this way, we can think of Lp(E) as a closed subspace of Lp(R), and write the
truncated Hilbert transform as

(2.1) HE = XEHXE : LP(R) -* LP(R).

The best constants mentioned in the Introduction are simply the p -norms

M; = \\H\\P, M;IB = \\HE\\P.

Introduce the translation operator

Ta : LP{R) -> Lp(R), a e R,

and the dilatation operator

Vm : Lp{R) -» Lp(R), m > 0,

defined by

Taf(x) = f(x - a), Vmf(x) = m

Both Ta and Vm are isomorphisms, indeed,

{Tay
1=T_a, (X»m)~1 = V1/m,

and moreover, both operators are isometries, that is,

= ||/||p, \\Vmf\\, =

for every / € Lp(R).
A bounded linear operator A : LP(R) —* LP(R) is said to commute with translations

if
TaA = ATa for all a 6 R ,

and similarly, A is said to commute with dilatations if

VmA - AVm for all m > 0.

For example, consider an integral operator (possibly singular)

Ku{x)= 4 k(x,y)u(y)dy, -oo < x < oo,
J — oo
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and assume that K is a bounded linear operator on Lp(R). One can easily verify that
K commutes with translations if and only if k is a difference kernel, that is, if and only
if

k(x, y) = k(x - y, 0) = k(0,y - x),

whereas K commutes with dilatations if and only if fc is a Hardy kernel, that is, if and
only if

k(mx,my) = mT^k^x, y) for all m > 0 .

Obviously, both properties hold for the Hilbert transform, and we will now show that
H is essentially the only integral operator for which this is the case.

THEOREM 2.1. Let 1 < p < oo and suppose A : LP(R) -» Lp(R) is a bounded
linear operator. If A commutes both with translations and with dilatations, then

A =al + bH,

where a and b are constants, and I is the identity operator.

PROOF: Denote the Fourier transform of u by

= f
J —

then since A commutes with translations and is bounded on Lp(R), there exists a

function a E £oo(R) satisfying

see Bergh and Lofstrom [1, p.132-133] and Stein [8, p.28]. The Fourier transform has
the property

therefore, since A commutes with dilatations,

<T(£) = a(mf>) for £ € R and m > 0,

and so

Put

, 6 =

https://doi.org/10.1017/S0004972700027799 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027799


[5] Truncated Hilbert Transform 417

then <T(£) = a + b sgn (£), where

- (

+ 1 , if ^ > 0

- 1 , if € < 0.

The result follows at once, because ^ u (£) = sgn(£)u(£). |

For any bounded linear operator A : £P(R) —> LP(R), we define by analogy
with (2.1) the truncated operator

AE = Xis^Xs : LP(R) -> LP(R).

Write
a + £ = {a + x : x € -E}, m £ = { mx : x € E }

then

X£;7; = TaXa+E, XE~Dm = VmXmE

for all a £ R and m > 0; consequently, the following holds.

THEOREM 2.2. Let E be any measurable subset of R.

(i) If A commutes witi translations, then

\\Aa+E\\p = \\AE\\p for all a G R .

(ii) If A commutes with dilatations, then

\\AmB\\P = \\AB\\p forallm>0.

PROOF: Assume that A commutes with translations, then

and so i4o+E = {Ta^1 AETa • Likewise, if A commutes with dilatations, then AmE =
(Vm)~ AET^XTI- Now recall that Ta and T>m are isometric isomorphisms. |

3. DENSITY

If A commutes with dilatations, then it is tempting to send m to oo in part (ii)
of Theorem 2.2, and to conclude that \\A\\P = \\AE\\P because | |AmjB||p -> \\A\\p. We
will see that this can be done, provided the set E is 'sufficiently dense' at zero.
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Denote the Lebesgue measure of E by \E\, and denote the open interval of
length 26 centred at x by

Js{x) = (x-S,x + S), x£R,S>0.

When it exists, the limit

is called the density of E at x ; obviously, 0 ̂  CLE(X) < 1 • If x belongs to the interior
of E, then ds(x) = 1, whereas if x lies outside the closure of E, then dg(x) — 0.
For an interval E = (a,b), the density at the end points is ds{a) = dc(&) = 1/2. The
Lebesgue Density Theorem [2, p.184] asserts that

(3.1) (IE{X) = 1 for almost every x £ E,

so provided \E\ ^ 0, the set E has plenty of points with density 1.
The density of E at zero can be characterized in terms of the dilatations of E.

LEMMA 3.1. If J is a bounded interval centred at 0, then

lim \Jr\mE\ =dB(0)\J\.
m—•oo

PROOF: Note that |m£?| = m\E\ and m(E1 n E2) = {mEx) n (mE2) for any
m > 0 and any measurable sets E, E\ and E2 . Suppose J = (—M,M) and let
m = M/S, then mJs(0) = J and so

dE{0) = hm = hm — ,
tf_0+ |«/«(0;| m-too | J |

which means | / n m£^| —> <iB(0)|J| as m —• oo. |

LEMMA 3.2. For 1 ̂  p < oo, t i e following are equivalent:

(i) <fe(0) = l ;

(ii) lim WxmBfWp = ||/||P for ai/ / £ £p(R);
m—"-oo

(iii) lim ||(1 - XmE)f\\P = 0 for a7i / 6 £p(R).

PROOF: Parts (ii) and (iii) are equivalent because

(ll/llp)" = (\\XmBf\\Pf + (11(1 - XmB)f\\P)P.

Suppose (ii) holds. Let J be a bounded interval centred at zero, and put / —
then

lim \JnmE\= Urn (\\XmEf\\P)P = (\\f\\P)P = \J\,
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and so (i) is true by Lemma 3.1; thus (i) « = (ii) •*=£> (iii).

We complete the proof by showing that (i) =$• (iii). Assume dE(0) = 1 > a n ( l let
/ 6 LP(R) and e > 0. There is a continuous function g : R —> R having compact
support and satisfying \\f — g\\p < E. Choose a bounded interval J, centred at zero
and containing the support of g, then

(1 - Xmfi)/ = (1 - Xms)(/ ~ 9) + (1 - XmE)XJ9

and so

11(1 - xmE)f\\P < 11/ - g\\P + 11(1 - xmB)xji\\P\\9\\P

Since dE(0) = 1, Lemma 3.1 implies

lim \J\mE\ = \J\- lim \JDmE\ = 0,
m—>oo m—>oo

therefore h'm 11(1 — Xm£;)/||p ^ e, from which (iii) follows because e > 0 is
m—»oo

arbitrary. |

We are now ready to prove the result mentioned at the beginning of this section.

THEOREM 3.3. Suppose CIE(0) = 1. If A commutes with dilatations, then

PROOF: Let e > 0, and choose u € Lp(fi) such that ||tt||p = 1 and

(3.2) ||A||P < HAullp + e.

The splitting
Au = AmEU + (1 - XmE)Au + XmEM1 ~ Xmfi)"

implies
||A«||, ^ \\AmE\\p + ||(1 - XmE)Au\\p + \\A\\P\\(1 - XmsMp,

so by sending TO to oo and applying Theorem 2.2 (ii) and Lemma 3.2, it follows that
||.4u||p < ||-4B||P- Combining this inequality with (3.2), we see ||J4||P < m E | | p + £ , and
since e is arbitrary, ||A||p ^ ||A£;||p. The reverse inequality m B | | p < ||^4||p is trivial,
so the proof is finished. g

As explained in Section 2, Theorem 3.3 applies to integral operators with Hardy
kernels; for the Hilbert transform, a stronger result holds.

THEOREM 3.4. If \E\^0, then \\HE\\P = \\H\\P.

PROOF: By (3.1), there is a point x 6 E such that (IE{X) = 1, hence d_x+E(0) = 1
and so

\\HB\\, = \\H_Z+E\\P = \\H\\P,

by Theorems 2.1, 2.2 (i) and 3.3. |
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