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ON THE P-NORM OF THE
TRUNCATED HILBERT TRANSFORM

‘W. McLEAN AND D. ELLIOTT

The p-norm of the Hilbert transform is the same as the p-norm of its truncation to any
Lebesgue measurable set with strictly positive measure. This fact follows from two sym-
metry properties, the joint presence of which is essentially unique to the Hilbert transform.
Our result applies, in particular, to the finite Hilbert transform taken over (-1,1), and
to the one-sided Hilbert transform taken over (0,00). A related weaker property holds
for integral operators with Hardy kernels.

1. INTRODUCTION
We denote the Hilbert transform of the function v by Hwu, that is,
1 *° 1
Hu(:c):—,][ u—(y)—dy= lim —/ Mdy
T J oY —=T et M S|y o5 Y —2

for —~0co < ¢ < 00. A famous theorem of M. Riesz 7] asserts that, for 1 < p < o0,

there exists a constant M, < co such that

(1) [ 1auepds < oy [ u@p s

for every function u € Ly(R); hence, H is a bounded linear operator on L,(R) with
norm € M, . During the 1960s, a number of authors made progress towards establishing
the value M, of the best constant in (1.1). O’Neil and Weiss [5} gave the upper bound

« _ 2 [° arsinht q
iy < 2 [T EE = Lor e/ 2a),

where ¢ is the conjugate exponent to p, that is, 1/p + 1/¢ = 1, and Gohberg and
Krupnik (3] gave the lower bound M7 > v(p) for p=2" (n=1, 2, 3, ... ), where

») tan (7 /2p), 1<p<2,
"] cot (m/2p), 2<p<oo.
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The question was settled in 1972 by Pichorides [8], who proved that M; = v(p) for
1 < p < co. A recent book by Krupnik [4, Chapter 2] contains a lengthy discussion of
some generalisations of this result, involving weighted L, spaces and quotient norms.

In the present paper, we consider the truncated Hilbert transform, defined by

1
HEu(z:)=;r—i ][ yl(y—ldy, z € E,
2y —

where E is a measurable subset of R. The most commonly occurring cases are the
finite Hilbert transform, for which £ = (—1,1), and the one-sided Hilbert transform,
for which E = (0,00).

It is obvious that, for 1 < p < oo, there exists a constant My g < oo such that

/E |Hou(e)P de < (M,.5)° /E ()P d

for every u € L,(R), and moreover the best constant M p satisfies M7 5 < My . We
will show that in fact equality holds, that is,

o2 = My = v(p) for 1 <p<oo,

provided the Lebesgue measure of E is not zero. The method of proof involves two
symmetry properties of the Hilbert transform, and yields as a by-product a related
result for integral operators with Hardy kernels.

2. TRANSLATIONS AND DILATATIONS

Denote the norm of a function f in Ly(R) by

) 1/p
Ilfllp=( / If(w)l"dw) . 1<p<oo

and the norm of a linear operator A : L,(R) — Ly(R) by

4llp = sup 4w |lp-
uEL(R), llullp=1

Let xg : Lp(R) — Lp(R) be the operator of pointwise multiplication by the character-
istic function of the measurable set F C R; in other words

u(z), z € E,

XEu(z):{(), R\ E.
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Since f = xgf + (1 — xEg)f, the space Ly(R) is the direct sum
Ly(R) = Ly(E) & Ly(R\ E).

In this way, we can think of L,(E) as a closed subspace of Lp(R), and write the

truncated Hilbert transform as

(2.1) Hg = xgHxg : Lp(R) — Ly(R).

The best constants mentioned in the Introduction are simply the p-norms
Mg =|Hllp,  M;g=|Hgl,-

Introduce the translation operator
T, : Ly(R) — Ly(R), a €R,

and the dilatation operator
D : Lp(R) = Lp(R),  m >0,

defined by
T.f(z) = f(e —a),  Dmf(z) =m ™ /Pf(z/m).

Both T, and D,, are isomorphisms, indeed,
(7:!)_1 = T—aa (Drn)_l = Dl/rm

and moreover, both operators are isometries, that is,

1Zafllo = Nflles  (Pmfllp = 71l

for every f € L,(R).
A bounded linear operator A : L,(R) — L,(R) is said to commute with translations
if
T.A = AT, forall a € R,

and similarly, A is said to commute with dilatations if
DA = AD,, for all m > 0.

For example, consider an integral operator (possibly singular)

Ku(z) = ][00 k(z,y)uly) dy, —00 < & < 00,

— 00
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and assume that K is a bounded linear operator on L,(R). One can easily verify that
K commutes with translations if and only if & is a difference kernel, that is, if and only
if

IC(:l:,y) = k(:l: - y,O) = k(ovy - 1:),

whereas K commutes with dilatations if and only if k is a Hardy kernel, that is, if and
only if
k(mz,my) = m k(z,y) for all m > 0.

Obviously, both properties hold for the Hilbert transform, and we will now show that
H is essentially the only integral operator for which this is the case.

THEOREM 2.1. Let 1 < p < oo and suppose A : Ly(R) — L,(R) is a bounded
linear operator. If A commutes both with translations and with dilatations, then

A=al +bH,

where a and b are constants, and I is the identity operator.

PROOF: Denote the Fourier transform of « by

(€)= / e~ #%u(z) dz, {ER,

— 00

then since A commutes with translations and is bounded on L,(R), there exists a
function ¢ € L, (R) satisfying

Au (&) =o(&)u(e), E€R;

see Bergh and Lofstrém (1, p.132-133] and Stein [8, p.28]. The Fourier transform has

the property
Dpu (§)= m™ 7 /Pa(me),

therefore, since A commutes with dilatations,

o) =o(m€) for £ €R and m >0,

and so
B o(+1), if&>0
(&) = { o(=1), if€<0.
Put
. o(+1) + (1) b= o(+1) — o(-1)
2 ’ 2 ’
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then o(¢) = a + bsgn(§), where

+1, if€£>0
sgn () = -1, ifE<0.
The result follows at once, because Hu (¢) = sgn (£)a(¢). n

For any bounded linear operator A : L,(R) — L,(R), we define by analogy
with (2.1) the truncated operator

Ap = xgAxE: LP(R) - LP(R)'

Write
a+E={a+z:2€ F}, mE ={mz:z € F}

then

XETa = TaXa+E,  XEDm = DmxmE
for all a € R and m > 0; consequently, the following holds.
THEOREM 2.2. Let E be any measurable subset of R.
(i) If A commutes with translations, then
Aatellp = l|AElp for all a € R.

(ii) If A commutes with dilatations, then

[Amels = 4Ellp for all m > 0.

PROOF: Assume that A commutes with translations, then

ToAasp = TaXa+EAXa+E = XETaAXat+E = XEATaXa+E
= xgAxeTa,

and so A,4g = (ﬂ)_lAE'L . Likewise, if A commutes with dilatations, then Ang =
(Dm)_lAE'Dm. Now recall that 7, and D,, are isometric isomorphisms. [ ]

3. DENSITY

If A commutes with dilatations, then it is tempting to send m to oo in part (ii)
of Theorem 2.2, and to conclude that ||A|l, = ||AE||, because ||Amgell, — ||4]p. We
will see that this can be done, provided the set E is ‘sufficiently dense’ at zero.
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Denote the Lebesgue measure of E by |E|, and denote the open interval of
length 26 centred at z by

Js(z) = (z - 6,z + §), zeR,6§>0.

When it exists, the limit

= 1 e
dE-(:c) 611(1)1 |J5( )I

is called the density of E at x; obviously, 0 < dg(z) < 1. If = belongs to the interior
of E, then dg(z) = 1, whereas if z lies outside the closure of E, then dg(z) = 0.
For an interval E = (a,b), the density at the end points is dg{a) = dg(b) = 1/2. The
Lebesgue Density Theorem [2, p.184] asserts that

(3.1) dg(z) =1 for almost every = € E,

so provided |E| # 0, the set E has plenty of points with density 1.

The density of E at zero can be characterized in terms of the dilatations of E.

LEMMA 3.1. If J is a bounded interval centred at 0, then

lim |J NmE| = dg(0)|J].

m—0oo

PROOF: Note that |mE| = m|E| and m(E; N E;) = (mE;) N (mE;) for any
m > 0 and any measurable sets E, E; and E;. Suppose J = (—M, M) and let
m = M/§, then mJs(0) = J and so

. |EnJs(0)] . |(mE)nJ|
dg(0) = im —————> = lim ————
20 = M TTer e o
which means |J N mE| — dg(0)|J]| as m — oo. (]

LEMMA 3.2. For 1 < p < o0, the following are equivalent:
(i) de(0)=1;
() lim [lxmsflly = Ifll, for all f € L,(R);
(iii) mh'_{noo (1 ~ xme)fllp =0 for all f € Ly(R).

PROOF: Parts (ii) and (iii) are equivalent because

U flle)” = (Ixmefllp)? + (1 = xmE)fll5)"-

Suppose (ii) holds. Let J be a bounded interval centred at zero, and put f = x,1,
then
(xme fllo)” = (WFll)" = 11,

lim |JNmE|= 1

im
— 00
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and so (i) is true by Lemma 3.1; thus (i) <= (ii) <= (iii).
We complete the proof by showing that (i) = (iii). Assume dg(0) =1, and let
f € Lp(R) and € > 0. There is a continuous function g : R — R having compact
support and satisfying ||f — g|l, < €. Choose a bounded interval J, centred at zero
and containing the support of ¢, then
(1= xme)f = (1 = xmp)(f —9) + (1 — XmE)XJIY
and so
11 = xme)fllp < N = glle + (1 — xmz)xs1llpll9llp
< e+ |\ mE|'/?|jg|l,.

Since dg(0) =1, Lemma 3.1 implies

lim |J\mE|=|J|— lim |[JNnmE|=0,

m—00 m-—=00
therefore lim ||[(1 — xmg)fll, < €, from which (iii) follows because ¢ > 0 is

m—+ 00

arbitrary. ]

We are now ready to prove the result mentioned at the beginning of this section.

THEOREM 3.3. Suppose dg(0) = 1. If A commutes with dilatations, then
AEll, = [l Allp-

PROOF: Let ¢ > 0, and choose u € Ly(R) such that [ju|, =1 and
(3:2) lAllp < lAuilp + €.
The splitting

Au = Appu + (1 — xmEe)Au + XmeA(l — XmE)u
implies
|l Aullp < |AmEellp + (1 ~ xme)Aull, + 41111 — xmE)ullp,

so by sending m to oo and applying Theorem 2.2 (ii) and Lemma 3.2, it follows that
|Aufl, < ||Ag|p. Combining this inequality with (3.2), we see [|A]l, < |Ag|lp +¢, and
since ¢ is arbitrary, ||All, < ||Agll,. The reverse inequality [|Ag|l, < ||Aljp is trivial,
so the proof is finished. [ ]

As explained in Section 2, Theorem 3.3 applies to integral operators with Hardy
kernels; for the Hilbert transform, a stronger result holds.

THEOREM 3.4. If |E|#0, then ||Hg|p, = ||H|,-
PROOF: By (3.1), thereis a point z € E such that dg(z) =1, hence d_,;5(0) =1

and so
|Helly = |1 H-z+Ells = | H|lp,
by Theorems 2.1, 2.2 (i) and 3.3. ' (]
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