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Abstract

We show that for any fixed base a, a positive proportion of primes become composite after any one of
their digits in the base a expansion is altered; the case where a = 2 has already been established by Cohen
and Selfridge [‘Not every number is the sum or difference of two prime powers’, Math. Comput. 29
(1975), 79–81] and Sun [‘On integers not of the form ±pa ± qb’, Proc. Amer. Math. Soc. 128 (2000),
997–1002], using some covering congruence ideas of Erdős. Our method is slightly different, using a
partially covering set of congruences followed by an application of the Selberg sieve upper bound. As a
consequence, it is not always possible to test whether a number is prime from its base a expansion without
reading all of its digits. We also present some slight generalisations of these results.
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1. Introduction

In 1950, Erdős [5] used the method of covering congruences to show that there exists
an infinite arithmetic progression of odd integers m with the property that |m − 2i| is
composite for every i. Modifying this method, Cohen and Selfridge [3] exhibited
an arithmetic progression of odd integers m such that |m − 2i| and m + 2i are both
composite for every i. In [20], Sun gave an explicit arithmetic progression with this
property, namely {m : m = M (mod

∏
p∈P p)}, where

M := 47 867 742 232 066 880 047 611 079

and P is the finite set of primes

P := {2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257, 331},

and noted that integers in this progression are in fact not of the form ±pa±qb for
any primes p, q and positive integers a, b. Since M is coprime to

∏
p∈P p, we can
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406 T. Tao [2]

apply the prime number theorem in arithmetic progressions (see, for instance, [13,
Corollary 11.17]) to obtain the following immediate corollary.

C 1.1 [3, 20]. For all sufficiently large integers n, there exist at least c2n/n
primes p between 2n−1 and 2n such that the integers p − 2i and p + 2i are composite
for every i ∈ [0, n − 1). Here c is a positive absolute constant.

We remark that primes p of the above form are initially rather rare; the first few
primes of this form are

1973, 3181, 3967, 4889, 8363, 8923, 11 437, 12 517, 14 489, . . . .

On the other hand, from Corollary 1.1 and the prime number theorem, we see that a
positive proportion of the primes in fact lie on this sequence.

As an immediate corollary of Corollary 1.1, we see that for sufficiently large n,
there exist n-bit integers p which are prime, but such that any number formed from p
by switching one of the bits is not prime; the first few primes of this form are
127, 173, 191, 223, 233, . . . (a slight variant of sequence A065092 in [19], which is
the subsequence in which p + 2n+1 is also required to be composite). In other words,
if we let Pn : {0, 1}n→ {0, 1} be the Boolean function which returns 1 if and only if
the n-bit integer corresponding to the input in {0, 1}n is prime, then the sensitivity
s(Pn) of Pn is equal to n for sufficiently large n. Recall that the sensitivity (or critical
complexity) s(B) of a Boolean function B : {0, 1}n→ {0, 1} is the largest integer s for
which there exists an input x ∈ {0, 1}n such that B(x) , B(x′) for at least s inputs x′

which are formed from x by switching exactly one bit. We remark that the lower
bound s(Pn) ≥ 1

4 n + O(1) was previously established in [18, p. 307].
If p is as above, then clearly it is not possible for an algorithm to determine with

absolute certainty whether p is prime or not without inspecting all of the digits in
the binary expansion. In particular, any deterministic primality tester can require
computational time at least logarithmic in the size of the number being tested, if that
number is represented in binary. For comparison, it was shown in [21, Theorem 6] that
any recursive algorithm which can decide the primality of an n-bit integer using the
operations =, <, +, −, 2·, 1

2 ·, and parity, has time complexity at least 1
4 n. We remark

that for bounded depth circuits, much stronger lower bounds (of exponential type in n)
on the spatial complexity are known; see [1, 22].

In this note we establish a similar result for general bases.

T 1.2. Let K be a positive integer. Then for all sufficiently large N, the number
of primes p between N and (1 + 1/K)N such that |kp ± jai| is composite for all integers
a, j, k ∈ [1, K] and i ∈ [1, K log N] is at least cK N/log N; here cK is a positive constant
depending only on K.

From this theorem we see that the above results for binary expansions are also valid
in other bases as well. For instance, applying this theorem with K equal to 10, we
conclude that a positive proportion of the primes have the property that if one changes
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[3] Primality testing and decimal expansions 407

any one of the digits in the base 10 expansion, one necessarily obtains a composite
number, and so any deterministic primality tester receiving the digits of this number
as input must read all of these digits in order to determine its primality. The first few
such primes are 294 001, 505 447, 584 141, . . . (sequence A050249 from [19]). The
infinitude of this sequence was established previously by Erdős [15].

Our argument does not use a fully covering set of congruences. Instead, we use
congruences modulo primes arising from Mersenne-type numbers (in which bases
such as a have an unexpectedly low order) to sieve out most of the quadruples
(a, j, k, i) appearing in the above theorem, leaving behind a small number which can
be handled via standard upper bound sieves. It might be difficult to establish this result
without such a preliminary sieving step, since without such a sieving one would expect
each |kp ± jai| to be prime with probability comparable to 1/log N, which makes it
moderately unlikely (especially for large K) that the |kp ± jai| are composite for all
a, j, k ∈ [1, K] and i ∈ [1, K log N] for any given prime p.

2. Proof of Theorem 1.2

We now prove Theorem 1.2. Fix K. We will need a large integer M = M(K) ≥ K to
be chosen later. We will then use this integer M to generate a finite set P of primes, as
follows.

L 2.1. For any M, K ≥ 1, there exists a finite set P of primes which can be
partitioned into disjoint sets: P =

⋃
2≤a≤K Pa, with the following properties.

(1) If p ∈ Pa for some a ∈ [2, K], then there exists a prime qp such that

qp ≥ Mp (2.1)

and
ap = 1 mod qp.

Furthermore, the primes qp for p ∈ P are all distinct.
(2) For each a ∈ [2, K], ∑

p∈Pa

1
p
≥ M. (2.2)

P. The claim is trivial when K = 1, so assume inductively that K ≥ 2 and that the
claim has already been proven for K − 1. Thus we already have disjoint finite sets of
primes P1, . . . , PK−1 with the stated properties.

Let W denote the product of all the numbers less than K that are coprime to K, and
let A denote the multiplicative order of K mod WK . Observe that if p is a prime and
p = 1 mod A, then K p − 1 = K − 1 mod WK . In particular, if q is a prime and q < K,
then q can divide K p − 1 at most K times (since K − 1 is not a multiple of qK , being a
smaller integer). As a consequence, we see that the largest prime factor of K p − 1 is
greater than K if p is larger than some sufficiently large constant CK .
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By the prime number theorem in arithmetic progressions (see, for instance, [13,
Corollary 11.17]), the sum of reciprocals of primes p such that p = 1 mod A is
divergent. From this and Corollary A.3 we may find an infinite collection P′ of
primes p such that p = 1 mod A and p >CK , disjoint from the finite setsP1, . . . , PK−1,
such that

∑
p∈P′ 1/p =∞, and such that mp + 1 is composite for every m ∈ [1, M]. For

any p in P′, we set qp equal to the largest prime factor of K p − 1. Now p >CK , and so
qp > K. In particular, the multiplicative order of K mod qp is exactly p, which forces
all the qp to be distinct. In particular, we can find a finite subset PK of P′ such that∑

p∈PK
1/p ≥ M and the values of qp for p ∈ PK are distinct from all the values of qp

already assigned to p in P1, . . . , PK−1.
From Fermat’s little theorem, we see that p divides qp − 1 for all p ∈ PK . On the

other hand, mp + 1 is composite for every m ∈ [1, M]. Thus qp ≥ Mp as required.
Hence P := P1 ∪ · · · ∪ PK has all the desired properties. �

R 2.2. In [6] it is shown that the largest prime factor of 2p − 1 is at least cp log p
for some positive absolute constant c (see also [14] for additional refinements and
further discussion). Slightly weaker results for more general bases may be found
in [11]. By using these results one can avoid the use of Corollary A.3.

Henceforth we write P = P2 ∪ · · · ∪ PK , and use the primes qp where p ∈ P as in
the above lemma.

We let N be a sufficiently large integer parameter. We use the asymptotic notation
o(1) to denote any quantity that goes to zero as N→∞ (with K, M, and P fixed), and
similarly X� Y or X = O(Y) to denote the estimate X ≤CY for some C depending
on K but independent of N, M, P. We write X ∼ Y when X� Y � X.

By reducing the sets Pa if necessary, we may assume from (2.2) that∑
p∈Pa

1
p
∼ M.

Let S denote the finite set of pairs

S := {( j, k) ∈ Z2 : −K ≤ j ≤ K; 1 ≤ k ≤ K; j , 0}.

By (2.2) and a simple greedy argument, we may partition Pa as
⋃

( j,k)∈S Pa, j,k in such
a way that ∑

p∈Pa, j,k

1
p
∼ M (2.3)

for all a ∈ [2, K] and ( j, k) ∈ S .
Define the quantity W by

W :=
∏
p∈P

qp.

By the Chinese remainder theorem, we can find b coprime to W such that kb + j =

0 mod qp for all p ∈ Pa, j,k, where 2 ≤ a ≤ K and ( j, k) ∈ S . (Note from (2.1) and the
hypothesis that M ≥ K that all integers between 1 and K are coprime to W.)
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To establish Theorem 1.2, it will suffice to show that the quantity X, given by

X = #{m ∈ [N, (1 + 1/K)N] : m = b mod W; m is prime, but

|km + jai| is composite for all i ∈ [0, K log N), a ∈ [1, K] and ( j, k) ∈ S },

satisfies X� N/log N. Note that when a = 1, the value of i is irrelevant (and so can be
set to zero, for instance). We can thus crudely bound X from below:

X ≥ QN −
∑

a∈[2,K]

∑
( j,k)∈S

∑
i∈[0,K log N)

QN,i,a, j,k −
∑

( j,k)∈S

QN,0,1, j,k − O(log N) (2.4)

where
QN := #{m ∈ [N, (1 + 1/K)N] : m = b mod W}

and

QN,i,a, j,k := #{m ∈ [N, (1 + 1/K)N] : m = b mod W; m, |km ± jai| both prime}.

(The O(log N) error arises from the small number of cases in which |km + jai| is equal
to zero or one.)

From the prime number theorem in arithmetic progressions (see, for instance, [13,
Corollary 11.17]),

QN �
N

φ(W) log N

where

φ(W) = W
∏
p∈P

(
1 −

1
qp

)
is the Euler totient function of W. (More precise asymptotics for QN are available, but
we will not need them here.)

From Corollary A.2,

QN,i,a, j,k �
N

W log2 N

∏
p∈P

(
1 −

1
qp

)−2

(2.5)

whenever a ∈ [1, K], i ∈ [0, K log N] and ( j, k) ∈ S . Applying this to dispose of the
terms QN,0,1, j,k in (2.4), we conclude that

X�
N

W log N

∏
p∈P

(
1 −

1
qp

)−1

− O
( K∑

a=2

∑
( j,k)∈S

∑
0≤i<K log N

QN,i,a, j,k

)
(2.6)

when N is sufficiently large.
Now suppose that a ∈ [2, K] and ( j, k) ∈ S . Observe that if i = 0 mod p for any

p ∈ Pa, j,k, then |km + jai| is divisible by qp, and thus is prime for at most one value
of m. Thus (paying a negligible factor of O(log N)) we may restrict attention to
those i ∈ [0, n − 1) such that i , 0 mod p for all p ∈ Pa, j,k. By the Chinese
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remainder theorem, the number of such i is O(log N
∏

p∈Pa, j,k
(1 − 1/p)). Using the

approximations ∏
n∈A

(
1 −

1
n

)
∼ exp

(
−

∑
n∈A

1
n

)
,

which are valid for any finite set A since
∑

n∈A 1/n2 = O(1), we conclude from the
above discussion and (2.5) that∑

0≤i<K log N

QN,i,a, j,k �
N

W log2 N

∏
p∈P

(
1 −

1
qp

)−1

exp
(∑

p∈P

1
qp
−

∑
p∈Pa, j,k

1
p

)
.

But from (2.1) and (2.2),
∑

p∈P 1/qp = O(1), while from (2.3),
∑

p∈Pa, j,k
1/p� M.

Inserting all these bounds into (2.6), we conclude that

X�
N

W log N
(1 − O(exp(−cM)))

∏
p∈P

(
1 −

1
qp

)−1

where c depends on K but not on M. Taking M sufficiently large (depending on K),
we obtain the claim.

3. Remarks

An inspection of the proof of Theorem 1.2 allows us to establish a strengthened
version in which the numbers |kp ± jai| not only are composite, but also contain at
least two distinct prime factors greater than K. More precisely, the cases in which
|kp ± jai| is the product of a prime power qb and some primes less than or equal to K
can be disposed of by suitable variants of Corollary A.2 (and in the case where b ≥ 2,
the total contribution here is O(

√
N) which is easily discarded); we omit the details.

Recently in [16], it was shown that one can in fact ensure that the numbers kp ± jai

contain at least C(log log N)1/3−ε prime factors each for any fixed ε.
In a somewhat different direction, it should also be possible to strengthen the

conclusion of Theorem 1.2 to assert that |kp ± jai + l| is composite for all l in some set
L = LN ⊂ {−KN, . . . , KN} of cardinality at most K. A new difficulty arises here due to
an additional factor of

∏
p|± jai+l;p-W(1 − 1/p)−1 arising from the use of Corollary A.2,

but it seems likely that this quantity should be bounded for the overwhelming majority
of values of a, i, j, l, which should allow one to continue the argument; we will not
pursue this matter here. If one is able to carry out this generalisation, one should be
able to obtain the conclusion that for any base a ≥ 2 and any r ≥ 1, a positive proportion
of the primes p have the property that if one modifies any single one of its digits in
the base a expansion, and appends or deletes up to r digits to/from the end and/or
beginning of the digit string, one necessarily obtains a composite number.

In a similar spirit, it was recently established in [7] that there exist infinitely many
composite numbers which remain composite after inserting a single digit in their base
10 expansion. It seems likely that one should now also be able to find infinitely many
prime numbers with the same property (that is, they become composite after inserting
any digit at any place).
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[7] Primality testing and decimal expansions 411

In all of the above results, the total number of possible modifications of the digit
string remains comparable to log p and so the cases in which a number is unexpectedly
prime can be handled by the upper bound sieve after performing the preliminary
sieving to eliminate most of the cases. The problem becomes significantly more
difficult, however, if one asks that the number p become composite after allowing
one to modify any two of the digits in the digit string, as the number of possible
modifications is now comparable to log2 p. Indeed, standard heuristics from the prime
tuples conjecture [8] now lead one to predict that for a sufficiently large base, there
should only be finitely many numbers of this form, although there is a slim chance
(especially in small bases) that Mersenne-type primes provide enough congruences to
fully cover all the modifications for primes in a certain infinite arithmetic progression,
as was the case with Theorem 1.1. We remark that in [23] it was shown that there are
infinitely many integers n such that n − 2a − 2b is not a prime power for any a, b (an
earlier result in [4] establishes the weaker statement with ‘prime power’ replaced by
‘prime’). The base 2 was generalised to other bases recently in [2], and lower bounds
on the density of such integers were obtained in [2, 17] (the latter result using the
methods in this paper).

Using the circle method and bounds on prime exponential sums, there are several
further results known relating primes to binary digits, or to powers of 2. For instance,
in [9] the distribution of a bounded number of fixed digits of a large prime was studied.
In [12] it was shown that the binary digit sum of a large prime was equally likely to
be even as it was to be odd. In a slightly different direction, it was shown in [10] that
all sufficiently large even numbers are the sum of two primes, together with at most 13
powers of 2.
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Appendix A. Some sieve theory

We recall a standard application of the Selberg sieve to twin prime type problems.

T A.1 (Selberg sieve upper bound). Suppose that y ≥ 4, and let P :=
∏

p<
√

y p.
Let B(p) be the union of b(p) arithmetic progressions with common difference p, and
put B :=

⋃
p|P B(p). If b(2) ≤ 1 and b(p) ≤ 2 for p > 2, then the number of integers r

in [0, y] such that r < B is bounded by

C
y

log2 y

∏
p|P

(
1 −

b(p)
p

)(
1 −

1
p

)−2

,

for some absolute constant C.
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P. See [13, Theorem 3.13]. As shown there, one may replace the constant C with
8 + O((log log y)/(log y)), but we will not need this improvement here. �

C A.2. Let x, W, b be positive integers with W even, and let h, k be nonzero
integers. Then if x is sufficiently large (‘sufficiently large’ depends on W, b),

#{m ∈ [1, x] : m = b mod W; m, |km + h| both prime}

�
x

W log2 x

(∏
p|W

(
1 −

1
p

)−2)( ∏
p|h;p-W

(
1 −

1
p

)−1)
where the implied constant can depend on k.

P. By reversing the signs of k and h if necessary, and increasing the size of the
implied constant by a factor of 2 if necessary, we may replace |km + h| by km + h. We
may assume that b and kb + h are both coprime to W, otherwise the number of m for
which km, km + h are both prime is bounded uniformly in x and the claim is trivial.
For similar reasons we may assume that k and h are coprime. Write m = Wr + b and
y = x/W, thus 0 ≤ r ≤ y. We can restrict attention to the case where r >

√
y, since the

case where r ≤
√

y only contributes O(
√

y) elements, which is acceptable. If p is a
prime and p ≤

√
y, then the constraints that m and m + h both be prime force Wr + b

and kWr + kb + h to both be coprime to p. If p |W, then this condition is vacuous; if
p | h, p -W, and p - k, then this excludes one residue class modulo p from the space of
possible r; and if p - h, p -W and p - k then this excludes two residue classes modulo
p from the space of possible r. Finally, if p -W and p | k then either one or two residue
classes modulo p are excluded. The claim now follows from Theorem A.1 (note that
log x ∼ log y for x large enough, and that

∏
p(1 − 2/p)(1 − 1/p)−2 ∼ 1). �

C A.3 (Brun’s theorem). Let m, j be any positive integers. Then the sum of
the reciprocals of the primes p for which mp + j is also prime is convergent.

P. By Corollary A.2, the number of primes of the above form which are less than
x is O(x/(log2 x)) (where the implied constant can depend on m). The claim easily
follows. �

References

[1] E. Allender, M. Saks and I. E. Shparlinski, ‘A lower bound for primality’, J. Comput. System Sci.
62 (2001), 356–366.

[2] Y.-G. Chen, R. Feng and N. Templier, ‘Fermat numbers and integers of the form ak + al + pα’,
Acta Arith. 135 (2008), 51–61.

[3] F. Cohen and J. L. Selfridge, ‘Not every number is the sum or difference of two prime powers’,
Math. Comput. 29 (1975), 79–81.

[4] R. Crocker, ‘On the sum of a prime and two powers of two’, Pacific J. Math. 36 (1971), 103–107.
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