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A note on certain subsets of

algebraic integers

T. W . Atterton

This paper is concerned with certain subsets of a finite extension

K of the quotient field of an integral domain R . These subsets

are contained in the integral closure of R in K and when R

is integrally closed they are identical with it, but generally

they need not even "be rings. Various inclusion relations are

studied and examples are given to show that these inclusions may

be strict (with one exception which is still undecided).

Introduction

R will denote a fixed integral domain with quotient field k . K is

a finite extension of k of degree n . This paper will be concerned with

properties of certain subsets i? (defined below) of K related to
SL

integral closure. In addition the set RtJ of elements of K whose (monic)
M

minimal polynomial has coefficients in R , the set i?_, of elements of K

whose characteristic polynomial has coefficients in R and the set R.. of

elements of K which possess a representative matrix (with respect to some

basis of K over k) all of whose elements lie in R will be considered.

Let a\,a2,-••,a (denoted in short by a) ^e any basis for K over

k . The set

i?a = Rai + Ra2+---+Ra

will be called a basis R-module. If b e K let b -*• B = (&. .) denote the
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regular representation of K into M (k) , the ring of n x n matrices

with elements in k . (M (R) is similarly defined.) That is

A subset R of K is defined as follows: if b e K then b e R

if and only if B e M (R) , i.e. g. . e if for i,j = 1,2,. . . ,n : i? is

called the coefficient domain of the corresponding basis i?-module i?a .

1. Properties of coefficient domains

It is easily verified that R is an integral domain containing R

a

(strictly if n > l) and that

PI. R nk = R .
a

P2. I%e quotient field of R is K .

P3. R = R. , any X e k (the set of non-zero elements of k) }

where Xa denotes the basis Xa\,hx2> • - • >^-a
n °f •*• over k .

PU. If b is any element of K then there exists an element 3
(depending on b) of R (the set of non-zero elements of R)

such that

0 b e i?a .

P5. All elements of R are integral over R , i.e. they satisfy

monia polynomials with coefficients in R .

Proof. The field polynomial |a;J-B| of any element b of i?a (where

b -*• B with respect to the basis a and I denotes the identity matrix)

is monic and has coefficients in R . This polynomial is satisfied by b

and hence b is integral over R .

For any element b e K , its (X over k) trace will be denoted by

T(b) and its (K over k) norm by N(b) .

The integral closure of R in K will be denoted t>y J , and consists
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of the set of elements of K integral over R . As usual, by the integral

aloaure of an integral domain will be meant the integral closure of that

domain in its quotient field. For properties of integral closure the reader

is referred to [5], Chapter 5, pages 25^-261+. The integral closure of R

(in k) will be denoted by ~R . It follows that ~R~ = J n k and that R

is integrally closed if and only if J n k = R .

THEOREM 1. If a is any non-zero element of K there exists a basis

of K over k such that the representative matrix of a with respect to

this basis is

where C is the companion matrix of the minimal polynomial of a .

COROLLARY. The field polynomial of any element a of K is a power

of the minimal polynomial of a .

Proof. See [4], page 8.

THEOREM 2. The aoeffiaienta of the minimal polynomial of any element

of J belong to J n k .

Proof. See [5], Theorem k, page 260.

COROLLARY. If R ia integrally closed the aoeffiaients of the minimal

polynomial of any element of J belong to R , i.e. J is equal to the

set of elements whose minimal polynomial has coefficients in R .

By the notation U S or R.. will be meant the union of all bases a

S U

of the coefficient domains R .
a

THEOREM 3. J = U R if and only if R is integrally closed.
a

Proof. Suppose that J = U R . Then by PI, J n k = R . Hence R

is integrally closed. Conversely, suppose R is integrally closed.

Let a e J . By the Corollary to Theorem 2, the minimal polynomial of

a has its coefficients in R . Therefore by Theorem 1, there exists a

basis b such that a is represented by the block diagonal matrix

diagCCjC, — ,C) with respect to b , where C is the companion matrix of

the minimal polynomial of c and therefore has all its elements in R .

Hence a e R. and so J QU R . But U R C J by P5. Hence J = (J R .
b a a a
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THEOREM 4. For any basis a the integral closure of R is J .

Proof. Let b e K be integral over J? . But R, C J so b i s

a a

integral over J and therefore by the transitivity of integral closure,

b 6 J . Hence the integral closure of R is contained in J . Conversely,
a

any element of J satisfies a monic polynomial with coefficients in
R C R . Hence the integral closure of R is J .

a 3

COROLLARY. /?g is integrally closed if and only if R& = J .

THEOREM 5. If R is integrally closed and K is a separable

extension of k then its integral closure J in K is contained in a

basis R-module.

Proof. See [5], Theorem 7, page 261*.

COROLLARY. If K is a separable extension of k , J is contained in

a basis R-module. In fact, if a is any basis of K over k all of

whose elements belong to J , and b is the dual of a then J c R b .

Proof. See [5], page 265-

We define R to be the set of elements b £ K such that

a

bax ,ba2 ,•. • ,ban e R~a = flai + ~R~a2 + . . . + Ran i . e . i f b •+ B G. H^i
with

respect to a then we define b to l i e in /fa i f and only if B G M (R) .

As before, R is an integral domain and the following elementary
a

propert ies hold:

P6. i?a Dtfa .

PT. Ra n k = fl .

P8. ^ a = ^ x a for any X e kQ .

P9. /?a c J .

P10. R = R if and only if ~R = R , i.e. if and only if R is

integrally closed.

Proof. If R = R the resul t i s obvious. Suppose R = R . Let
d a
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a e R . Then since 1 3 1 we have a e R i.e. a e if . Hence by PI,
a a a

a e i? . Thus /? = /?.

THEOREM 6. J = <-> R, .
a

Proof. By P9, J D WR .
a

Also if b €. J , then by Theorems 1 and 2 there exists a basis C of

K over fc such that b e / ? .

Hence J c U J , and so J = U ~R .
a a

2. Some examples and counter examples

The following subsets of J have already been defined

(i) RM

(ii) Bu = VRa

We will be concerned also with i?_ , being the ring generated by Rj. .

The following inclusion relations hold between these sets:

THEOREM 7. R^ c i?y c /?ff c / .

Proof, i?,. C /?„ by Theorem 1.

i? C i? because the characteristic polynomial is obtained from
U C/

any representative matrix.

Rc C J by definition of J .

It will be shown by a later example that the second and third .

inclusions are, in general, strict. I have no counterexample to show that

the first inclusion is not necessarily strict. Further the following

examples will show that R~ , By , R* may or may not be rings, and that the

ring Rf, may or may not be equal to J . In all the following examples R

is taken as a non-integrally closed domain, for if R were integrally

closed we would have R,. = /?,, = R~ = J by the Corollary to Theorem 2.
M U C
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Square brackets denote polynomial extensions and round brackets denote

the ratios of polynomials.

EXAMPLE 1. Take R = Z[/5] where Z denotes the rational integers.

Then its quotient field is k = Q(S) where Q is the field of rational

numbers. The integral closure R of R is Z—^- . (See [2], Theorem

238, page 207.) Take K = k(i) = Q(^5,i) = Q(S+i) . Here n = [K:k] = 2 .

It is not difficult to show that K is a splitting field for the polynomial

x1* - 8x2 + 36 and hence is a normal extension of Q . Further, J is

equal to the set of elements of K satisfying monic quartic equations with

rational integral coefficients.

Now let b = a + i& , where a,8 G Q(^5) , be any element of K . Then

Tib) = 2a , N(b) = a2 + 62 , and hence b e J if and only if its trace and

norm belong to Z — — • . It can be shown that this is equivalent to

a,3 S Z —T-2- . The proof is straightforward but long and arithmetical

and will be omitted. Hence we have the following characterization of J :

THEOREM 8. The integral closure J of Z[S] in K = Q(/$,i) ie

equal to the set of elements of the form a + ig where a,3 e z + <

Let b = a + i3 e R where a,8 e fiC/'s) . Then if with respect to a,
a

b -*• B = fB. J , all p. . belong to Z{fi] . Hence T(b) , N(b) e R = Z[/5]

and the minimum and field equations of b have coefficients in R .

Conversely, suppose b is an element of K whose field equation has

coefficients in Z[/^] , i.e. the trace and norm of b lie in Z[v^] . If

b = a + ig e Z[fi] then 6 = 0 , lYfc; = 2a , flCW = a2 and

b = a •*• diag(a,aj with respect to any basis of K over k • If

g ^ 0 , £ -• /a2+g2i pa
 w i t h r e s P e c t t o t h e 'basi3 il>b} . Hence we have

THEOREM 9. When R = Z[S] and K = eCi^+i; ., Ufl consists of
a

(i) the set of elements of K whose field equation has coefficients

in Z[/5]

(ii) the set of elements a + i& fa,8 6 Q(S)) such that 2a G Zf/f]

and a2 + 62 e
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Using Theorem 8 and Theorem 9 (ii) it can now be shown (proof omitted)

that

THEOREM 10. In the case where R = Z[/5] and K = Q(/5H) , U R
a

is a ring properly contained in J .

Hence, in this example,

RM * RU * RG = RC f J •

EXAMPLE 2. Take R = Z[S) , k = Q(S) , K = k(u) where w is a

primitive cube root of unity. It can be shown again that K is a normal

extension of Q and that the integral closure J of /?" = Z[/|T] in

K = Q(V5+os) consists of the set of elements of K satisfying monic quartic

equations with coefficients in Z . The K over k field polynomial of

a = a + u)g Ca.g e k) is x 2 - C2a-6;» + (a2+&2-a&) so that T(a) = 2a-g ,

= a2+g2-a3 . It now follows that if a,6 e Q(S) then a + a i M </ if

and only if 2a-g e Z pTp- and a2+ez-ag e Z p g • From this result a

straightforward arithmetical proof can be given of:

THEOREM 11. The integral closure J of Z[S] in K = Q(&,u)

consists of the set of elements of the form a + aig where a,$ e Z „•? 1.

We also observe, in X = fc(W = Q(-/5,t&) , U J? is the set of elements

a

of K whose characteristic equation has coefficients in Z[/5] . Further

the ring generated by U R is equal to J :
a

and

Hence a + b G i?̂ , , i.e. ±-*-L e i? .

fc = - 0)/5 e U i? .
a

Hence Z p : ^ - c ^ and so by Theorem 11, J C RQ , i.e. J =

We have therefore shown that, in this example,
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bu t

EXAMPLE 3. Let if = Z[y/2,v^] . Then R i s not integral ly closed in

i t s quotient f ie ld k = Q(^2,v^) = Q since

3 + ^ ,

and

If K i s any extension of k =

because

5J of even degree then i?., J R.

R but the characteris t ic polynomial of i s a power

of far -I / 2
i .e. of x2 - )x + (3+fi) •
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