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Abstract

The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance
laser or indirectly by a laser acceleration of a foil that collides with a second static foil. A special case of interest is
the creation of laser-induced fusion where the created alpha particles create a detonation wave. A novel application is
suggested with the shock wave or the detonation wave to ignite a pre-compressed target. In particular, the deuterium–
tritium fusion is considered. It is suggested that the collision of two laser accelerated foils might serve as a novel
relativistic accelerator for bulk material collisions.
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1. Introduction

From the time when Hugoniot[1] completed the theory of
shock waves in 1887 this subject is active[2, 3] and it is a basic
field in many domains of science and applications. Since
the passage time of the shock wave is short in comparison
with the disassembly time of the shocked sample, one can do
shock wave research for any pressure that can be supplied by
a driver assuming that appropriate diagnostics are available.
This fact enables, for example, thermodynamic measure-
ments and equations of state (EOS) study at extremely high
pressures and temperatures relevant for many domains of
physics[4, 5].

We are interested in a laser driver[6, 7] and in particular
in very high irradiances[8, 9], IL > 1021 W cm−2, in order
to get relativistic shock waves. The theoretical founda-
tion of relativistic shock waves is based on relativistic
hydrodynamics[10] and on the appropriate Hugoniot relations
that were first analyzed by Taub[11].

The interaction of a high power laser with a planar target
creates a one-dimensional (1D) shock wave[7, 12]. The the-
oretical basis for laser-induced shock waves analyzed and
measured experimentally so far is based on plasma ablation.
For laser intensities 1012 W cm−2 < IL < 1016 W cm−2
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and nanoseconds pulse duration hot plasma is created. This
plasma exerts a high pressure on the surrounding material,
leading to the formation of an intense shock wave moving
into the interior of the target.

Using the ablation pressure in laser plasma interaction
maximum pressures of the order of 1 Gbar (=109 atmo-
spheres), have been obtained during the collision of a target
with an accelerating foil. In 1994 at the Livermore Labo-
ratory in the USA this pressure was created by the impact
of a gold foil accelerated with soft x-rays created from the
Nova laser system[13]. Planar foil of polystyrene doped with
0.4% (atomic) bromine were accelerated by direct drive to
1000 km s−1 at the Institute of Laser Engineering at Osaka
University in Japan[14] creating upon impact a pressure of
about 1 Gbar.

For the very high laser irradiances ultrahigh accelerations
of the order of 1020 cm s−2 were predicted for high den-
sity plasma blocks[15–18] created in sub-picosecond laser
pulses with more than terawatt power. This effect was
obtained by using two fluid simulations for laser plasma
interaction where the nonlinear ponderomotive force was
dominant[19, 20]. Ion acceleration by ponderomotive force
to relativistic velocities was also obtained using particles in
cell simulations[21, 22]. This acceleration is similar to the old
proposal to accelerate space ships to relativistic velocities by
laser pressure radiation[23].
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Figure 1. (a) Displays the capacitor model where the ponderomotive
force dominates the interaction; (b) shows the DL of the negative and
positive charges. (c) The shock wave description in the laboratory frame
of reference.

The shock wave created in a 1D target by the ponderomo-
tive force induced by very high laser irradiance, considered
in this paper, is summarized schematically in Figure 1. In
this domain of laser intensities the ponderomotive force
accelerates the electrons forward, so that the charge separa-
tion field forms a double layer (DL), in which the ions are
accelerated forward[24]. Figure 1(a) displays the capacitor
model for laser irradiances IL , where the ponderomotive
force dominates the interaction and λDL is the distance
between the positive and negative DL charges; Figure 1(b)
shows the negative and positive layers where ne and ni
are the electron and ion densities accordingly, Ex is the
electric field, and δ is the solid density skin depth of the
foil. The shock wave description in the laboratory frame of
reference is given in Figure 1(c). This DL acts as a piston
driving a shock wave[25, 26], moving in the unperturbed
plasma. This plasma has in general different ion and electron
temperatures.

In Section 2, we summarize the relativistic formalism for
shock waves in solid targets. Section 3 is designated to
calculate the laser acceleration of a micro-foil and the shock
wave created when this foil collides with a static target.
The fast ignition of deuterium–tritium (DT) fuel is given in
Section 4. In Section 5, the possibility to ignite a DT fuel by
a nuclear detonation wave is considered. We conclude with
a summary and perspective in Section 6.

2. Laser-induced relativistic shock wave

A relativistic or non-relativistic[3] shock wave is described
in the 1D geometry by five variables: particle density n (or
the density ρ = Mn where M is the particle mass), the
pressure P , the energy density e, the shock wave velocity
us and the particle flow velocity u p, assuming that we know
the initial condition of the target (ρ0, P0, e0 and the particle
flow velocity u0) before the shock arrival. The four equations
relating the shock wave variables are the three Hugoniot rela-
tions describing the conservation laws of energy, momentum
and particles and the EOS connecting the thermodynamic
variables of the state under consideration[3–5]. The fifth
equation necessary to solve the problem is obtained in
a model[26] where the pressure is induced by the laser
ponderomotive force and its strength is a function of the laser
pulse parameters[27].

Note that in the general 3-dimensional (3D) shock wave
case one has seven variables since velocities are a 3D vector.
In this case there are six Hugoniot relations describing
the conservation laws of energy, momentum and particles
and the EOS. The last equation is model dependent, or
if possible, is preferable that one parameter is measured
experimentally.

The relativistic hydrodynamic starting point is the energy–
momentum 4-tensor Tμν given by

Tμν = (e + P)UμUν + Pgμν, (1)

where Uμ (μ = 0, 1, 2, 3) is the dimensionless 4-velocity in
which the subscripts 0 is the time component and (1, 2, 3)
are the space (x , y, z) components accordingly, and gμν is
the metric tensor,

cUμ = (γ c, γ v1, γ v2, γ v3),

gμν : g00 = −1, g11 = g22 = g33 = 1,

gμν = 0 if μ �= ν,

γ = 1√
1− β2

; β = v

c
; v =

√
v2

1 + v2
2 + v2

3,

(2)

where c is the speed of light. The energy–momentum con-
servation, the particle number conservation and the EOS are
given accordingly (Einstein summation is assumed from 0 to
3 for identical indexes)

∂T ν
μ

∂xν
≡ ∂νT ν

μ = 0 for μ = 0, 1, 2, 3,

∂(nUμ)

∂xμ
≡ ∂μ(nUμ) = 0,

P = P(e, n).

(3)

The EOS taken here in order to calculate the shock wave
parameters is the ideal gas EOS
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e = ρc2 + P
Γ − 1

, (4)

where Γ is the specific heat ratio of constant pressure
to constant volume. Writing explicitly Equations (3) with
the ideal gas EOS Equation (4) in the laboratory frame of
reference yield

(i)
u p1

c
=
√

(P1 − P0)(e1 − e0)

(e0 + P1)(e1 + P0)
,

(ii)
us

c
=
√

(P1 − P0)(e1 + P0)

(e1 − e0)(e0 + P1)
,

(iii)
(e1 + P1)

2

ρ2
1

− (e0 + P0)
2

ρ2
0

= (P1 − P0)

[
(e0 + P0)

ρ2
0

+ (e1 + P1)

ρ2
1

]
,

(iv) e j = ρ j c2 + Pj

Γ − 1
; j = 0, 1.

(5)

The subscripts 0 and 1 define the flow and thermodynamic
parameters before and after shock wave arrival accordingly
and u p0 = uo = 0 has been assumed in this case.

The relativistic shock wave of Equations (5) with e =
ρc2 + ρE , where P and ρE are much smaller than ρc2,
the velocities v satisfy v/c � 1, yield the following non-
relativistic well-known Hugoniot equations,

(i) u p1 = (1/ρ0 − 1/ρ1)
1/2(P1 − P0)

1/2,

(ii) us = (1/ρ0)(1/ρ0 − 1/ρ1)
−1/2(P1 − P0)

1/2,

(iii) E1 − E0 = (1/2)(1/ρ0 − 1/ρ1)(P1 + P0),

(iv) E j =
(

1
Γ − 1

)(
Pj

ρ j

)
for j = 0, 1.

(6)

For the relativistic case we have to solve Equations (5)
together with the piston model equation[21, 27]

P1 = 2IL

c

(
1− β

1+ β

)
; β ≡ u p1

c
. (7)

Equations (5) and (7) are five equations with five unknowns:
us , u p1, P1, ρ1, e1 assuming that we know IL , ρ0, P0, Γ

and uo = 0. The calculations are conveniently done in the
dimensionless units defined by

ΠL ≡ IL

ρ0c3 ; κ ≡ ρ1

ρ0
; κ0 ≡ Γ + 1

Γ − 1
; Π = P1

ρ0c2 ;

Π0 = P0

ρ0c2 . (8)

Substituting the ideal gas EOS into the third of Equations (5)
we get the relativistic Hugoniot equation

{
Π2 + BΠ + C = 0
κ � 1,

Π =
(

1
2

)(
−B ±

√
B2 − 4C

)
,

B = (Γ − 1)2

Γ
(κ0κ − κ2)+Π0(Γ − 1)(1− κ2),

C = (Γ − 1)2

Γ
(κ − κ0κ

2)Π0 − κ2Π2
0 .

(9)

It is important to emphasize that if we take P0 = 0 then we
get only the κ > κ0 solutions.

The relativistic Hugoniot equation for an ideal gas EOS is
given by Equations (9) while the non-relativistic Hugoniot
equation for an ideal gas EOS is (from Equations (6))

Π =
(

κκ0 − 1
κ0 − κ

)
Π0. (10)

Figure 2 describes the transition between the relativistic
and non-relativistic Hugoniot, namely the transition between
Equations (10) and (9). In this transition domain, between
relativistic and non-relativistic shock waves, we have

10−9 � Π � 10−2 ⇔ κ = ρ

ρ0

= Γ + 1
Γ − 1

(= 4.00 for Γ = 5/3).

(11)

In the domain defined by Equation (11) we can use the first
two equations of Equations (6) for u p1/c < 0.03 in order to
get

u p1

c
=
√

2Π

Γ + 1
;

us

c
=
√

(Γ + 1)Π

2
.

(12)

Using now our piston model Equations (7) together with
Equations (12) we obtain in the intermediate domain be-
tween relativistic and non-relativistic shock waves

β = u p1

c
=
−ΠL +

√(
Γ+1

4

)
ΠL −Π2

L(
Γ+1

4

)
− 2ΠL

,

Π = 2ΠL

⎡
⎢⎢⎣
(

Γ+1
4

)
−ΠL −

√(
Γ+1

4

)
ΠL −Π2

L(
Γ+1

4

)
− 3ΠL +

√(
Γ+1

4

)
ΠL −Π2

L

⎤
⎥⎥⎦ .

(13)
Since ΠL < 10−2 we have to a good approximation in the
domain between relativistic and non-relativistic shock wave
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Figure 2. The shock wave compression κ = ρ/ρ0 as a function of the
dimensionless shock wave pressure Π = P/ρ0c2 for Γ = 5/3.

the following approximations

Π ≈ 2ΠL ⇒ P = 2IL

c
,

u p1

c
≈ 2

√
ΠL

Γ + 1
= 2

√
IL

(Γ + 1)ρ0c3 ,

us

c
≈ √(Γ + 1)ΠL =

√
IL(Γ + 1)

ρ0c3 .

(14)

Under this approximation, the shock wave length ls by the
end of the laser pulse τL is

ls = (us − u p1)τL = (Γ − 1)cτL

√
ΠL

(Γ + 1)
. (15)

The laser cross-section SL = π R2
L is chosen RL = 1.5(us −

u p1)τL in order that the 1D laser-induced shock wave is
conceivable. Therefore, for a constant laser irradiation IL we
need a laser energy WL given by

WL = IL SLτL = 2.25π

[
(Γ − 1)2

Γ + 1

](
I 2

Lτ 3
L

ρ0c

)
. (16)

The numerical solutions of the exact relativistic Equa-
tions (5) and (7) are given in Figures 3 and 4. Figure 3
gives the Hugoniot dimensionless shock wave pressure
Π = P/(ρ0c2) versus the dimensionless laser irradiance
ΠL = IL/(ρ0c3) in the domain 10−4 < ΠL < 1. For
a better understanding of this graph and for the practical
proposal in the next section, the inserted table shows
numerical values in the area 10−4 < ΠL < 10−2. Figure 4
describes the dimensionless shock wave velocity us/c and
the particle velocity u p/c (u p1 ≡ u p) in the laboratory
frame of reference versus the dimensionless laser irradiance

Figure 3. The dimensionless shock wave pressure Π = P/(ρ0c2) versus
the dimensionless laser irradiance ΠL = IL/(ρ0c3) in the domain 10−4 <

ΠL < 1. The inserted table shows numerical values in the area 10−4 <

ΠL < 10−2.

Figure 4. The dimensionless shock wave velocity us/c and the particle
velocity u p/c in the laboratory frame of reference versus the dimensionless
laser irradiance ΠL = IL/(ρ0c3) in the domain 10−4 < ΠL < 1. The
inserted table shows numerical values in the area 10−4 < ΠL < 10−2.

ΠL = IL/(ρ0c3) in the domain 10−4 < ΠL < 1, while the
inserted table shows numerical values in the area 10−4 <

ΠL < 10−2. As a numerical example we take a target with
initial density ρ0 = 1 g cm−3 irradiated by a laser with
intensity IL = 5 × 1023 W cm−2, namely ΠL = 0.185.
In this case our relativistic equations yield a compression
κ = ρ/ρ0 = 4.09, a pressure P = 3.3 × 1014 bars, a shock
wave velocity us = 0.35c and a particle velocity u p = 0.27c
where c is the speed of light.
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The relativistic speed of sound cS (S is entropy) for an
ideal gas EOS is

cs

c
=
√(

∂ P
∂e

)
S
=
(

Γ P
e + P

)1/2

=
[

Γ (Γ − 1)Π

Γ Π + (Γ − 1)κ

]1/2

.

(17)
In the shocked medium the characteristic velocity of a
disturbance from the piston to the shock wave front equals
the rarefaction wave crw and is given by

crw = cS + u p

1+
(cSu p

c2

) . (18)

Figures 5(a) and 5(b) describe accordingly the speed of
sound in units of speed of light, cS/c, and the ratio of shock
velocity to the rarefaction velocity, us/crw, as a function of
the dimensionless laser irradiance ΠL = IL/(ρ0c3) in the
domain 10−4 < ΠL < 1. The inserted tables show numerical
values for 10−4 < ΠL < 10−2.

From Figures 4 and 5 (and the associated relativistic
equations describing these values) one can see that the
necessary conditions for a 1D shock wave stability are
satisfied. First the speed of sound increases with increasing
pressure (see Equation (17)). Secondly, a disturbance behind
the shock wave front cannot be slower than the shock
velocity, because in this case it will not be able to catch
the wave front and the shock would decay (i.e., unstable).
Thirdly, a small compressive disturbance ahead of the shock
wave must move slower than the shock front in order not to
create another shock wave.

3. Laser relativistic acceleration of a micro-foil and the

shock wave created by impact on a secondary foil

In this section, we first calculate the high power laser
acceleration of a micro-foil[23, 28] and secondly the shock
waves created upon impact between the accelerated foil and
a static target.

Physical quantities in the instantaneous rest frame of ref-
erence of the micro-foil are denoted by the subscript F while
their laboratory frame of reference values are written without
any subscript. For a laser irradiance IF [erg/(cm2 s)] =
cE2

F/(4π), where EF is the laser electromagnetic field in
the foil frame of reference, the radiation pressure is equal to
the ponderomotive pressure given by

P = PF = IF

c
(1+ RF − TF ) = 2IF RF

c
, (19)

where RF is the reflected laser and TF is the transmitted laser
through the foil which has to be taken into account for thin
foils and very high laser irradiances. The right hand side of
Equation (19) is obtained assuming the energy conservation

Figure 5. (a) The speed of sound in units of speed of light, cS/c and (b) the
ratio of shock velocity to the rarefaction velocity, us/crw as a function of
the dimensionless laser irradiance ΠL = IL/(ρ0c3).

equation: RF + TF = 1. Note that in this equation we have
used the fact that the radiation pressure P = PF if the foil is
moving in the laboratory frame of reference in the x direction
since for the force one has Fx = (FF )x . The laboratory laser
irradiance I is related to the laser irradiance in the micro-foil
rest frame IF through the Doppler effect (DE)

I = IF

(
ω

ωF

)2

= IF

(
1+ β f

1− β f

)
; β f = u f

c
, (20)

where u f is the micro-foil velocity in the laboratory. Using
Equations (19) and (20) for RF = 1 we get the ponderomo-
tive pressure as a function of laboratory frame quantities

P = 2I
c

(
1− β f

1+ β f

)
. (21)
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Figure 6. Micro-foil velocity as a function of laser pulse duration t in units of of τ = ρ0c2l/(2I ), where ρ0 is the initial density, l is the foil thickness and I
is the laser intensity [erg/(s cm2)]. (a) Laser pulse duration up to 15τ , (b) laser pulse duration up to 500τ .

This equation is identical to the piston model velocity of the
particle flow velocity as given in Equations (7). The Newton
law of motion for the foil in the laboratory frame of reference
is

dp f

dt
= P S ⇒

d
dt

⎡
⎣(ρ0lc)

β f√
1− β2

f

⎤
⎦ = 2I

c

(
1− β f

1+ β f

)
⇒

1
(1+ β f )1/2(1− β f )5/2

dβ f

dt
= 2I

ρ0c2l
,

(22)

in which we have used the momentum of the micro-foil p f =
M0 f γ f β f c where γ f = (1− β2

f )
−1/2 and the foil rest mass

is M0 f = ρ0Sl where ρ0 is the initial density, S the cross-
section area and l the thickness of the micro-foil. The force
accelerating the micro-foil is F = P S. For constant I this
equation is easily integrated

∫ β f

0

dx
(1− x)5/2(1+ x)1/2 =

(2− β f )
√

1− β2
f

3(1− β f )2 − 2
3

= 2I t
ρ0c2l

≡ t
τ

. (23)

From this solution one can see that β f (t/τ) → 1 for t/τ →
∞, namely the relativistic velocities are obtained if t/τ � 1
which implies a laser pulse duration much larger than τ =
ρ0c2l/(2I ) or equivalently I t � ρ0c2l/2. For an initial
density ρ0 = 1 g cm−3, l = 0.1 μm one gets the scaling
time τ = 45 and 0.45 fs for I = 1022 and 1024 W cm−2

accordingly. The micro-foil velocity as a function of the
laser pulse duration defined by t in this case is described
in Figure 6. The time scale in Figure 6 is τ = ρ0c2l/(2I ),
where ρ0 is the initial density, l is the foil thickness and I
is the laser intensity [erg/(s cm2)]. Figure 6(a) describes the
accelerated foil velocity β f for laser pulse durations up to

Figure 7. Flow (u p0, u p1 = u p2) and shock waves (us1, us2) velocities
after impact of flyer and target in the laboratory frame of reference. The
flow velocities (v0, v1, v2 = v1, v3 = v0) are also defined in the shock wave
reference frames S1 and S2. The lower figure shows a schematic picture
before collision.

15τ while Figure 6(b) gives β f as a function of the laser
pulse durations up to 500τ .

The shock waves upon impact of this accelerated foil with
a static target are now calculated. The shock waves variables
are defined in Figure 7. The flow particle velocities (u p0 =
u0 = 0, u p1 = u p2 ≡ u p) and the shock wave velocities (us1,
us2) after impact of the flyer and the target in the laboratory
frame of reference are pointed out in this figure. The flow
velocities (v0, v1, v2 = v1, v3 = v0) are also defined in the
shock wave reference frames S1 and S2. The lower figure
shows a schematic picture before collision.

The flyer has a known initial (before impact) velocity u f
in the laboratory frame of reference. This velocity can be
calculated from Equation (23) and it is possible to measure
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it experimentally by using the relativistic DE

longitudinal DE : λo

λs
= νs

νo
=
√

1+ β f

1− β f
;β f = u f

c
,

transversal DE : νs

νo
= γ f (1+ β f cos θo); γ f = 1√

1− β2
f

,

(24)
where s and o refer to observer and source frames of
reference accordingly, θo is the angle between the flyer
motion and the observer, λ and ν are the appropriate
wavelength and frequency of the electromagnetic wave. It
is interesting and might be experimentally useful to see the
relativistic effect νs/νo (θo = π/2) = γ f .

First we solve the relativistic symmetrical collision,
namely the target and the flyer are the same material. If
the 0 domain of the target is at rest in the laboratory frame of
reference, then in this frame of reference the shock velocity
us = −v0. (Note that v0 > 0 and us < 0 means that the
positive x coordinate is defined toward the back of the shock
wave.) Using the definitions, β0 = v0/c, β1 = v1/c and
β f = u f /c where u f is the flyer velocity in the laboratory
frame of reference while v0 and v1 are the flow velocities in
the shock wave frames of reference S1 and S2, we get the
shock waves velocities in the laboratory frame of reference
by using Equations (5) and relativistic addition of velocities

us1

c
= −β0 = −

√
(P1 − P0)(e1 + P0)

(e1 − e0)(e0 + P1)
,

us2

c
= β1 + β f

1+ β1β f
=

1+ β f

√
(e1 − e0)(e1 + P0)

(P1 − P0)(e0 + P1)

β f +
√

(e1 − e0)(e1 + P0)

(P1 − P0)(e0 + P1)

.

(25)
In the non-relativistic case, the Galilean transformations
yield for the particle velocity in the laboratory frame
u p1 = (v1 − v0) at the S1 surface singularity and u p1 =
−(v1 − v0) + u f at the S2 surface singularity. From these
two equations we get the well-known result: u f = 2u p1. We
now use the same procedure by using the relativistic Lorentz
transformation.

From Equations (5) we get at the S1 surface singularity
the particle flow velocity u p1 in the shocked area in the
laboratory frame of reference

u p1 = v01 = −c

√
(P1 − P0)(e1 − e0)

(e0 + P1)(e1 + P0)
. (26)

On the other hand, at the S2 surface singularity the particle
flow velocity u p1 = u p2 in the shocked area in the laboratory
frame of reference is

u p1 = v01 − u f

1− v01u f /c2 . (27)

Equations (26) and (27) we get

√
(P1 − P0)(e1 − e0)

(e0 + P1)(e1 + P0)
=

1−
√

1− β2
f

β f
. (28)

This relation yields the known result u f = 2u p1 in the non-
relativistic limit.

We calculate e1, P1 and ρ1 as a function of u f . The initial
conditions for our suggested impact are: P0, e0 = ρ0c2 +
P0/(Γ−1) for an initial density ρ0. Since in the impact under
consideration the initial pressure is extremely small we take
P0 = 0. This formalism implies the following solutions

P1

ρ0c2 =
1− β2

f /3−
√

1− β2
f

−1+ β2
f +

√
1− β2

f

,

P1

ρ0c2 =
(

(Γ − 1)2

Γ

)(
ρ1

ρ0

)2

−
(

Γ 2 − 1
Γ

)(
ρ1

ρ0

)
.

(29)
Now the relativistic asymmetrical collision is discussed,
namely the target and the flyer do not have the same initial
densities. Here it is also assumed that we can neglect the
initial pressure, namely we take P0 = 0. This constrain
yields compressions greater than (Γ + 1)/(Γ − 1) as stated
before.

The input data for our problem is: target initial flow veloc-
ity u0 = 0, initial densities ρ0t and ρ0 f and initial pressures
P0t P0 f of target and flyer accordingly and target and flyer
EOS parameters are appropriately Γt , Γ f . All variables
are described as a function of the foil velocity β f that is
measured experimentally. There are eight unknowns— ρ1,
ρ2, us1, us2, u p1, u p2, P1 and P2 with eight equations: The
two Hugoniot relations for target and flyer (indices 1 and 2
accordingly), four Hugoniot equations describing the mass
and momentum conservations for target and flyer that yield
the particle velocities u p1 and u p2 and the shock velocities
us1 and us2. These six equations yield

u p1 = −c
√

I1; u p2 = −c
(
β f −√I2

) (
1− β f

√
I2
)−1

,

us1 = −c
√

J1; us2 = −c
(
β f −√J2

) (
1− β f

√
J2
)−1

,

Ii = Πi [Πi + (2/3)(κi − 1)]
(Πi + 1)[Πi + (2/3)κi ] for i = 1, 2,

Ji = Πi [(2/3)κi +Πi ]
[(2/3)(κi − 1)+Πi ][1+Πi ] for i = 1, 2.

(30)
Finally, the following two continuum equations at the impact
between flyer and target are:

P1 = P2 ⇒ κ2
2 − 4κ2 = K [κ2

1 − 4κ1],
u p1 = u p2 ⇒ −√I1 + β f

√
I1 I2 = √I2 − β f ,

K ≡ ρ0t/ρ0 f .

(31)
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Figure 8. The compressions of the shocked target κ1 and the shocked flyer κ2 for ρ0t /ρ0 f = K = 1000.

Figure 9. The pressures of the dimensionless shocked target Π1 and the shocked flyer Π2 for ρ0t /ρ0 f = K = 1000.

Ii (i = 1, 2) are defined in Equations (30). We take Γt =
Γ f = 5/3 and Πi (i = 1, 2) is given in Equations (29).
The solutions of the compressions κ1 and κ2 are given in
Figure 8, the dimensionless pressures of the shocked target
and flyer are given in Figure 9 and the shock velocities us and
particle velocities u p are given in Figure 10, all these figures
for ρ0t/ρ0 f = K = 1000 (relevant for the fusion ignition
case). It is important to note that although the shock wave in
the flyer is relativistic, i.e., us2 ∼ c, the shock wave in the
target is not relativistic, us2 < c, namely us2 is smaller than
0.05c for a flyer velocity up to 0.9c. However, the relativistic
formalism is important even for the target since in this case
we get a target compression of 4 for finite pressures, of the
order of 1012 bars, while in the non-relativistic formalism
when using the ideal gas EOS (like in our case above) one
needs an infinite pressure for a compression of 4.

A crucial question in accelerating a foil to relativistic
velocity is its hydrodynamic stability. In particular, the
relativistic Rayleigh–Taylor instability was calculated[24, 29]

as described in the following equations

ξN R = Δx
x0
= exp

(
t

τN R

)

ξR = Δx
x0
= exp

[(
t

τR

)1/3
]

τR

τN R
=
(

1
3π

)(
L
l0

)(
IL

ρ0c3

)

1
τN R

=
[(

4π IL

ρcl L

)
tgh
(

2πl
L

)]1/2

.

(32)
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Figure 10. The shock and particle velocities accordingly, us and u p , for ρ0t /ρ0 f = K = 1000.

ξN R and ξR are accordingly the non-relativistic and relativis-
tic development of the instability for an initial disturbance
x0. L is the target dimension orthogonal to the x amplitude
and l is the initial foil thickness. We consider the following
example: L = 10 μm, x0 = 10 nm, ρ0 = 1 g cm−3, l =
0.1 μm, IL = 1024 W cm−2. Assuming that the foil breaks
for ξ = 10 (i.e., Δx ∼ l) then the foil breaks at 14.2 fs
(τN R = 6.2 fs) for the non-relativistic case while in the
relativistic regime the foil is stable during 90.5 fs (τR =
39.3 fs). This behavior is understood from the different time
dependence scaling of the RT instability in relativistic and
non-relativistic cases.

4. The DT fusion ignition

We analyze the nuclear fusion reactions

A1 + A2 → A3 + A4 + E f ,

E f = Eα + Eothers.
(33)

E f is the fusion energy in each reaction, Eα is α particles
energy usually deposited in part into the ignition domain
and Eothers is the energy contained in the other particles
and practically not contained in the ignition volume under
consideration. The ignition fusion power W f [erg/(cm3 s)]
is given by

W f

[ erg
cm3 s

]
= n1n2〈σv〉12 Eα, (34)

where n1 and n2 are the appropriate densities of particles A1
and A2, σ is the cross-section of Reaction (33), 〈σv〉12 is the
fusion rate of this reaction and Eα is α particles energy.

The equation describing the ignition requirement is given
by

W f −
∑

W (losses) � 0. (35)

The power density losses, W (losses), include the power
densities of the mechanical work (Wm), bremsstrahlung
radiation (WB) and the heat wave transport by electrons
(Whe). Calculating these terms[30] explicitly one gets the
ignition criterion for the deuterium (D)–tritium (T) fusion
yielding a neutron (n) and a helium nuclei particle (α):
D+ T → n+ α + 17.6 MeV

a(Te, Ti )(ρR)2 + b(Te, Ti )(ρR)+ c(Te) � 0,

a(Te, Ti ) = 8.07× 1040〈σv〉DT

− 8.63× 1021Te(eV)1/2
(

1+ 2Te(eV)

500 000

)
,

b(Te, Ti ) = −1.02× 1018[Te(eV)+ Ti (eV)]1.5,

c(Te) = −3.11× 109Te(eV)7/2

ln Λ
.

(36)
The numerical values of Equations (36) are obtained for
equal density numbers for deuterium and tritium nD and
nT , accordingly. 〈σv〉DT is the reactivity of the DT reaction
fitted in the domain of ion temperatures 1 keV < Ti <

100 keV by Ref. [31] given by

〈σv〉DT

[
cm3

s

]
= 6.4341× 10−14ζ−5/6

(
6.661

T 1/3
i

)2

× exp

[
−19.983

(
ζ

Ti

)1/3
]

, (37)

ζ = 1− 15.136Ti + 4.6064T 2
i − 0.10675T 3

i

1000+ 75.189Ti + 13.5T 2
i + 0.01366T 3

i
;

Ti in keV.

The solution of Equations (36) with 〈σv〉DT from Equa-
tions (37) and ln Λ = 3.5 is given in Figure 11. Contours of
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Figure 11. Contours of equal ρ · R as a function of ions and electrons
temperatures for DT.

equal ρ · R as a function of ions and electrons temperatures
for DT are displayed. It is seen that for temperatures Ti , Te
in the range 10–50 keV ρ · R < 1.

In the framework of the piston model, a shock wave is
generated in the target, with different ions and electrons tem-
peratures. The time development of the ion and electron tem-
peratures can be derived from the energy conservation Equa-
tions (38) coupled to the number density Equation (39),(

3
2

)
d
dt

(nekB Te) = ηd Wd +Wie −WB + fαη f W f ,(
3
2

)
d
dt

(ni kB Ti ) = (1− ηd)Wd −Wie + fα(1− η f )W f ,

(38)
dnD

dt
= dnT

dt
= −dnα

dt
= −nDnT 〈σv〉DT , (39)

where Wd [erg/(cm3 s)] is the power density deposited by
the laser piston,

Wk

V

[ erg
cm3

]
= (γ − 1)ρc2

(
t
τL

)
= 1

2
ρu2

p

(
t
τL

)
,

Wd = d
dt

(
Wk

V

)
= 1

2

(
ρu2

p

τL

)
,

IL

[
W

cm2

]
= 4× 103

Wd

[
erg

cm3 s

]
τL [s]

κ
,

(40)

where Wk is the kinetic energy of the flow in the shocked
volume and IL is the laser irradiance. In the first equation
of Equations (40) γ is the relativistic factor defined
in Equations (2) and the right hand side of this equa-
tion is the non-relativistic limit. ηd is the fraction of
the driver energy deposited in the electrons inside the
shocked volume, (1 − ηd) gives the fraction of the driver

energy deposited in the ions inside the shocked volume.
ηd is

ηd = λi

λi + λe
; Ei = 1

2
mi u2

p = 1250 (MeV)
(u p

c

)2
,

λi [cm] =
(

3× 1023

ni

)(
m p

mi

)
Ei [MeV],

λe [cm] =
(

5× 1022

ne ln Λ

)
Te [keV]3/2 Ei [MeV],

(41)
where λi and λe are the appropriate mean free paths of the
ions and electrons in plasma.

Wie [erg/(cm3 s)] is the ion–electron exchange power
density,

Wie

[ erg
cm3 s

]
=
(

3
2

)
kB(Ti − Te)

τeq
,

τeq = 3memi

8
√

2πni e4 ln Λ

(
kB Te

me
+ kB Ti

mi

)3/2

,

(42)

WB [erg/(cm3 s)], the electron bremsstrahlung power den-
sity losses

WB

[ erg
cm3 s

]
= 8.58×1021ρ2Te(eV)0.5

(
1+ 2Te(eV)

0.511× 106

)
,

(43)
and W f [erg/(cm3 s)], the fusion power density created
in the shocked volume. η f is the energy fraction that is
deposited in the electrons by the α-particles created in the
fusion under consideration and (1−η f ) describes the energy
fraction that is deposited in the ions by these α-particles.
η f is[32]

η f = 32
32+ Te (keV)

. (44)

fα is the fraction of the α-particles created and deposited
into the ignitor domain, while (1− fα) is the escape fraction
to the surrounding cold fuel. fα is given by

fα =

⎧⎪⎪⎨
⎪⎪⎩

3
2

xα − 4
5

x2
α xα <

1
2

1− 1
4xα

+ 1
160x3

α

xα � 1
2
,

xα(τ ) = R
Rα

; R = (us − u p)τL ,

Rα [cm] = 1
κρ0

[
1.5× 10−2Te (keV)5/4

1+ 8.2× 10−3Te (keV)5/4

]
.

(45)

Figure 12 display the results of the two temperatures model
for DT pre-compressed to density ρ0 = 600 g cm−3. The fast
ignition shock generated by irradiation with laser intensity of
7.5 × 1022 W cm−2, 1 ps pulse duration and energy 3.67 kJ
(see Equation (16)) induces a compression of κ = 4.
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Figure 12. Electrons Te and protons Ti temperatures as a function of time
for a DT case satisfying the ignition criterion.

5. Laser induced fusion detonation wave

Recently[33] a self-sustained 1D detonation wave was sug-
gested to be possible due to the heating by the alpha particles
generated in the laser-induced ignitor. This detonation wave
should sustain ignition in the remaining part of the target.
This fast ignition scheme is schematically described in
Figure 14. The ignitor operation was calculated in Section 4.
For the detonation we chose a laser yielding a particle
velocity behind the shock front of 1.0% the speed of light.
The theoretical treatment that we consider is based on
1D plane detonation wave under Chapman–Jouguet (CJ)
condition.

In the case of chemical-based detonation, the energetic
material entering the shock front is compressed and thus its
temperature rises. Under sufficient temperature the material
transforms exothermally into gaseous products releasing
energy per unit mass (Q) that supports the shock. The
governing parameter effecting reaction rate in the reaction
zone are the local density and temperature. Our detonation
is analogous to this description where the chemical energy
has been changed to nuclear fusion energy. In the DT fusion
one gets 17.6 MeV fusion energy per reaction but only the
3.52 Mev of the α particle is relevant to support the desired
steady state shock condition.

By using CJ formalism for the ideal gas case one can
obtain from the conservation equations the following useful
relations

(
ρ

ρ0

)
C J
= Γ + 1

Γ
; PC J = ρ0 D2

Γ + 1
,

u
D
= 1

Γ + 1
; cs

D
= Γ

Γ + 1
,

Q
D2 =

1
2(Γ 2 − 1)

,

(46)

where P [erg cm−3] is the pressure, ρ [g cm−3] is the den-
sity, ET [erg g−1] is the thermal energy, Q [erg g−1] is the
nuclear fusion energy deposited on the wave front, u is the
velocity of motion of the fluid [cm s−1] and D [cm s−1] is
the detonation wave velocity. The detonation wave is steadily
propagating with velocity D, namely all magnitudes P , ρ, u
and ET are functions of time t and space x only in the form
x−Dt . For the detonation wave we take[34] Γ = 3 implying

u
D
= 1

4
; cs

D
= 3

4
; Q

D2 =
1
16

. (47)

We can see that by determining the particle velocity u = u p
to equal 1.0% the speed of light we have determined the
nuclear energy needed to support a steady state CJ condition,
Q = 9 × 1012 J kg−1. As one can see from Figure 15 this
value of Q is achieved by our laser-induced detonator, where
Q in our model was calculated from

Q
[

J
kg

]
=
(

Eα

ρ

)∫ t=τL

0
dt
(

dnα

dt

)
1
2
(1+ fα), (48)

where fα is defined in Equations (45). In this case the nuclear
fusion ignition conditions for the pre-compressed DT plasma
are achieved along the detonation wave orbit.

6. Summary and perspective

In the physical domain where relativistic shock waves are
generated, mechanical interactions fully dominate over ther-
mal phenomena, because there is no time for thermal re-
laxation and expansion. As the laser photons momentum
is fully collimated, mechanical interactions are very much
obliged to follow that direction. On the contrary, fusion
ignition onset requires the thermal interactions to dominate,
although supra-thermal reactions can have a complementary
role. Such a conversion from a regime to another is reached
by a head-on crash, for instance, between two opposite shock
waves in the center of a pre-compressed micro-target.

The physics of inertial confinement fusion (ICF) is based
on compressing and igniting the plasma fuel[32, 35, 36]. In
order to ignite the fuel with less energy it was suggested to
separate the drivers that compress and ignite the target[37, 38].
This idea is called fast ignition. Many schemes have been
suggested to solve this issue[39].

In the previous section we described the condition of a
shock wave ignition scheme, where the ignition shock wave
is generated directly by the high irradiance laser or indirectly
by the impact of a laser accelerated micro-foil. This shock
wave is created in a pre-compressed target that was irradiated
by many laser beams. This fast ignition scheme induced
by the impact of a micro-foil is schematically described in
Figure 13.
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Figure 13. The fast ignition scheme by the impact of a high irradiance laser
accelerated foil. (a) The pre-compression by the nanosecond laser beams.
(b)–(d) The sequence of shock waves leading to the ignition hot spot.

The directly laser-induced shock wave velocity is in
the intermediate domain between the relativistic and non-
relativistic hydrodynamics as termed in Section 2 of this

paper. The laser intensities apply a ponderomotive force that
forms a DL[40] which acts as a piston driving this shock wave
moving in the pre-compressed target. This laser is described
in the literature as a ‘piston model’[21, 24, 25].

In this paper we calculate the high velocities achieved by
the laser acceleration of a micro-foil. This high velocity
foil collides with a second foil resulting in the creation
of the relativistic shock waves. The analytically derived
thermodynamic parameters in these collisions are enormous
and they might exist only in astrophysical phenomena or
nuclear collisions.

Due to the recent developments in high power lasers
in the multi Petawatt domain it is also suggested in this
paper to accelerate micro-foils to relativistic velocities. From
Figure 6 we learn that one can get a micro-foil with half
the speed of light for a laser pulse duration τ if I τ =
4.5× 108 J cm−2 (e.g., 0.5 fs laser with I = 1024 W cm−2)
for a flyer with initial density 1 g cm−3 and a foil thickness
of 0.1 μm. A cross-section area of 10 μm2 will require laser
energy of 45 J.

Furthermore, we suggest measuring experimentally the
flyer velocity using the relativistic DE, while the initial
density could be estimated experimentally using an x-ray
pulse created by a secondary laser beam.

Taking into account that during few femtoseconds one
can accelerate a micro-foil to relativistic velocities one can
achieve stable relativistic acceleration for laser irradiances of
the order of 1024 W cm−2.

The laser energy can be reduced significantly if we use
two lasers in order to accelerate two micro-foils in opposite
directions, thus causing them to collide. According to the law
of the addition of relativistic velocities, the relative impact
velocity between the foils is given by (β1 + β2)/(1+ β1β2).
For example, if β1 = β2 = 0.8 then the impact relative
velocity is 0.9756c; implying a very large reduction of
energy.

Today particles must be accelerated along many kilome-
ters in order to achieve high energies. In our scheme the foils

Figure 14. The fast ignition scheme of a detonation wave.
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Figure 15. The fusion energy Q per unit mass released in the shock wave
forward direction as a function of time in the shocked volume for (a) Γ = 3
and (b) Γ = 5/3.

are accelerated to relativistic velocities through a distance of
the order of 1 mm or less. We propose that these relativistic
collisions of two micro-foils accelerated by future lasers may
offer a new way of accelerating particles or nuclei in the
laboratory.
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