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Products and Direct Sums
in Locally Convex Cones

M. R. Motallebi and H. Saiflu

Abstract. In this paper we define lower, upper, and symmetric completeness and discuss closure of the
sets in products and direct sums. In particular, we introduce suitable bases for these topologies, which
leads us to investigate completeness of the direct sum and its components. Some results obtained about
X-topologies and polars of the neighborhoods.

1 Introduction

An ordered cone is a set P on which two operations, addition and scalar multiplication
for non-negative real numbers A > 0, are defined. The addition is assumed to be
associative and commutative, there is a neutral element 0 € P, and for the scalar
multiplication the usual associative and distributive properties hold. In addition, the
cone P carries a preorder, i.e., a reflexive transitive relation < such that a < b implies
a+c < b+cand \a < Abforalla,b,c € Pand A > 0. For example, R = RU{+00} is
a preordered cone with respect to the usual addition, multiplication, and order on R.
In any cone P, equality is obviously a preorder, hence all results about ordered cones
apply to cones without order structures as well.

The subset V C (P, <), where < is a preorder relation on P, is called an (abstract)
0-neighborhood system if it satisfies the following requirements:
(v1) O<vforallveV.
(vy) Forallu,v € Vthereisaw € Vwithw < uandw <.
(v3) u+v € Vand A\v € V whenever u,v € Vand A > 0.

An (abstract) 0-neighborhood system V induces three topologies on P, called the
upper, lower, and symmetric topologies. For v € 'V, the neighborhoods of an element
a € P with respect to these topologies are defined as

via)={beP:b<a+v}, (aAv={beP:a<b+v},

and v(a)v = v(a) N (a)v, respectively. We remark that the symmetric topology is the
common refinement of the upper and lower topologies.

If we assume that all elements of P are bounded below, that is for every a € P and
v € V we have 0 < a + pv for some p > 0, then the pair (P, V) is called a full locally
convex cone. A locally convex cone (P, V) is a subcone of a full locally convex cone, not
necessarily containing the (abstract) 0-neighborhood system V.
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We will also deal with another equivalent structure, called a convex quasi-uniform
structure, that is defined as a collection U of convex subsets of P? with the following
conditions:

(u1) ACUforallU e U; A = {(a,a) :a € P}.
(up) ForallU,V € UthereisaW € UsuchthatW CUNV.
(u3) A\UopuU C (A+p)Uforall \, u > 0and U € U, where AU o uU = {(a,b) € P? :

Jc € P with (a,¢) € AUand (¢, b) € uU}.

(uy) N\U€ U, forallU € Uand A > 0.

Each convex quasi-uniform structure U on P induces a preorder relation where
a < bifand onlyif (a,b) € Uforall U € U as well as three topologies: The neighbor-
hood bases for an element a € P in the upper, lower, and symmetric topologies are
given respectively by the sets

U(a) ={beP:(bja)cU}, (@U={beP:(a,b)cU}, UEeU,

andU; = {UNU"':U € U}, whereU~! = {(b,a) : (a,b) € U}.

The notions of (abstract) 0-neighborhood system V and convex quasi-uniform
structure U on a cone P are equivalent in the following sense.

For a locally convex cone (P, V) and each v € V, we put

?={(a,b) €ePxP:a<b+v}

The collection V = {# : v € V} is a convex quasi-uniform structure on P that
induces the same upper, lower and symmetric topologies. On the other hand, if P is
a cone with a convex quasi-uniform structure U, then one can find a preorder and an
(abstract) 0-neighborhood system V such that the convex quasi-uniform structure v
is equivalent to U [[1, Chapter I, 5.5].

If (P, V) is a locally convex cone, the condition that every element a € P has to
be bounded below translates into “for each # € V there is some p > 0 such that
(0,a) € p¥. On the other hand, if a convex quasi-uniform structure U on a cone P
has the extra property

(us) foralla € P and U € U, there is some p > 0 such that (0, a) € pU,

then the resulting cone will be locally convex, that is, every element a € P will be
bounded below.

For locally convex cones P and Q, with convex quasi-uniform structures U and V
respectively, a linear mapping ¢: P — Qs called uniformly continuous (u-continuous)
if for every V € V, there is some U € U such that (a,b) € Uimplies (t(a), t(b)) ev,
ie, T(U) CV, T =1t xt IfVand W are (abstract) 0-neighborhood systems on P
and Q, ¢ is u-continuous if and only if for every w € W there is some v € V, such
that (a,b) € v implies (t(a), t(b)) € w or equivalently; t(a) < ¢(b) + w whenever
a < b+ v. Uniform continuity implies continuity with respect to the upper, lower
and symmetric topologies on P and Q. The set of all u-continuous linear functionals
w: P — Risa cone called the dual cone of P and is denoted by P*. In a locally convex
cone (P, V) the polar v° of v € V is defined by v° = {px € P* : a < b + v implies
p(a) < p(b) + 1}. Obviously we have P* = [ J, o v°.
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Let U; and U, be convex quasi-uniform structures on P. We say that U is finer
than U, (or U, is coarser than Uy) if the identity mapping i: (P,U;) — (P, U;) is
uniformly continuous.

In Section 2, we define notions of lower, upper, and symmetric completeness and
study closure of the sets in products.

In Section 3, we introduce a base to each of the lower, upper, and symmetric
topologies, which help us to study the completeness of the direct sum and its com-

ponents. Finally we obtain some results about X-topologies and polars of neighbor-
hoods.

2  Products

For each v € T, let (P, V,) be a locally convex cone and ¢,: X.cr P, — P, be
the projection mapping. The product P = X, P, is the projective limit of the locally
convex cones P, by the mappings ¢, and is called the product locally convex cone,
denoted by (P, V). If V, = {v,, : 6 € I,}, v € I, theneach v € V is a finite
intersection of the sets @' (7,,), where &, = ¢, X ¢, and 7 = N_ & (¥, ), say.

Let (P, V) be a locally convex cone and A C P. The closure of A with respect to
the lower topology is defined by

A={be?P:foreveryv € V,thereissomea € Awithb < a+v}
={beP:foreveryv eV, (b)jyvNA# o}

For a € P, we put@ = {a}. In particular @ = (), v(a). The closures of A with

veV
respect to the upper and symmetric topologies, denoted by A and A’ respectively, are
defined in a similar way; for details, see [1]].

Proposition 2.1 Let A = X crA, C (P, V). Then

- - - = —S —s
A = Xﬁ/eI‘Af}W A = Xﬁ/eI‘AW, and A = X'YEFA’)"

Proof We prove the first equality. Lett = (£,) € (xA,). Fixy € ['andletv,; € V,,
0 € J,, be arbitrary. Since ¢, is u-continuous, we have @; 1 (7,,) € V. Hence there is
an x = (x,) € XA, such that (t,x) € @;1(1775) or (ty,x,) = ®,(t,x) € ¥, for each
vy, € V.. Thus foreachy € I',t, € A, ort € X, crA,.

Now let r = (;) € X,erA, and v € V be arbitrary. There are v, € V,, (i =
1,2,...,n)suchthat v = (L, ® (v, ). Since t,, € A, thereis x,, € (£,,)v,, NA,,
(i=1,2,...,n). Putx = (x,) € xA,, where x, = x,, fory = 7; and x, € A,
otherwise. Then (t,,,x,,) = ®,,(t,x) € 7,,, hence (t,x) € 7. This implies that
t €A [ |

Definition 2.2 A locally convex cone (P, V) is called separated if a = b implies
a="bforalla,be P

The locally convex cone (P, V) is separated if and only if the symmetric topology
on P is Hausdorff [1, Chapter I, Proposition 3.9]. This implies that (P, V) is separated
ifand only if for each a € P, @° = {a}.
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Proposition 2.3 Let (P,V) = x,er(P,Vy). Then
(a) foreachx = (xy) € (P, V), we have

- _ — = _ = = __ —s .
X= X erXy, X= X er¥X,, and X = X, crX);

(b) the product locally convex cone P = X crP, is separated if and only if each P is
separated;

(c) ifeach P, is separated, then for each~y, j-(P.) is closed with respect to the symmetric
topology in (P, V).

Proof Parts (a) and (c) follow from Proposition 2.1. For (b), let x = (x,). Each
P, is separated if and only if X, = {x,}, v € I, and this is the case if and only if
* = {x}. [ |

Example 2.4 (i) A subset A of a preordered cone is called decreasing if a € A and
b < aforsomeb € Aimply b € A. For a subset B of P, we denote by

IB={ae?P:a<bforsomeb € B}

the decreasing subset generated by B. In a same way one defines the notion of an in-
creasing subset and 1 B, the increasing subset generated by B. We denote by Conv(P),
the set of all nonempty convex subsets of P which is a cone with usual addition and
scalar multiplication.

Let (P, V) be alocally convex cone. If we identify the elements of V with singleton
sets 7 = {v}, then V = {# : v € V} is a subset of Conv(?P), which can be preordered
using the preorder of P. For A, B € Conv(P), we define

A < Biffor each a € A there is some b € B such thata < b,

then ( Conv(P), V) becomes a full locally convex cone. Also, we denote by DConv(P)
(DConv(?P)), the set of all decreasing convex subsets (respectively, closed decreasing
convex subsets) of P, where closure is meant with respect to the lower topology on P.
If we modify the addition, both sets will become cones as well:

A®B=] (A+B) forA,B e DConv(P),
A®B={] (A+B)} forA,B e DConv(P).

With the preorder and (abstract) 0-neighborhood system induced by Conv(?P), both
(DConV((P), V) and (DConV(fP), V) are locally convex cones. In particular, P =
{G: a € P} as a subcone of DConv(P) is a locally convex cone. For details see [T]].

Now, if (P, V) = X,¢cr(P,, V), then (DConV(fP), V) is the product locally con-
vex cone of the locally convex cones (DConV(‘Pﬁ,/), Vv) ; in particular, (P, V) is the
product locally convex cone (P,,V,), v € I'. For, by Proposition 2.1, the set A C
(P, V) is closed decreasing convex if and only if each A, is closed decreasing convex
in (P,,V,). Hence

DConv(P) = x,erDConv(P,),
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and the projection mappings

@7: DConv(P) — DConv(?,), ~ €T,

ay(A) =] A,, where A € DConv(P)

are well defined and u-continuous by [I} II, 1.6].
Suppose thatv € V, 7 = (., @;1(17%6{) and A, B € DConv(?P). Then

A<B+v ifandonlyif ¢(A) <¢,(B)+7,, (=12,...,n).

Thus
=%, 1(5%1 ), where ®,, = ¢ X ¢, .
i=1

Hence the product convex quasi-uniform structure on P, induced by the (abstract)
0-neighborhood systems V., is identical to V; where V = {7 : 7 € V}.

Likewise, (Conv(fP), V) and ( DConv(P), V) are the product locally convex cones
of (Conv(i]’q,)7 VW,) and (DConv(iPW), Vw) , respectively.

(ii) Let (P,V) be alocally convex cone. A C P is called bounded if for everyv € V
there exists A > 0 such that

a< X\ and 0<a+ v forallac A.

Also A C P is called internally bounded if for every v € 'V there exists A > 0 such
thata < b+ Avforalla,b € A [4]]. The set of all bounded (B) or internally bounded
(IB) sets of a locally convex cone is a subcone. For A C (P, V), we have

A€ B ifandonlyif A, € B,.

and
A€JB ifandonlyif A, e (IB),.

Therefore (B,V) = x,er(B,V,) and (JB,V) = XAYEp((JB)% VW,); in particular,
eachx = (x,) € Pisbounded if and only if each x, is bounded. Hence B, the subcone
of all bounded elements of P, is the product locally convex cone of B, v € I, where
each B, is the subcone of all bounded elements of P,.

Definition 2.5 Let (x,)qacy beanetin (P,V)andx € P. We write x,, | x (x, T x) if
(xa)aeg converges to x with respect to the lower (respectively, upper) topology. Also
X, — x means that x,, T xand x,, | x, i.e., (x,)aecg converges to x with respect to the
symmetric topology.

We define (x,)aeg in (P,V) to be lower (upper) Cauchy if for every v € 'V there
is some «, € J such that xg < x, + v (respectively, x, < xg + v) for all o, 8 with
B > a > ay. Also (x,)aey is called symmetric Cauchy if it is lower and upper Cauchy,
i.e., if for each v € 'V there is some v, € J such that x5 < x, + vand x, < x3 + v for
all , Bwith a, 8 > a.
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Definition 2.6 The locally convex cone (P, V) is called lower (upper and symmetric)
complete if every lower (respectively, upper and symmetric) Cauchy net converges in
lower (respectively, upper and symmetric) topology. In general, the set A C P is
called lower (upper and symmetric) complete if every lower (respectively, upper and
symmetric) Cauchy net is convergent to an element of A in corresponding topology.

Proposition 2.7 In a separated locally convex cone (P,V), a net (x,)acg cannot con-
verge to more than one point.

Proof Suppose that (x,)acg converges to a and b in P in the symmetric topology.
Then for each v € V, there is some a,, € J such that x, € v(a)v N v(b)v for all
o > a,, which is a contradiction, since the symmetric topology is Hausdorff. ]

Proposition 2.8 Let (P,V) be a locally convex cone. Then

(a) if B C P is lower (upper and symmetric) complete, then every closed subset of
B, with respect to the lower (respectively, upper and symmetric) topology, is lower
(respectively, upper and symmetric) complete,

(b) if (P, V) is separated, then a symmetric complete subset of P is closed with respect
to the symmetric topology.

Proof For (a), let A be lower complete and B be a closed subset of A with respect to
the lower topology. If (x,)qcg is a lower Cauchy net in B, then it is also lower Cauchy
in A. Hence x,, | a € A and a is a limit point of B, in lower topology. Soa € B = B.
For part (b), let A be symmetric complete and a € A, Let (x4)acy beanetin A, such
that x, — a. Clearly, (x,)qeg is symmetric Cauchy in A and x,, converges to a point
of A in symmetric topology. Since (P, V) is separated, by Proposition 2.7, this point
is a. Thus a € A and A is closed with respect to the symmetric topology. ]

Note that only decreasing sets in (P, V) may be closed with respect to the lower
topology, and only increasing sets could be closed with respect to the upper topology.
Hence the symmetric complete subsets of a separated locally convex cone need not
be closed with respect to upper or lower topology. For each a € (P, V), the singleton
set {a} is lower (upper) complete but not closed with respect to lower (respectively,
upper) topology, so the lower (upper) complete set need not be closed with respect
to lower (respectively, upper) topology. Also, if a locally convex cone is symmetric
complete, it is not necessary to be both lower and upper complete.

Example 2.9 Conv(R) with set inclusion as order and V = {(—¢,¢) : € > 0} as the
0-neighborhood system, is symmetric and upper complete but not lower complete.
Let (ca)acy be a symmetric Cauchy net in Conv(R). Let e € V, & = (—¢, €). There is
a, € Jsuch that

ca<cgte and c¢g<cyte forallo, Bwitha, B> ..

If for all @ > v, ¢, = (—00,+00], then ¢, — (—00,+00] € Conv(R). For every
a > a, let ¢, be a finite open, semi-open or closed interval in R. Let (iy)qec9 and
(ea)acy be the nets of the initial and end points of these intervals, respectively. Then
forall o, 8 > «, we have

ig<ig+e and e, <egte.
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Puti = inf,>q iq and e = SUP,>q. €a- Then ¢, — ([i,e] € Conv(R). The upper
completeness is proved in a similar way.

The sequence ((—o0,n]) is lower Cauchy but not convergent in lower topol-

o neN
ogy. So (Conv(]R{), V) is not lower complete.

Similarly, (R, £), where e = {€ : ¢ € R"}, is symmetric and upper complete but
not lower complete; also (Conv(]R{)7 \7) is only symmetric complete.

Remark 2.10 (i) Let (P,V) be a locally convex cone and let a € (P,V). Every
net in a converges to a with respect to the lower topology, i.e., @ is lower complete.
Similarly, @ is upper complete. Also, every net in @’ converges to a with respect to each
of the lower, upper, and symmetric topologies, so @’ is lower, upper, and symmetric
complete.

In [I]], the global preorder < on (P,V) is defined by a < b, ifa < b + v for
all v € V. If the global preorder < coincides with the original one, then each of the
subcones P~ , P+ is lower and upper complete, respectively; in particular, the subcone
P~ N P* is not only symmetric complete but also lower and upper complete, where
P ={acP:a<0}andP* = {a € P:a > 0}; indeed, applying the natural
element 0 € P, implies that P = 0, Py = 0 and PINPL = 0.

(ii) A locally convex cone (P, V) is said to have the strict separation property, in
short (SP), if for all a,b € P and v € V with a £ b + pv for some p > 1, thereis a
1 € v° such that p(a) > u(b) + 1.

In a lower (upper) complete locally convex cone with (SP), we can find a base
for the upper (respectively, lower) topology whose elements are lower (respectively,
upper) complete. In particular, in a symmetric complete locally convex cone with
(SP), the symmetric topology has a base whose elements are symmetric complete [2}
2.12, iv].

Proposition 2.11 Let (P,V) = X, cr(P,,V,), x = (xy) € P and (xo)acy be a net

in P. Then

(@) x0 L x (xo T x and xo, — x) if and only if - (x) | x, (respectively, ., (xa) T %y
and ¢, (xa) = %), v €T,

(b) (xa)aey is lower (upper and symmetric) Cauchy if and only if each p-(x,) is lower
(respectively, upper and symmetric) Cauchy in P,

Proof (a) Ifx, | xin P and ~ € I, then for each v, € V. we have <I>;,1 (7y) € V. So
there is some v, € J such that forall a > o, , (x,x,) € @;1(177) Of Xoy € (X9)V4,
that is, x,, | x,. For the converse, let ¢,(x,) | x,inP,, v € I'. Letv € V,
7 =N, @%1(17%.), be arbitrary. Since x,,, | %y, (i = 1,2,...,n), there is some
g € Jsuch that

Xy KXoy Ty, (1=1,2,...,n) forall @ > a.

This yields (x,x,) € Av for all &« > ay, i.e., x, | x. Part (b) is proved in a similar
way. |
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Proposition 2.12 Foreach~y € I, let (P,,V,) be a locally convex cone and A, C P,,.
Then A = X.crA, is a lower (upper and symmetric) complete subset of (P,V) =
Xer(Py, Vy) if and only if each A, is lower (respectively, upper and symmetric) com-
plete.

Proof Let A be lower complete and (z,,)aecy be a lower Cauchy net in P,. By
Proposition 2.11 (b), there is a lower Cauchy net (xq)aeg in P such that (z4)aes =
o ( (x(,)aeg) . In fact, in each Ps, § # ~, we choose a lower Cauchy net (x,5)ocg and
putx, = (x,)) € (P, V), a € I, where

N £ for A =~
aX — .
X,s otherwise.

Then there is a € A such that x,, | a. So z., | ¢,(a) € A, by Proposition 2.11 (b),
which shows that A, is lower complete. Conversely, let each A, be lower complete
and let (x,)acg be alower Cauchy net in P. Each ¢, ((Xa)ac3) = (Xay)acy is alower
Cauchy net. Hence X,y | a4 € A, a = (a,) € A and x,, | a. The proof of the others
is similar. [ |

In particular we have the following theorem.

Theorem 2.13 The product locally convex cone P = X.crP, is lower (upper and
symmetric) complete if and only if each P., is lower (respectively, upper and symmetric)
complete.

3 Direct Sums

Let P, v € T be cones and P = X P,. The subcone of P spanned by | J P, (more
precisely, by | j,(P,), where j,: P, — P is the injection mapping) is called the
direct sum of the cones P,y € I and denoted by 3 °_ - P. It is worth remembering
that here we only use positive scalars.

If each P, v € T is a locally convex cone, the direct sum Q = > P, can be
endowed with the convex quasi-uniform structure induced by V, where V is the (ab-
stract) 0-neighborhood system of P. We call this the product convex quasi-uniform
structure on ), P,. By Proposition 3.5, it induces the original convex quasi-uniform
structure on each P,. The finest such convex quasi-uniform structure on Q is ob-
tained by regarding Q as the inductive limit of the cones P, by the injection mappings

j~ and denoted by W [3} Theorem 3.1].

Theorem 3.1 Let(P,,V,),y € I belocally convex cones, let U be the set of all convex
sets U defined as

U= U{ Z M T (7) Z Ay =land A isﬁnite}7 v, €V,,yeT.

VEA vEA

Then U is a convex quasi-uniform structure on Q which is equivalent to W.
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Note that in defining a U € U we take one v, from each V., v € I, and form all
finite sums of these fixed v, as above.

Proof For (u,), let

U, = U{ Z Ay Ty () Z Ay, =land Ais ﬁnite}, v, €V, and

MEA meA
EYTPIEWRTEED SERIPEN S
nEA T EA

If we choose Vy S Vs Vo in v'ya v E I" and set
U= U{ Z A Iy (75) : Z Ay =1land Ais ﬁnite} ,
7EA yeA

we have U C U; N U,.

For (u3),letU € U, A\, i > 0. To show that AUouU C (A+pu)U, let (a, b) € AUopuU.
Thereis z € (Q, W) such that (a,z) € AUand (z,b) € uU. There are finite subsets A,
© of I such that

(@,2) =AY A (jy(ay), j5(20)) s (ay,2,) € 7y, with DA, =1,
vEA vEA
and
(2,0) = Y N jo(z), jo(bo)) , (z0,bg) € 79, with Mg =1,
€O /co

where v, v € A and vy, 6 € O are in defining U.
For simplicity we write a, = j,(a,), v € I, and so on. There are three possibili-
ties.

(i) A=06. Withoutloss of generalitylet A = © = {1,2,...,n}. Then

(a,2) =AY Nlai,z), (z,0)=p Y N, b,
i=1 i=1

where (a;,z) € J;(#;), ([, b;) € Li(#), > Ai = > i A =1and

z= )\i)\izi = ui)\i’z{,
1=1 =1

hence A\;z; = pA/z/,i=1,2,...,n. Now we have

(AXiai, pAbi) = (ANiai, ANizi) o (uXiz], pA/b;)

= M\i(aj,zi) o pX (2], b;)
€ A\;7; o ,LL/\i/V,‘ C (A + N)\i/)]i(?i)-
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Hence

(a,0) = > (Miag, uA{b) € A+ p1) DN+ A /A + (%)
i=1 i=1
with 370 (AN + pA) /A + = 1, ie., (a,b) € (A + p)U.

(i) A #O©and ANO =@. LetA ={1,2,...,n},0 = {n+1,n+2,...,n+m}
say. Thenfor 1 <i < nwehavea; # 0butb; =0andz = 0,alsoforn < i <n+m
we have b; # Obuta; = 0Oandz; = 0. Hence for 1 <i <, (a,z) =AY, (Na;,0),
>, Ai=1land

n

D Oai, uAb) =Y (Aiag, Az © (p\fzi, pA (b))

i=1 i=1

n
€ Z()\)\i +pX) Ji(#;), where X! =0,1<i<n

i=1

alsoforn <i<n+m,(z,b)=> 1" \(0,b),> " A =1,and

i=n+l i=n+l 7
n+m m+n
D i, pAbi) € > AN+ pA) Ji(7),  where i =0,n < i <n+m.
i=n+1 i=n+1
Hence
n+m n+m

(a,b) = > (ANiai, uAb) € A+ 1) DN+ pA) /A + pfi(7)
i=1 i=1
with Z:’:T()\/\i +uX)/ A+ p=1,ie,(a,b) € (A + p)U.

(i) A #0,ANO #@. PtAUO =(A-0)U(ANB)UOB — A. For
A N © by (i) and for A — © and © — A by (ii) the requirements hold; combining
these two we get the result for this case also.

The conditions (1) and (u4) are trivial.

For (us),letU € Uand x = ZWEA’ j4(xy) € Q. Foreachy € A/, take v, € V,
as in defining U. There are i, > 0, v € A’ such that (O, jw(xﬁ/)) € py ) (7). Put
1= 73 cnrHy- Then

1/1(0, %) = l/u(O, > J'n,(xw)) € pu/ul,(#) CU,
yEA’ yEA’

i.e., (0,x) € pU. Hence U is a convex quasi-uniform structure on Q.

Now we show that U and W are equivalent. If U € U, then for each y € T, there is
vy € V, in defining U. For this v.,, we have ], (#,) C U, hence j, is u-continuous. But
W is the finest convex quasi-uniform structure on Q that makes each J~ u-continuous
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(3} Theorem 3.1]. Hence W is finer than U. Next, let w € W. For each v € T,
J; (W) € V., by definition. Put

U= U{ Z)‘“/Iw o ]gl(w) : Z Ay =1land Ais ﬁnite}.

YEA YEA

Since foreachy € A, J, o ];1(w) C w, we have

DML oW C Y A=,

VEA yEA

which shows that U C , hence U is also finer than W. |

If there is a one-to-one linear mapping t of (P, V) onto (Q, W) such that both ¢
and its inverse ¢t ! are u-continuous, then these two locally convex cones are called
uniformly isomorphic (u-isomorphic) and we say that t is a u-isomorphism.

Proposition 3.2 Let (Q,W) = ZWGF(TW,VA/). Then
(a) foreach~y, ¢y: (QW) —= (P4, V,) is a u-isomorphism,
(b) ifAC(QW), A= Zwer &~ (A), then

A=Y 0,4, A=) 0,4 and &= 5,A)"

ver ver ver

Proof (a) Fixy € I'andlet v,y € V,, 0 € I,. The neighborhoods vy, A € T,
where vy = vy, for A\ = 7 and vy € V), otherwise, give some U € U in which
¢, (U) C v, i.e, ¢, is u-continuous. By [3, Theorem 3.1], qb;l = j, is also u-
continuous. Therefore ¢, is a u-isomorphism.

(b) We prove the first equality. Let x € A, x = Eﬂ/e A (%), where A is finite.
If v € Aand v, € V,, then part (a) gives some U € U such that ®,(U) C #,. So
(cbw(x),qﬁv(a)) € 7, for some a € (x)UN A. Hence ¢,(x) € ¢,(A). Conversely,
let x = Zwe A ®y(x), where A has n elements; say, and ¢, (x) € ¢,(A), for each
v € A. Letw € Wand U € UwithU C 1/nw. We can find some a € A such that
py(a) € (gi)v(x)) vy N ¢, (A) for each v, € V,, in defining Uand v € A, which yields

(x,a) = (¢(x),0,(a)) €Y 7 CnUCwW,

YEA YEA

ie,a € (x)UNA.Sox € A. [ |

Corollary 3.3 Let (Q,W) = Eyer(fpw V,). Then
(a) foreachx € Q, x = Zyer ¢~ (x), we have

%:ZW, ?zZﬁ and

yel yel yel

Xvn
Il
-

2
®
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(b) (Q, W) is separated if and only if each (P, V), v € I is separated,
(c) if each P, is separated, then j.(P.) is closed with respect to the symmetric topology
in (Q,W).

Remark 3.4 (i) (DConV(Q), W) is the direct sum of (DConv(fPW), Vq) ,v €15
in particular (Q, W) is the direct sum of the locally convex cones (TW, Vﬁ/ ).

(ii) Foreachy € T'and a, € P, j,(a,) and j,(a,) is lower and upper complete in
both of (Q, W) and (P, V), respectively. Also j, (@) is lower, upper, and symmetric
complete; in particular if the global preorders coincide with the original ones, for
eachy € I, j,(P7) and j,(P7) is lower and upper complete, respectively, and the
subcone j, (P N PY) is lower, upper, and symmetric complete.

Proposition 3.5 Let (P,,V,), v € I' belocally convex cones. The direct sum convex

quasi-uniform structure W is finer than the product convex quasi-uniform structure V.
For every finite subset A of T', these two coincide on 3 n P-. The direct sum convex

quasi-uniform structure W induces the original convex quasi-uniform structure V., on
each P, v €T

Proof Ifv € V,v = (N, ¢, '(7,4), then U C #, where U is defined by neighbor-
hoods v, = v, fory = (i = 1,2,...,n) and v, € V, otherwise. So W is finer
than V.

Letw € Wand v, € V,, 7, = J7'(W) (y € A). If we put 7 = Nyea o1 (7,),
then 1/n# C . Therefore V is also finer than W. In the special case A = {7},
Proposition 3.2 (a) gives the last part. [ ]

Lemma 3.6 Let (P, V) and (Q, W) be the product and direct sum locally convex cones;

respectively. Then

(a) the upper topology of (Q, W) has a base whose members are closed with respect to
the lower topology of (P, V),

(b) the lower topology of (Q, W) has a base whose members are closed with respect to
the upper topology of (P, V),

(c) the symmetric topology of (Q, W) has a base whose members are closed with respect
to the symmetric topology of (P, V).

Proof (a) We show that for each U € Uand a € Q, U(a) C 4U(a), where U(a) is
closure of U(a) with respect to lower topology of (P,V). Let x € U(a). There is a
finite subset A of I, containing say n elements, such that ¢, (a) = 0, for each y ¢ A.
Letv € V, 7 =1/nNyea @' (UNP2). There is some y € (x)v N U(a), such that

(3.1) (D603 04n) €V and () €.

YEA yEA

Put A’ = {y €T : ¢,(x) # 0,7 ¢ A} and denote by « the number of the elements
in A’. Fixy € A’ and let v, € V, be the corresponding 0-neighborhood in defin-

ing U. By Proposition 2.1, ¢ (x) € ¢, (U(a)) , which yields (d)q,(x), 0N (z)) € %Vv for
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some z € U(a) and by (z,a) € U, we choose some A, with 0 < X\, < 1 such that
(¢4(2),9,(a)) € Ay7,. Thus

(¢(), 0,(@) = (94(x),0,(2)) © (D,(2), b, (a))

€lv o, C L+ A7,

Therefore

D (¢, 04(a) € % S+ > A,

YEA' YEA' YEA'

CU+U=2u,

which by (3.1) implies that

(x,a) = <Z¢w<x% > dw(a)) + ( > o), Y wa))

YEA vEA YEA' TEA'

€U+U+2U = 4U,

i.e., x € 4U(a). In a similar way we prove parts (b) and (c). |

Theorem 3.7 Leteach (P., V) be separated. Then

(a) ifeach (P, V) is lower (upper) complete, then (Q, W) is lower (respectively, upper)
complete,

(b) (Q,' W) is symmetric complete if and only if each (P-,V.,) is symmetric complete.

Proof (a) Let (x,)qcg bealower Cauchy netin Q. Then (x,)qey is also lower Cauchy
in (P, V), and since (P, V) is lower complete (Theorem 2.13), there is some x € P
such that x,, | xin (P, V). We show that x € Q and x,, | xin (Q, W).

If x = 0, then x € Q. For x # 0, let A be the subset of I" such that for each v € A,
¢ (x) # 0. Since the upper topology of (P, V,),y € I'is Ty [} 3.9], for each vy € A
there is v, € 'V, such that ¢, (x) ¢ v,(0p ). Then forv € V, 7 = % ﬂweA @;l(ﬁw),
there is some w € W with w C ¥ (Proposition 3.5). Take some «,, € J such that

x3 <xotw foralle,f€J with 82>a>a,.
Suppose that o > «, is arbitrary. If A is infinite, there is § € A with p;s(x,) = 0,
because x, € Q and only finite number of x,, are nonzero. Put ¥ = 1/ 2q55_1(175),
v € V. Since x, | x in (P, V), we can find some € J with n > « such that
x, € (x)v. Then

(¢6(x)70) = (¢6(x)7¢6(x7))) o (¢6(x71)7¢5(xa))
€ 1/2175 o 1/217,5 C s,

i.e., ¢5(x) € vs(0p, ), which is a contradiction. Hence A is finite and x € Q.
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Now we show that x, | xin Q. Letw € Wand U C %W, U € U. Since (x4 )qcy is
lower Cauchy, there is oy € J such that

(3.2) (x5,x4) €U foralla, €T with 5> a > ay.

Fix @ > ayand let v € V. Since x, | x in (P,V), there is some 8 € Jwith 8 > «
such that xg € (x)vandso (3.2) yields xg € (x)vNU(x,). Thus x € U(x,). According
to Lemma 3.6 (a), U(x,) C 4U(x,), which yields x € 4U(x,) C w(x,) or x, € (x)w.
Therefore x,, | xin (Q,'W).

(b) If (Q,' W) is symmetric complete, then by Corollary 3.3 (c) and Proposi-
tion 2.8 (a), each P, is symmetric complete. The proof of the converse is similar
to part (a). [ |

In [1I], dual pair and X-topology are defined as follows.

Definition 3.8 A dual pair (P, Q) consists of two cones P and Q with a bilinear
mapping
(a,x) — (a,x) : P x Q — R.

Definition 3.9 Let (P, Q) be a dual pair and X be a collection of subsets of Q such
that:

(Py) inf{(a,x) :x € A} > —ocoforalla € Pand A € X;

(P;) M € Xforall A € Xand A > 0;

(P,) forall A, B € X there is some C € X such that AUB C C.

For each A € X we define
Us={(a,b) € P x P: (a,x) < (b,x) +1forallx € A}.

The set of all U4, A € X is a convex quasi-uniform structure with property (us)
and defines a locally convex structure on P. This is called the X-topology on P. For
each A € X we denote by v4 the (abstract) 0-neighborhood induced on P by U,.
Therefore (a,b) € U, if and only if a < b + v4. Obviously an X-topology on P
defines at the same time upper, lower, and symmetric topologies on P.

Theorem 3.10 Let (Q,' W) be direct sum of the locally convex cones (P~, V). Then

(@) ifvy € Vy, v € ' and U € U, which is defined by these neighborhoods, then
Wy = Xqervs; in particular Q* = X,erP7,

(b) if each P, v € T has the X,-topology, then the product X.crP’ has the X-
topology, where X is the set of all finite unions of the sets j.(X,).

Proof (a) LetU € Uand px € wy. Fixy € I'. Given (a-,,b,) € 7,0 € J, yields
Jy(ays) < jy(by,) +wy, hence o jy(ay,) < po jy(by) +1,0e, py(ay) < puy(by,) +1
or i, € v5. Conversely, let u € X,erv and (a,b) € U, then

(a,b) = > A\ (js(ay), jy(by)),  where (a),b,) € #,and 3 A, =1,

v7EA vEA
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which yields py(a,) < py(by) + 1or o j,(a,) < po jy(by) + 1. Therefore

Z Aypi o jy(ay) < Z Ao jy(ay) + Z Avs

V€A YEA vEA

i.e, pu(a) < p(b)+ 1.
Part (b) follows from [2, Theorem 3.15]. Indeed the adjoint operator of each j, is
the projection mapping ¢, of X <P onto P. ]

Theorem 3.11 Let (P,,V,), v € I, be locally convex cones.

(@) Ifvy, €V,,i=1,2,...,n,thenv® C Y1 vS, © mv°, wherev = N, @;1(17%.);
in particular P* =3 . P

(b) If each P’ has the X, -topology, then the direct sum locally convex cone 3 . P>
has the X-topology, where X is the set of all products X ,crA, with A, € X, for each
v el

Proof (a) If 1 € v°, then p is bounded on v(0)v. We claim that u = >_"_, 1, and
poy € vs, fori = 1,2,...,n. The mapping p vanishes on P, for each v (v # i,
i=1,2,...,n). Letx,, € P,,d € L,. Since (¢,, 0 j,)(xy,) = 0, we have

(j2(,),0) € 8717, (0,,(x,)) € 31 (7,) (1=1,2,....m),

s0 jy(xy;) € v(0)v, and since p1y(x;) = (@ o j)(xy;), by boundedness ofu(v(O)v)
we conclude that u,(x,;) = 0. Now, let a,,,b,, € P,, witha, < b, +v,,. Then
Jv(ay) < jy(by,) + v, which implies that p1 o j, (a,,) < po jy(by,) +1or py,(ay,) <
p; (b)) + 1. S0 iy, € V5.

Suppose that € Y0 iy, fiy, € v,and a < b+v. Thena,, < b, +v,, for
i = 1,2,...,n, which yields p,(a,,) < p,(by,) + 1 or ula) < p(b) + n. Hence
e m°. N

(b) Let us denote by Wy = {w, : A € X} the convex quasi-uniform structure
on ) ~er P induced by the X-topology. By Theorem 3.1, the direct sum convex

quasi-uniform structure on Zwer (Pi‘,, induced by \~7XA‘,, ~v € T', where \~7X = {va, :
A, € Xv’}’ is equivalent to a convex quasi-uniform structure U, where each U € U is
defined as

U=U{ A h0a) s D A = 1and Alsfinite}, 4, € X7 €T

yEA yEA
The proof will therefore be complete if we show that U C wy C nU for each A € X,

A = X, ¢crA, and some n € N, where U is defined by A.
For U C wy, let (7, k) € U. Then for a finite subset A of I" we have

(r,k) = Z Ay(jy 0Ty jy o ky), where (7, k) € 74, and Z Ay =1
yEA RIS
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Hence x = (x,) € Ayields

(T,x) = <Z Ayjy 0 wa>

yEA
< (D Mdyokx) + 30 A = (k) + 1,
7EA YEA

i.e., (7,k) € ws. For the second inclusion, if (7,k) € wy4 then (7,k) = Zﬁ/eA(jW o
Tys Jo © ky), where (7, k,) € 74, hence

(1,k) € Z J,(74,) € nU, forsomen € N. [ |
VEA
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