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Products and Direct Sums
in Locally Convex Cones

M. R. Motallebi and H. Saiflu

Abstract. In this paper we define lower, upper, and symmetric completeness and discuss closure of the

sets in products and direct sums. In particular, we introduce suitable bases for these topologies, which

leads us to investigate completeness of the direct sum and its components. Some results obtained about

X-topologies and polars of the neighborhoods.

1 Introduction

An ordered cone is a set P on which two operations, addition and scalar multiplication

for non-negative real numbers λ ≥ 0, are defined. The addition is assumed to be

associative and commutative, there is a neutral element 0 ∈ P, and for the scalar

multiplication the usual associative and distributive properties hold. In addition, the

cone P carries a preorder, i.e., a reflexive transitive relation ≤ such that a ≤ b implies

a+c ≤ b+c and λa ≤ λb for all a, b, c ∈ P and λ ≥ 0. For example, R = R∪{+∞} is

a preordered cone with respect to the usual addition, multiplication, and order on R.

In any cone P, equality is obviously a preorder, hence all results about ordered cones

apply to cones without order structures as well.

The subset V ⊂ (P,≤), where ≤ is a preorder relation on P, is called an (abstract)

0-neighborhood system if it satisfies the following requirements:

(v1) 0 < v for all v ∈ V.

(v2) For all u, v ∈ V there is a w ∈ V with w ≤ u and w ≤ v.

(v3) u + v ∈ V and λv ∈ V whenever u, v ∈ V and λ > 0.

An (abstract) 0-neighborhood system V induces three topologies on P, called the

upper, lower, and symmetric topologies. For v ∈ V, the neighborhoods of an element

a ∈ P with respect to these topologies are defined as

v(a) = {b ∈ P : b ≤ a + v}, (a)v = {b ∈ P : a ≤ b + v},

and v(a)v = v(a) ∩ (a)v, respectively. We remark that the symmetric topology is the

common refinement of the upper and lower topologies.

If we assume that all elements of P are bounded below, that is for every a ∈ P and

v ∈ V we have 0 ≤ a + ρv for some ρ > 0, then the pair (P,V) is called a full locally

convex cone. A locally convex cone (P,V) is a subcone of a full locally convex cone, not

necessarily containing the (abstract) 0-neighborhood system V.
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We will also deal with another equivalent structure, called a convex quasi-uniform

structure, that is defined as a collection U of convex subsets of P2 with the following

conditions:

(u1) ∆ ⊂ U for all U ∈ U; ∆ = {(a, a) : a ∈ P}.

(u2) For all U, V ∈ U there is a W ∈ U such that W ⊆ U ∩ V.

(u3) λU ◦ µU ⊆ (λ + µ)U for all λ, µ > 0 and U ∈ U, where λU ◦ µU = {(a, b) ∈ P2 :

∃c ∈ P with (a, c) ∈ λU and (c, b) ∈ µU}.

(u4) λU ∈ U, for all U ∈ U and λ > 0.

Each convex quasi-uniform structure U on P induces a preorder relation where

a ≤ b if and only if (a, b) ∈ U for all U ∈ U as well as three topologies: The neighbor-

hood bases for an element a ∈ P in the upper, lower, and symmetric topologies are

given respectively by the sets

U(a) = {b ∈ P : (b, a) ∈ U}, (a)U = {b ∈ P : (a, b) ∈ U}, U ∈ U,

and Us = {U ∩ U
−1 : U ∈ U}, where U−1 = {(b, a) : (a, b) ∈ U}.

The notions of (abstract) 0-neighborhood system V and convex quasi-uniform

structure U on a cone P are equivalent in the following sense.

For a locally convex cone (P,V) and each v ∈ V, we put

ṽ = {(a, b) ∈ P× P : a ≤ b + v}.

The collection Ṽ = {ṽ : v ∈ V} is a convex quasi-uniform structure on P that

induces the same upper, lower and symmetric topologies. On the other hand, if P is

a cone with a convex quasi-uniform structure U, then one can find a preorder and an

(abstract) 0-neighborhood system V such that the convex quasi-uniform structure Ṽ

is equivalent to U [1, Chapter I, 5.5].

If (P,V) is a locally convex cone, the condition that every element a ∈ P has to

be bounded below translates into “for each ṽ ∈ Ṽ there is some ρ > 0 such that

(0, a) ∈ ρṽ”. On the other hand, if a convex quasi-uniform structure U on a cone P

has the extra property

(u5) for all a ∈ P and U ∈ U, there is some ρ > 0 such that (0, a) ∈ ρU,

then the resulting cone will be locally convex, that is, every element a ∈ P will be

bounded below.

For locally convex cones P and Q, with convex quasi-uniform structures U and V

respectively, a linear mapping t : P → Q is called uniformly continuous (u-continuous)

if for every V ∈ V, there is some U ∈ U such that (a, b) ∈ U implies
(

t(a), t(b)
)
∈ V,

i.e., T(U) ⊆ V, T = t × t . If V and W are (abstract) 0-neighborhood systems on P

and Q, t is u-continuous if and only if for every w ∈ W there is some v ∈ V, such

that (a, b) ∈ ṽ implies
(

t(a), t(b)
)
∈ w̃ or equivalently; t(a) ≤ t(b) + w whenever

a ≤ b + v. Uniform continuity implies continuity with respect to the upper, lower

and symmetric topologies on P and Q. The set of all u-continuous linear functionals

µ : P → R is a cone called the dual cone of P and is denoted by P∗. In a locally convex

cone (P,V) the polar v◦ of v ∈ V is defined by v◦ = {µ ∈ P∗ : a ≤ b + v implies

µ(a) ≤ µ(b) + 1}. Obviously we have P∗ =
⋃

v∈V
v◦.
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Let U1 and U2 be convex quasi-uniform structures on P. We say that U1 is finer

than U2 (or U2 is coarser than U1) if the identity mapping i : (P,U1) → (P,U2) is

uniformly continuous.

In Section 2, we define notions of lower, upper, and symmetric completeness and

study closure of the sets in products.

In Section 3, we introduce a base to each of the lower, upper, and symmetric

topologies, which help us to study the completeness of the direct sum and its com-

ponents. Finally we obtain some results about X-topologies and polars of neighbor-

hoods.

2 Products

For each γ ∈ Γ, let (Pγ ,Vγ) be a locally convex cone and φγ : ×γ∈Γ Pγ → Pγ be

the projection mapping. The product P = ×γPγ is the projective limit of the locally

convex cones Pγ by the mappings φγ and is called the product locally convex cone,

denoted by (P,V). If Vγ = {vγδ : δ ∈ Iγ}, γ ∈ Γ, then each ṽ ∈ Ṽ is a finite

intersection of the sets Φ−1
γ (ṽγδ ), where Φγ = φγ × φγ , and ṽ = ∩n

i=1Φ
−1
γi

(ṽγiδi
), say.

Let (P,V) be a locally convex cone and A ⊆ P. The closure of A with respect to

the lower topology is defined by

A = {b ∈ P : for every v ∈ V, there is some a ∈ A with b ≤ a + v}

= {b ∈ P : for every v ∈ V, (b)v ∩ A 6= ∅}.

For a ∈ P, we put a = {a}. In particular a =
⋂

v∈V
v(a). The closures of A with

respect to the upper and symmetric topologies, denoted by A and A
s

respectively, are

defined in a similar way; for details, see [1].

Proposition 2.1 Let A = ×γ∈ΓAγ ⊆ (P,V). Then

A = ×γ∈ΓAγ , A = ×γ∈ΓAγ , and A
s
= ×γ∈ΓA

s

γ .

Proof We prove the first equality. Let t = (tγ) ∈ (×Aγ). Fix γ ∈ Γ and let vγδ ∈ Vγ ,

δ ∈ Iγ , be arbitrary. Since φγ is u-continuous, we have Φ−1
γ (ṽγδ ) ∈ Ṽ. Hence there is

an x = (xγ) ∈ ×Aγ such that (t, x) ∈ Φ−1
γ (ṽγδ ) or (tγ , xγ) = Φγ(t, x) ∈ ṽγδ for each

vγδ ∈ Vγ . Thus for each γ ∈ Γ, tγ ∈ Aγ or t ∈ ×γ∈ΓAγ .

Now let t = (tγ) ∈ ×γ∈ΓAγ and v ∈ V be arbitrary. There are vγiδi
∈ Vγi

(i =

1, 2, . . . , n) such that ṽ =
⋂n

i=1 Φ
−1
γi

(ṽγiδi
). Since tγi

∈ Aγi
, there is xγi

∈ (tγi
)vγiδi

∩Aγi

(i = 1, 2, . . . , n). Put x = (xγ) ∈ ×Aγ , where xγ = xγi
for γ = γi and xγ ∈ Aγ

otherwise. Then (tγi
, xγi

) = Φγi
(t, x) ∈ ṽγiδi

, hence (t, x) ∈ ṽ. This implies that

t ∈ A.

Definition 2.2 A locally convex cone (P,V) is called separated if a = b implies

a = b for all a, b ∈ P.

The locally convex cone (P,V) is separated if and only if the symmetric topology

onP is Hausdorff [1, Chapter I, Proposition 3.9]. This implies that (P,V) is separated

if and only if for each a ∈ P, as
= {a}.
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Proposition 2.3 Let (P,V) = ×γ∈Γ(PγVγ). Then

(a) for each x = (xγ) ∈ (P,V), we have

x = ×γ∈Γxγ , x = ×γ∈Γxγ , and xs
= ×γ∈Γxs

γ ;

(b) the product locally convex cone P = ×γ∈ΓPγ is separated if and only if each Pγ is

separated;

(c) if eachPγ is separated, then for each γ, jγ(Pγ) is closed with respect to the symmetric

topology in (P,V).

Proof Parts (a) and (c) follow from Proposition 2.1. For (b), let x = (xγ). Each

Pγ is separated if and only if xs
γ = {xγ}, γ ∈ Γ, and this is the case if and only if

xs
= {x}.

Example 2.4 (i) A subset A of a preordered cone is called decreasing if a ∈ A and

b ≤ a for some b ∈ A imply b ∈ A. For a subset B of P, we denote by

↓ B = {a ∈ P : a ≤ b for some b ∈ B}

the decreasing subset generated by B. In a same way one defines the notion of an in-

creasing subset and ↑ B, the increasing subset generated by B. We denote by Conv(P),

the set of all nonempty convex subsets of P which is a cone with usual addition and

scalar multiplication.

Let (P,V) be a locally convex cone. If we identify the elements of V with singleton

sets v̄ = {v}, then V = {v̄ : v ∈ V} is a subset of Conv(P), which can be preordered

using the preorder of P. For A,B ∈ Conv(P), we define

A ≤ B if for each a ∈ A there is some b ∈ B such that a ≤ b,

then
(

Conv(P),V
)

becomes a full locally convex cone. Also, we denote by DConv(P)

(DConv(P)), the set of all decreasing convex subsets (respectively, closed decreasing

convex subsets) of P, where closure is meant with respect to the lower topology on P.

If we modify the addition, both sets will become cones as well:

A ⊕ B =↓ (A + B) for A,B ∈ DConv(P),

A⊕B = {↓ (A + B)} for A,B ∈ DConv(P).

With the preorder and (abstract) 0-neighborhood system induced by Conv(P), both(
DConv(P),V

)
and

(
DConv(P),V

)
are locally convex cones. In particular, P =

{a : a ∈ P} as a subcone of DConv(P) is a locally convex cone. For details see [1].

Now, if (P,V) = ×γ∈Γ(Pγ ,Vγ), then
(

DConv(P),V
)

is the product locally con-

vex cone of the locally convex cones
(

DConv(Pγ),Vγ

)
; in particular, (P,V) is the

product locally convex cone (Pγ ,Vγ), γ ∈ Γ. For, by Proposition 2.1, the set A ⊂
(P,V) is closed decreasing convex if and only if each Aγ is closed decreasing convex

in (Pγ ,Vγ). Hence

DConv(P) = ×γ∈ΓDConv(Pγ),
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and the projection mappings

φγ : DConv(P) → DConv(Pγ), γ ∈ Γ,

φγ(A) = ↓ Aγ , where A ∈ DConv(P)

are well defined and u-continuous by [1, II, 1.6].

Suppose that v ∈ V, ṽ =
⋂n

i=1 Φ
−1
γi

(ṽγiδi
) and A,B ∈ DConv(P). Then

A ≤ B + v̄ if and only if φγi
(A) ≤ φγi

(B) + v̄γiδi
(i = 1, 2, . . . , n).

Thus

˜̄v =

n⋂
i=1

Φ
−1

γi
(˜̄vγiδi

),where Φγi
= φγi

× φγi
.

Hence the product convex quasi-uniform structure on P, induced by the (abstract)

0-neighborhood systems Vγ , is identical to Ṽ; where Ṽ = {˜̄v : v̄ ∈ V}.

Likewise,
(

Conv(P),V
)

and
(

DConv(P),V
)

are the product locally convex cones

of
(

Conv(Pγ),Vγ

)
and

(
DConv(Pγ),Vγ

)
, respectively.

(ii) Let (P,V) be a locally convex cone. A ⊂ P is called bounded if for every v ∈ V

there exists λ > 0 such that

a ≤ λv and 0 ≤ a + λv for all a ∈ A.

Also A ⊂ P is called internally bounded if for every v ∈ V there exists λ > 0 such

that a ≤ b +λv for all a, b ∈ A [4]. The set of all bounded (B) or internally bounded

(IB) sets of a locally convex cone is a subcone. For A ⊂ (P,V), we have

A ∈ B if and only if Aγ ∈ Bγ .

and

A ∈ IB if and only if Aγ ∈ (IB)γ .

Therefore (B,V) = ×γ∈Γ(BγVγ) and (IB,V) = ×γ∈Γ

(
(IB)γ ,Vγ

)
; in particular,

each x = (xγ) ∈ P is bounded if and only if each xγ is bounded. Hence B, the subcone

of all bounded elements of P, is the product locally convex cone of Bγ , γ ∈ Γ, where

each Bγ is the subcone of all bounded elements of Pγ .

Definition 2.5 Let (xα)α∈I be a net in (P,V) and x ∈ P. We write xα ↓ x (xα ↑ x) if

(xα)α∈I converges to x with respect to the lower (respectively, upper) topology. Also

xα → x means that xα ↑ x and xα ↓ x, i.e., (xα)α∈I converges to x with respect to the

symmetric topology.

We define (xα)α∈I in (P,V) to be lower (upper) Cauchy if for every v ∈ V there

is some αv ∈ I such that xβ ≤ xα + v (respectively, xα ≤ xβ + v) for all α, β with

β ≥ α ≥ αv. Also (xα)α∈I is called symmetric Cauchy if it is lower and upper Cauchy,

i.e., if for each v ∈ V there is some αv ∈ I such that xβ ≤ xα + v and xα ≤ xβ + v for

all α, β with α, β ≥ αv.
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Definition 2.6 The locally convex cone (P,V) is called lower (upper and symmetric)

complete if every lower (respectively, upper and symmetric) Cauchy net converges in

lower (respectively, upper and symmetric) topology. In general, the set A ⊂ P is

called lower (upper and symmetric) complete if every lower (respectively, upper and

symmetric) Cauchy net is convergent to an element of A in corresponding topology.

Proposition 2.7 In a separated locally convex cone (P,V), a net (xα)α∈I cannot con-

verge to more than one point.

Proof Suppose that (xα)α∈I converges to a and b in P in the symmetric topology.

Then for each v ∈ V, there is some αv ∈ I such that xα ∈ v(a)v ∩ v(b)v for all

α ≥ αv, which is a contradiction, since the symmetric topology is Hausdorff.

Proposition 2.8 Let (P,V) be a locally convex cone. Then

(a) if B ⊂ P is lower (upper and symmetric) complete, then every closed subset of

B, with respect to the lower (respectively, upper and symmetric) topology, is lower

(respectively, upper and symmetric) complete,

(b) if (P,V) is separated, then a symmetric complete subset of P is closed with respect

to the symmetric topology.

Proof For (a), let A be lower complete and B be a closed subset of A with respect to

the lower topology. If (xα)α∈I is a lower Cauchy net in B, then it is also lower Cauchy

in A. Hence xα ↓ a ∈ A and a is a limit point of B, in lower topology. So a ∈ B = B.

For part (b), let A be symmetric complete and a ∈ A
s
. Let (xα)α∈I be a net in A, such

that xα → a. Clearly, (xα)α∈I is symmetric Cauchy in A and xα converges to a point

of A in symmetric topology. Since (P,V) is separated, by Proposition 2.7, this point

is a. Thus a ∈ A and A is closed with respect to the symmetric topology.

Note that only decreasing sets in (P,V) may be closed with respect to the lower

topology, and only increasing sets could be closed with respect to the upper topology.

Hence the symmetric complete subsets of a separated locally convex cone need not

be closed with respect to upper or lower topology. For each a ∈ (P,V), the singleton

set {a} is lower (upper) complete but not closed with respect to lower (respectively,

upper) topology, so the lower (upper) complete set need not be closed with respect

to lower (respectively, upper) topology. Also, if a locally convex cone is symmetric

complete, it is not necessary to be both lower and upper complete.

Example 2.9 Conv(R) with set inclusion as order and V = {(−ǫ, ǫ) : ǫ > 0} as the

0-neighborhood system, is symmetric and upper complete but not lower complete.

Let (cα)α∈I be a symmetric Cauchy net in Conv(R). Let ε ∈ V, ε = (−ǫ, ǫ). There is

αε ∈ I such that

cα ≤ cβ + ε and cβ ≤ cα + ε for all α, β with α, β ≥ αε.

If for all α ≥ αǫ, cα = (−∞,+∞], then cα → (−∞,+∞] ∈ Conv(R). For every

α ≥ αε, let cα be a finite open, semi-open or closed interval in R. Let (iα)α∈I and

(eα)α∈I be the nets of the initial and end points of these intervals, respectively. Then

for all α, β ≥ αε, we have

iβ ≤ iα + ǫ and eα ≤ eβ + ǫ.
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Put i = infα≥αε
iα and e = supα≥αε

eα. Then cα → ([i, e] ∈ Conv(R). The upper

completeness is proved in a similar way.

The sequence
(

(−∞, n]
)

n∈N
is lower Cauchy but not convergent in lower topol-

ogy. So
(

Conv(R),V
)

is not lower complete.

Similarly, (R, ε), where ε = {ǫ : ǫ ∈ R
+}, is symmetric and upper complete but

not lower complete; also
(

Conv(R),V
)

is only symmetric complete.

Remark 2.10 (i) Let (P,V) be a locally convex cone and let a ∈ (P,V). Every

net in a converges to a with respect to the lower topology, i.e., a is lower complete.

Similarly, a is upper complete. Also, every net in as converges to a with respect to each

of the lower, upper, and symmetric topologies, so as is lower, upper, and symmetric

complete.

In [1], the global preorder ≺ on (P,V) is defined by a ≺ b, if a ≤ b + v for

all v ∈ V. If the global preorder ≺ coincides with the original one, then each of the

subconesP−,P+ is lower and upper complete, respectively; in particular, the subcone

P− ∩ P+ is not only symmetric complete but also lower and upper complete, where

P− = {a ∈ P : a ≤ 0} and P+ = {a ∈ P : a ≥ 0}; indeed, applying the natural

element 0 ∈ P, implies that P−
γ = 0, P+

γ = 0 and P−
γ ∩ P+

γ = 0
s
.

(ii) A locally convex cone (P,V) is said to have the strict separation property, in

short (SP), if for all a, b ∈ P and v ∈ V with a 6≤ b + ρv for some ρ > 1, there is a

µ ∈ v◦ such that µ(a) > µ(b) + 1.

In a lower (upper) complete locally convex cone with (SP), we can find a base

for the upper (respectively, lower) topology whose elements are lower (respectively,

upper) complete. In particular, in a symmetric complete locally convex cone with

(SP), the symmetric topology has a base whose elements are symmetric complete [2,

2.12, iv].

Proposition 2.11 Let (P,V) = ×γ∈Γ(Pγ ,Vγ), x = (xγ) ∈ P and (xα)α∈I be a net

in P. Then

(a) xα ↓ x (xα ↑ x and xα → x) if and only if ϕγ(xα) ↓ xγ (respectively, ϕγ(xα) ↑ xγ
and ϕγ(xα) → xγ), γ ∈ Γ,

(b) (xα)α∈I is lower (upper and symmetric) Cauchy if and only if each ϕγ(xα) is lower

(respectively, upper and symmetric) Cauchy in Pγ .

Proof (a) If xα ↓ x in P and γ ∈ Γ, then for each vγ ∈ Vγ we have Φ−1
γ (ṽγ) ∈ Ṽ. So

there is some αvγ ∈ I such that for all α ≥ αvγ , (x, xα) ∈ Φ−1
γ (ṽγ) or xαγ ∈ (xγ)vγ ,

that is, xαγ ↓ xγ . For the converse, let φγ(xα) ↓ xγ in Pγ , γ ∈ Γ. Let v ∈ V,

ṽ =
⋂n

i=1 Φ
−1
γi

(ṽγi
), be arbitrary. Since xαγi

↓ xγi
(i = 1, 2, . . . , n), there is some

α0 ∈ I such that

xγi
≤ xαγi

+ vγi
(i = 1, 2, . . . , n) for all α ≥ α0.

This yields (x, xα) ∈ λṽ for all α ≥ α0, i.e., xα ↓ x. Part (b) is proved in a similar

way.
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Proposition 2.12 For each γ ∈ Γ, let (Pγ ,Vγ) be a locally convex cone and Aγ ⊆ Pγ .

Then A = ×γ∈ΓAγ is a lower (upper and symmetric) complete subset of (P,V) =

×γ∈Γ(Pγ ,Vγ) if and only if each Aγ is lower (respectively, upper and symmetric) com-

plete.

Proof Let A be lower complete and (zαγ)α∈I be a lower Cauchy net in Pγ . By

Proposition 2.11 (b), there is a lower Cauchy net (xα)α∈I in P such that (zαγ)α∈I =

φγ

(
(xα)α∈I

)
. In fact, in each Pδ , δ 6= γ, we choose a lower Cauchy net (xαδ)α∈I and

put xα = (xαλ) ∈ (P,V), α ∈ I, where

xαλ =

{
zαγ for λ = γ

xαδ otherwise.

Then there is a ∈ A such that xα ↓ a. So zαγ ↓ φγ(a) ∈ Aγ by Proposition 2.11 (b),

which shows that Aγ is lower complete. Conversely, let each Aγ be lower complete

and let (xα)α∈I be a lower Cauchy net in P. Each φγ

(
(xα)α∈I

)
= (xαγ)α∈I is a lower

Cauchy net. Hence xαγ ↓ aγ ∈ Aγ , a = (aγ) ∈ A and xα ↓ a. The proof of the others

is similar.

In particular we have the following theorem.

Theorem 2.13 The product locally convex cone P = ×γ∈ΓPγ is lower (upper and

symmetric) complete if and only if each Pγ is lower (respectively, upper and symmetric)

complete.

3 Direct Sums

Let Pγ , γ ∈ Γ be cones and P = ×Pγ . The subcone of P spanned by
⋃
Pγ (more

precisely, by
⋃

jγ(Pγ), where jγ : Pγ → P is the injection mapping) is called the

direct sum of the cones Pγ , γ ∈ Γ and denoted by
∑

γ∈Γ
Pγ . It is worth remembering

that here we only use positive scalars.

If each Pγ , γ ∈ Γ is a locally convex cone, the direct sum Q =
∑

Pγ can be

endowed with the convex quasi-uniform structure induced by Ṽ, where V is the (ab-

stract) 0-neighborhood system of P. We call this the product convex quasi-uniform

structure on
∑

Pγ . By Proposition 3.5, it induces the original convex quasi-uniform

structure on each Pγ . The finest such convex quasi-uniform structure on Q is ob-

tained by regarding Q as the inductive limit of the cones Pγ by the injection mappings

jγ and denoted by W̃ [3, Theorem 3.1].

Theorem 3.1 Let (Pγ ,Vγ), γ ∈ Γ be locally convex cones, let U be the set of all convex

sets U defined as

U =

⋃{∑

γ∈∆

λγ Jγ(ṽγ) :
∑

γ∈∆

λγ = 1 and ∆ is finite
}
, vγ ∈ Vγ , γ ∈ Γ.

Then U is a convex quasi-uniform structure on Q which is equivalent to W̃.
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Note that in defining a U ∈ U we take one vγ from each Vγ , γ ∈ Γ, and form all

finite sums of these fixed vγ , as above.

Proof For (u2), let

U1 =

⋃{ ∑

γ1∈∆

λγ1
Jγ1

(ṽγ1
) :

∑

γ1∈∆

λγ1
= 1 and ∆ is finite

}
, vγ1

∈ Vγ and

U2 =

⋃{ ∑

γ2∈∆

λγ2
Jγ2

(ṽγ2
) :

∑

γ2∈∆

λγ2
= 1 and ∆ is finite

}
, vγ2

∈ Vγ .

If we choose vγ ≤ vγ1
, vγ2

in Vγ , γ ∈ Γ and set

U =

⋃{∑

γ∈∆

λγ Jγ(ṽγ) :
∑

γ∈∆

λγ = 1 and ∆ is finite
}
,

we have U ⊆ U1 ∩ U2.

For (u3), let U ∈ U, λ, µ > 0. To show that λU◦µU ⊂ (λ+µ)U, let (a, b) ∈ λU◦µU.

There is z ∈ (Q,W) such that (a, z) ∈ λU and (z, b) ∈ µU. There are finite subsets ∆,

Θ of Γ such that

(a, z) = λ
∑

γ∈∆

λγ

(
jγ(aγ), jγ(zγ)

)
, (aγ , zγ) ∈ ṽγ , with

∑

γ∈∆

λγ = 1,

and

(z, b) = µ
∑

θ∈Θ

λθ

(
jθ(zθ), jθ(bθ)

)
, (zθ, bθ) ∈ ṽθ, with

∑

θ∈Θ

λθ = 1,

where vγ , γ ∈ ∆ and vθ, θ ∈ Θ are in defining U.

For simplicity we write aγ = jγ(aγ), γ ∈ Γ, and so on. There are three possibili-

ties.

(i) ∆ = Θ. Without loss of generality let ∆ = Θ = {1, 2, . . . , n}. Then

(a, z) = λ

n∑

i=1

λi(ai , zi), (z, b) = µ

n∑

i=1

λ ′
i (z ′i , bi),

where (ai , zi) ∈ Ji(ṽi), (z ′i , bi) ∈ Ji(ṽi),
∑n

i=1 λi =
∑n

i=1 λ
′
i = 1 and

z = λ

n∑

i=1

λizi = µ

n∑

i=1

λ ′
i z ′i ,

hence λλizi = µλ ′
i z ′i , i = 1, 2, . . . , n. Now we have

(λλiai , µλ
′
i bi) = (λλiai , λλizi) ◦ (µλ ′

i z ′i , µλ
′
i bi)

= λλi(ai , zi) ◦ µλ
′
i (z ′i , bi)

∈ λλi ṽi ◦ µλ
′
i ṽi ⊆ (λλi + µλ ′

i ) Ji(ṽi).
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Hence

(a, b) =

n∑

i=1

(λλiai , µλ
′
i bi) ∈ (λ + µ)

n∑

i=1

(λλi + µλ ′
i )/λ + µ Ji(ṽi)

with
∑n

i=1(λλi + µλ ′
i )/λ + µ = 1, i.e., (a, b) ∈ (λ + µ)U.

(ii) ∆ 6= Θ and∆∩Θ = ∅. Let∆ = {1, 2, . . . , n}, Θ = {n+1, n+2, . . . , n+m}
say. Then for 1 ≤ i ≤ n we have ai 6= 0 but bi = 0 and zi = 0, also for n < i ≤ n + m

we have bi 6= 0 but ai = 0 and zi = 0. Hence for 1 ≤ i ≤ n, (a, z) = λ
∑n

i=1(λiai , 0),∑n
i=1 λi = 1 and

n∑

i=1

(λλiai , µλ
′
i bi) =

n∑

i=1

(λλiai , λλizi) ◦ (µλ ′
i zi , µλ

′
i bi)

∈

n∑

i=1

(λλi + µλ ′
i ) Ji(ṽi), where λ ′

i = 0, 1 ≤ i ≤ n

also for n < i ≤ n + m, (z, b) =
∑n+m

i=n+1 λ
′
i (0, bi),

∑n+m
i=n+1 λ

′
i = 1, and

n+m∑

i=n+1

(λλiai , µλ
′
i bi) ∈

m+n∑

i=n+1

(λλi + µλ ′
i ) Ji(ṽi), where λi = 0, n ≤ i ≤ n + m.

Hence

(a, b) =

n+m∑

i=1

(λλiai , µλ
′
i bi) ∈ (λ + µ)

n+m∑

i=1

(λλi + µλ ′
i )/λ + µ Ji(ṽi)

with
∑n+m

i=1 (λλi + µλ ′
i )/λ + µ = 1, i.e., (a, b) ∈ (λ + µ)U.

(iii) ∆ 6= Θ, ∆ ∩ Θ 6= ∅. Put ∆ ∪ Θ = (∆ − Θ) ∪ (∆ ∩ Θ) ∪ Θ − ∆. For

∆ ∩ Θ by (i) and for ∆ − Θ and Θ − ∆ by (ii) the requirements hold; combining

these two we get the result for this case also.

The conditions (u1) and (u4) are trivial.

For (u5), let U ∈ U and x =
∑

γ∈∆ ′ jγ(xγ) ∈ Q. For each γ ∈ ∆ ′, take vγ ∈ Vγ

as in defining U. There are µγ > 0, γ ∈ ∆ ′ such that
(

0, jγ(xγ)
)
∈ µγ Jγ(ṽγ). Put

µ =
∑

γ∈∆ ′ µγ . Then

1/µ(0, x) = 1/µ
(

0,
∑

γ∈∆ ′

jγ(xγ)
)
∈

∑

γ∈∆ ′

µγ/µ Jγ(ṽγ) ⊆ U,

i.e., (0, x) ∈ µU. Hence U is a convex quasi-uniform structure on Q.

Now we show that U and W̃ are equivalent. If U ∈ U, then for each γ ∈ Γ, there is

vγ ∈ Vγ in defining U. For this vγ , we have Jγ(ṽγ) ⊂ U, hence jγ is u-continuous. But

W̃ is the finest convex quasi-uniform structure on Q that makes each jγ u-continuous
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[3, Theorem 3.1]. Hence W̃ is finer than U. Next, let w ∈ W. For each γ ∈ Γ,

J−1
γ (w̃) ∈ Ṽγ , by definition. Put

U =

⋃{∑

γ∈∆

λγ Jγ ◦ J−1
γ (w̃) :

∑

γ∈∆

λγ = 1 and ∆ is finite
}
.

Since for each γ ∈ ∆, Jγ ◦ J−1
γ (w̃) ⊆ w̃, we have

∑

γ∈∆

λγ Jγ ◦ J−1
γ (w̃) ⊆

∑

γ∈∆

λγw̃ = w̃,

which shows that U ⊆ w̃, hence U is also finer than W̃.

If there is a one-to-one linear mapping t of (P,V) onto (Q,W) such that both t

and its inverse t−1 are u-continuous, then these two locally convex cones are called

uniformly isomorphic (u-isomorphic) and we say that t is a u-isomorphism.

Proposition 3.2 Let (Q,W) =
∑

γ∈Γ
(Pγ ,Vγ). Then

(a) for each γ, φγ : (Q,W) → (Pγ ,Vγ) is a u-isomorphism,

(b) if A ⊂ (Q,W), A =
∑

γ∈Γ
φγ(A), then

A =

∑

γ∈Γ

φγ(A), A =

∑

γ∈Γ

φγ(A) and A
s
=

∑

γ∈Γ

φγ(A)
s
.

Proof (a) Fix γ ∈ Γ and let vγδ ∈ Vγ , δ ∈ Iγ . The neighborhoods vλ, λ ∈ Γ,

where vλ = vγδ for λ = γ and vλ ∈ Vλ otherwise, give some U ∈ U in which

Φγ(U ) ⊂ ṽγδ , i.e., φγ is u-continuous. By [3, Theorem 3.1], φ−1
γ = jγ is also u-

continuous. Therefore φγ is a u-isomorphism.

(b) We prove the first equality. Let x ∈ A, x =
∑

γ∈∆
φγ(x), where ∆ is finite.

If γ ∈ ∆ and vγ ∈ Vγ , then part (a) gives some U ∈ U such that Φγ(U) ⊆ ṽγ . So(
φγ(x), φγ(a)

)
∈ ṽγ for some a ∈ (x)U ∩ A. Hence φγ(x) ∈ φγ(A). Conversely,

let x =
∑

γ∈∆
φγ(x), where ∆ has n elements; say, and φγ(x) ∈ φγ(A), for each

γ ∈ ∆. Let w ∈ W and U ∈ U with U ⊂ 1/nw̃. We can find some a ∈ A such that

φγ(a) ∈
(
φγ(x)

)
vγ ∩ φγ(A) for each vγ ∈ Vγ in defining U and γ ∈ ∆, which yields

(x, a) =
∑

γ∈∆

(
φγ(x), φγ(a)

)
∈
∑

γ∈∆

ṽγ ⊂ nU ⊂ w̃,

i.e., a ∈ (x)U ∩ A. So x ∈ A.

Corollary 3.3 Let (Q,W) =
∑

γ∈Γ
(Pγ ,Vγ). Then

(a) for each x ∈ Q, x =
∑

γ∈Γ
φγ(x), we have

x =

∑

γ∈Γ

φγ(x), x =

∑

γ∈Γ

φγ(x) and xs
=

∑

γ∈Γ

φγ(x)
s
,
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(b) (Q,W) is separated if and only if each (Pγ ,Vγ), γ ∈ Γ is separated,

(c) if each Pγ is separated, then jγ(Pγ) is closed with respect to the symmetric topology

in (Q,W).

Remark 3.4 (i)
(

DConv(Q),W
)

is the direct sum of
(

DConv(Pγ),Vγ

)
, γ ∈ Γ;

in particular (Q,W) is the direct sum of the locally convex cones (Pγ ,Vγ).

(ii) For each γ ∈ Γ and aγ ∈ Pγ , jγ(aγ) and jγ(aγ) is lower and upper complete in

both of (Q,W) and (P,V), respectively. Also jγ(as
γ) is lower, upper, and symmetric

complete; in particular if the global preorders coincide with the original ones, for

each γ ∈ Γ, jγ(P−
γ ) and jγ(P+

γ ) is lower and upper complete, respectively, and the

subcone jγ(P−
γ ∩ P+

γ ) is lower, upper, and symmetric complete.

Proposition 3.5 Let (Pγ ,Vγ), γ ∈ Γ be locally convex cones. The direct sum convex

quasi-uniform structure W̃ is finer than the product convex quasi-uniform structure Ṽ.

For every finite subset ∆ of Γ, these two coincide on
∑

γ∈∆
Pγ . The direct sum convex

quasi-uniform structure W̃ induces the original convex quasi-uniform structure Ṽγ on

each Pγ , γ ∈ Γ.

Proof If v ∈ V, v =
⋂n

i=1 φ
−1
γi

(ṽγiδi
), then U ⊂ ṽ, where U is defined by neighbor-

hoods vγ = vγiδi
for γ = γi (i = 1, 2, . . . , n) and vγ ∈ Vγ otherwise. So W̃ is finer

than Ṽ.

Let w ∈ W and vγ ∈ Vγ , ṽγ = J−1
γ (w̃) (γ ∈ ∆). If we put ṽ =

⋂
γ∈∆

Φ−1
γ (ṽγ),

then 1/nṽ ⊂ w̃. Therefore Ṽ is also finer than W̃. In the special case ∆ = {γ},

Proposition 3.2 (a) gives the last part.

Lemma 3.6 Let (P,V) and (Q,W) be the product and direct sum locally convex cones;

respectively. Then

(a) the upper topology of (Q,W) has a base whose members are closed with respect to

the lower topology of (P,V),

(b) the lower topology of (Q,W) has a base whose members are closed with respect to

the upper topology of (P,V),

(c) the symmetric topology of (Q,W) has a base whose members are closed with respect

to the symmetric topology of (P,V).

Proof (a) We show that for each U ∈ U and a ∈ Q, U(a) ⊆ 4U(a), where U(a) is

closure of U(a) with respect to lower topology of (P,V). Let x ∈ U(a). There is a

finite subset ∆ of Γ, containing say n elements, such that φγ(a) = 0, for each γ /∈ ∆.

Let v ∈ V, ṽ = 1/n ∩γ∈∆ Φ−1
γ (U ∩ P2

γ). There is some y ∈ (x)v ∩ U(a), such that

(3.1)
(∑

γ∈∆

φγ(x),
∑

γ∈∆

φγ(y)
)
∈ U and (y, a) ∈ U.

Put ∆ ′ = {γ ∈ Γ : φγ(x) 6= 0, γ /∈ ∆} and denote by κ the number of the elements

in ∆ ′. Fix γ ∈ ∆ ′ and let vγ ∈ Vγ be the corresponding 0-neighborhood in defin-

ing U. By Proposition 2.1, φγ(x) ∈ φγ

(
U(a)

)
, which yields

(
φγ(x), φγ(z)

)
∈ 1

κ ṽγ for
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some z ∈ U(a) and by (z, a) ∈ U, we choose some λγ with 0 ≤ λγ ≤ 1 such that(
φγ(z), φγ(a)

)
∈ λγ ṽγ . Thus

(
φγ(x), φγ(a)

)
=

(
φγ(x), φγ(z)

)
◦
(
φγ(z), φγ(a)

)

∈ 1
κ ṽγ ◦ λγ ṽγ ⊆ ( 1

κ + λγ)ṽγ .

Therefore

∑

γ∈∆ ′

(
φγ(x), φγ(a)

)
∈

1

κ

∑

γ∈∆ ′

ṽγ +
∑

γ∈∆ ′

λγ ṽγ

⊆ U + U = 2U,

which by (3.1) implies that

(x, a) =

(∑

γ∈∆

φγ(x),
∑

γ∈∆

φγ(a)

)
+

( ∑

γ∈∆ ′

φγ(x),
∑

γ∈∆ ′

φγ(a)

)

∈ U + U + 2U = 4U,

i.e., x ∈ 4U(a). In a similar way we prove parts (b) and (c).

Theorem 3.7 Let each (Pγ ,Vγ) be separated. Then

(a) if each (Pγ ,Vγ) is lower (upper) complete, then (Q,W) is lower (respectively, upper)

complete,

(b) (Q,W) is symmetric complete if and only if each (Pγ ,Vγ) is symmetric complete.

Proof (a) Let (xα)α∈I be a lower Cauchy net inQ. Then (xα)α∈I is also lower Cauchy

in (P,V), and since (P,V) is lower complete (Theorem 2.13), there is some x ∈ P

such that xα ↓ x in (P,V). We show that x ∈ Q and xα ↓ x in (Q,W).

If x = 0, then x ∈ Q. For x 6= 0, let ∆ be the subset of Γ such that for each γ ∈ ∆,

φγ(x) 6= 0. Since the upper topology of (Pγ ,Vγ), γ ∈ Γ is T0 [1, 3.9], for each γ ∈ ∆

there is vγ ∈ Vγ such that φγ(x) /∈ vγ(0Pγ
). Then for v ∈ V, ṽ =

1
2

⋂
γ∈∆

Φ−1
γ (ṽγ),

there is some w ∈ W with w̃ ⊂ ṽ (Proposition 3.5). Take some αw ∈ I such that

xβ ≤ xα + w for all α, β ∈ I with β ≥ α ≥ αw.

Suppose that α ≥ αw is arbitrary. If ∆ is infinite, there is δ ∈ ∆ with ϕδ(xα) = 0,

because xα ∈ Q and only finite number of xαγ are nonzero. Put ṽ = 1/2φ−1
δ (ṽδ),

v ∈ V. Since xα ↓ x in (P,V), we can find some η ∈ I with η ≥ α such that

xη ∈ (x)v. Then

(
φδ(x), 0

)
=

(
φδ(x), φδ(xη)

)
◦
(
φδ(xη), φδ(xα)

)

∈ 1/2ṽδ ◦ 1/2ṽδ ⊆ ṽδ,

i.e., φδ(x) ∈ vδ(0Pγ
), which is a contradiction. Hence ∆ is finite and x ∈ Q.
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Now we show that xα ↓ x in Q. Let w ∈ W and U ⊆ 1
4
w̃, U ∈ U. Since (xα)α∈I is

lower Cauchy, there is αU ∈ I such that

(3.2) (xβ , xα) ∈ U for all α, β ∈ I with β ≥ α ≥ αU.

Fix α ≥ αU and let v ∈ V. Since xα ↓ x in (P,V), there is some β ∈ I with β ≥ α
such that xβ ∈ (x)v and so (3.2) yields xβ ∈ (x)v∩U(xα). Thus x ∈ U(xα). According

to Lemma 3.6 (a), U(xα) ⊆ 4U(xα), which yields x ∈ 4U(xα) ⊆ w(xα) or xα ∈ (x)w.

Therefore xα ↓ x in (Q,W).

(b) If (Q,W) is symmetric complete, then by Corollary 3.3 (c) and Proposi-

tion 2.8 (a), each Pγ is symmetric complete. The proof of the converse is similar

to part (a).

In [1], dual pair and X-topology are defined as follows.

Definition 3.8 A dual pair (P,Q) consists of two cones P and Q with a bilinear

mapping

(a, x) 7−→ 〈a, x〉 : P× Q −→ R.

Definition 3.9 Let (P,Q) be a dual pair and X be a collection of subsets of Q such

that:

(P0) inf{〈a, x〉 : x ∈ A} > −∞ for all a ∈ P and A ∈ X;

(P1) λA ∈ X for all A ∈ X and λ > 0;

(P2) for all A,B ∈ X there is some C ∈ X such that A ∪ B ⊆ C .

For each A ∈ X we define

UA = {(a, b) ∈ P× P : 〈a, x〉 ≤ 〈b, x〉 + 1 for all x ∈ A}.

The set of all UA, A ∈ X is a convex quasi-uniform structure with property (u5)

and defines a locally convex structure on P. This is called the X-topology on P. For

each A ∈ X we denote by vA the (abstract) 0-neighborhood induced on P by UA.

Therefore (a, b) ∈ UA if and only if a ≤ b + vA. Obviously an X-topology on P

defines at the same time upper, lower, and symmetric topologies on P.

Theorem 3.10 Let (Q,W) be direct sum of the locally convex cones (Pγ ,Vγ). Then

(a) if vγ ∈ Vγ , γ ∈ Γ and U ∈ U, which is defined by these neighborhoods, then

w◦
U
= ×γ∈Γv◦γ ; in particular Q∗ = ×γ∈ΓP

∗
γ ,

(b) if each P∗
γ , γ ∈ Γ has the Xγ-topology, then the product ×γ∈ΓP

∗
γ has the X-

topology, where X is the set of all finite unions of the sets jγ(Xγ).

Proof (a) Let U ∈ U and µ ∈ w◦
U

. Fix γ ∈ Γ. Given (aγδ , bγδ ) ∈ ṽγ , δ ∈ Iγ yields

jγ(aγδ ) ≤ jγ(bγδ ) + wU, hence µ◦ jγ(aγδ ) ≤ µ◦ jγ(bγδ ) + 1, i.e., µγ(aγδ ) ≤ µγ(bγδ ) + 1

or µγ ∈ v◦γ . Conversely, let µ ∈ ×γ∈Γv◦γ and (a, b) ∈ U, then

(a, b) =
∑

γ∈∆

λγ

(
jγ(aγ), jγ(bγ)

)
, where (aγ , bγ) ∈ ṽγ and

∑

γ∈∆

λγ = 1,
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which yields µγ(aγ) ≤ µγ(bγ) + 1 or µ ◦ jγ(aγ) ≤ µ ◦ jγ(bγ) + 1. Therefore

∑

γ∈∆

λγµ ◦ jγ(aγ) ≤
∑

γ∈∆

λγµ ◦ jγ(aγ) +
∑

γ∈∆

λγ ,

i.e., µ(a) ≤ µ(b) + 1.

Part (b) follows from [2, Theorem 3.15]. Indeed the adjoint operator of each jγ is

the projection mapping φ ′
γ of ×γ∈ΓP

∗
γ onto P∗

γ .

Theorem 3.11 Let (Pγ ,Vγ), γ ∈ Γ, be locally convex cones.

(a) If vγi
∈ Vγi

, i = 1, 2, . . . , n, then v◦ ⊆
∑n

i=1 v◦γi
⊆ nv◦, where ṽ =

⋂n
i=1 Φ

−1
γi

(ṽγi
);

in particular P∗ =
∑

γ∈Γ
P∗
γ .

(b) If each P∗
γ has the Xγ-topology, then the direct sum locally convex cone

∑
γ∈Γ

P∗
γ

has the X-topology, where X is the set of all products ×γ∈ΓAγ with Aγ ∈ Xγ for each

γ ∈ Γ.

Proof (a) If µ ∈ v◦, then µ is bounded on v(0)v. We claim that µ =
∑n

i=1 µγi
and

µγi
∈ v◦γi

for i = 1, 2, . . . , n. The mapping µ vanishes on Pγ for each γ (γ 6= γi ,

i = 1, 2, . . . , n). Let xγδ ∈ Pγ , δ ∈ Iγ . Since (φγi
◦ jγ)(xγδ ) = 0, we have

(
jγ(xγδ ), 0

)
∈ Φ

−1
γi

(ṽγi
),

(
0, jγ(xγδ )

)
∈ Φ

−1
γi

(ṽγi
) (i = 1, 2, . . . , n),

so jγ(xγδ ) ∈ v(0)v, and since µγ(xγδ ) = (µ ◦ jγ)(xγδ ), by boundedness of µ
(

v(0)v
)

we conclude that µγ(xγδ ) = 0. Now, let aγi
, bγi

∈ Pγi
with aγi

≤ bγi
+ vγi

. Then

jγi
(aγi

) ≤ jγi
(bγi

) + v, which implies that µ ◦ jγi
(aγi

) ≤ µ ◦ jγi
(bγi

) + 1 or µγi
(aγi

) ≤
µγi

(bγi
) + 1. So µγi

∈ v◦γi
.

Suppose that µ ∈
∑n

i=1 µγi
, µγi

∈ v◦γi
and a ≤ b + v. Then aγi

≤ bγi
+ vγi

for

i = 1, 2, . . . , n, which yields µγi
(aγi

) ≤ µγi
(bγi

) + 1 or µ(a) ≤ µ(b) + n. Hence

µ ∈ nv◦.

(b) Let us denote by W̃X = {w̃A : A ∈ X} the convex quasi-uniform structure

on
∑

γ∈Γ
P∗
γ induced by the X-topology. By Theorem 3.1, the direct sum convex

quasi-uniform structure on
∑

γ∈Γ
P∗
γ induced by ṼXγ

, γ ∈ Γ, where ṼXγ
= {ṽAγ

:

Aγ ∈ Xγ}, is equivalent to a convex quasi-uniform structure U, where each U ∈ U is

defined as

U =

⋃{∑

γ∈∆

λγ Jγ(ṽAγ
) :

∑

γ∈∆

λγ = 1 and ∆ is finite
}
, Aγ ∈ Xγ , γ ∈ Γ.

The proof will therefore be complete if we show that U ⊆ w̃A ⊆ nU for each A ∈ X,

A = ×γ∈ΓAγ and some n ∈ N, where U is defined by A.

For U ⊆ w̃A, let (τ , k) ∈ U. Then for a finite subset ∆ of Γ we have

(τ , k) =
∑

γ∈∆

λγ( jγ ◦ τγ , jγ ◦ kγ), where (τγ , kγ) ∈ ṽAγ
, and

∑

γ∈∆

λγ = 1.
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Hence x = (xγ) ∈ A yields

〈τ , x〉 =
〈∑

γ∈∆

λγ jγ ◦ τγ , x
〉

≤
〈∑

γ∈∆

λγ jγ ◦ kγ , x
〉

+
∑

γ∈∆

λγ = 〈k, x〉 + 1,

i.e., (τ , k) ∈ w̃A. For the second inclusion, if (τ , k) ∈ w̃A then (τ , k) =
∑

γ∈∆
( jγ ◦

τγ , jγ ◦ kγ), where (τγ , kγ) ∈ ṽAγ
, hence

(τ , k) ∈
∑

γ∈∆

Jγ(ṽAγ
) ⊆ nU, for some n ∈ N.
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