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WHEN IS THE SPECTRUM OF A CONVOLUTION OPERATOR
ON L7 INDEPENDENT OF p?

by BRUCE A. BARNES
(Received 14th June 1989)

In this paper conditions are given that imply that a convolution operator has the same spectrum on all of the
spaces LP(G), | Sp< oo.
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Introduction

Let G be a locally compact topological group equipped with a fixed left Haar
measure. For fe L'(G) the convolution operators

(THe)=f+*g  (geL”G))

are bounded linear operators for all pe[1,00]. In general, 6((T}),), the spectrum of the
operator (T;),, can vary with p. In this situation, where a linear operator determines a
family of bounded linear operators T, on the LP-spaces of some measure space, it is of
interest to have information concerning how o(T,) varies with p; see for example the
recent interesting paper [7] in which T. Ransford studies the general situation. In this
paper we give conditions under which the convolution operators (T;), have the same
spectrum for all p. We prove in our main result that o((T}),) is independent of p for all
f € L'(G) exactly when G is both amenable and symmetric (G is symmetric if the Banach
x-algebra L!(G) is symmetric). When G is abelian, this result is well-known. In the
abelian case, using a theorem of Wiener, it is shown that for all fe LY(G)

o(f)=0(Ty),)  (pe[l,0])

where o,.(f) denotes the spectrum of f in the algebra L'(G); a proof of this for G=R"
is given in [4, Theorem 13.3, p. 342] for example.

The results in this paper are related to some of the work of Hulanicki in [3] and T.
Pytlik in [6]. Hulanicki proves that if G has polynomial growth, f = f*e L(G), and f
is rapidly decreasing, then o,.(f)=0((T,),). T. Pytlik shows more generally that when
f=/*is in certain Beurling subalgebras of L'(G), then o..(f)=0((T;),). Making use of
some of the methods of Hulanicki and Pytlik we prove more general results.
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The results

Let A be an algebra. Recall that there is an operation defined on A by

fog=f+g—fg (fgeA),

and that fe A is quasiregular in A if 3ge A4 such that fog=go f=0 [8, p. 16]. In fact,
the set, Q(A), consisting of all quasiregular elements of A is a group with operation o
and unit 0. When A has an identity 1, f € Q(A) if and only if 1 — f is invertible in A.

Note 1. Let A be a Banach algebra, and let f—T, be a continuous and faithful
representation of A into B(X) (with T, =1 when A has an identity 1). The property,

whenever 1 — Ty is invertible in B(X), then f € Q(A), (1
implies that
o4f)=0(Ty)  (feA).

The verification of Note 1 is straightforward except for one technical detail. It is
necessary to show (with the assumption that (1) holds) that if T, is invertible in B(X) for
some f €A, then A has an identity. Assume T; is invertible, so 0¢ o(T,). Now (1) easily
implies that o 4(f)\{0} =0(T}). Choose U an open set such that ¢(T,)=U and 0¢ U. Let

y be a cycle in U surrounding o(T) in the usual way and such that the index of every
point z¢ U with respect to y is zero. Let

1
=—-o (Al = )" 1dA.
b 2ni";( /)

This integral makes sense in A with identity adjoined if necessary. For all 4 on the
image of y,

(A=) '=A711=-271 ) =47 (1~-gy)
where g; is the quasi-inverse of A~'f in A. Then for all A on the image of v,
(Al=f)"'=A"1=—-1"1g,eA,

and it follows that

p=

1 -1 -1
%g (A1—f)"1=A" 1) dAeA.

Now
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1
T:— lI—T ~1 /1=1.
P 21zi‘£( D

Since g—+ T, is 1 —1 on 4, we have that p is an identity for A.

Note 2. Assume f€L*(G). Then

ou(f)=0((T)1)=0((Tf)w)-

Proof. First we verify that ¢..(f)=0((T;),). By Note 1 it suffices to show that if
1—(T;), is invertible in B(L!), then feQ(L'). Since feL', 3geL' such that
(I —(T;),)(g)= — f But this means g— f+g= — f Using this last equality, a straight-
forward computation shows that (I—(T;),)(f*g—g* f)=0, so f*g=g=* f Therefore
gof=fog=f+g—f*g=0,s0 feQ(L)

Now for f e L'(G), the function

Jx)=f(x"HAK"Y) (xeG)

is in LYG) (here A is the modular function of G). For keL! and hel® let
¢k,hy=[gkhdx. Then for feL', geL', he L™,

(Ty)1(8): B> = (8, (T)(h))-

Therefore (T is the conjugate operator of (Tj),, and so o((T}),)=0((T}),). The
relation (f+g) =g+ f for f, geL! implies o..(f)=0.:(f). We conclude that

o((T)o)=0(Tp) 1) =00 ) =0 f).

If A is a Banach algebra, let r ,(f) denote the spectral radius of an element fe A.
A key ingredient in the proof of our results is a theorem of A. Hulanicki [3, Prop.
2.5]. We need a slightly extended form of this theorem given as follows.

Hulanicki’s Theorem. Assume A is a Banach *-algebra and S is a »-subalgebra of A.
Let f—T, be a faithful -representation of A on a Hilbert space H, and assume that

rdN=|Ty| (f=r*€S)
Then

o f)=0(Ty) (feS).

Proof. The conclusion in [3, Prop. 2.5] is that o ,(f)=0(T,) whenever f = f*€S. To
extend this result to an arbitrary element f €S, by Note 1 it suffices to prove that when
I—T; is invertible on H, then feQ(A). Assuming I—T; is invertible, then (I —T,)*=
I—Ty. is also invertible. Therefore I — T, and I — T, are invertible where g= f + f*— ff*
and h=f+ f*— f*. By [3, Prop. 2.5] both g and h are quasiregular in 4. Now
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g=fof* and h= f*o f. Since Q(A) is a group, and fo f* and f*o feQ(A), f is both
left and right quasiregular in A. Therefore f € Q(A).

A second major ingredient needed to prove our results is some information
concerning the continuity of certain linear maps on L?(G) when G is amenable. The
ideas involved are due to C. Herz; we use [S, Prop. 18.18].

Let 2 (G) denote the space of all continuous complex-valued functions on G with
compact support.

Proposition 3. Assume G is amenable. Fix p, 1 <p< o0, and suppose either p<q<2 or
2<q=<p. For any feL'(G)

o((Ty)) S a((Ty),)-

Proof. It suffices to show that when I —(Ty), is invertible in B(L?), then I—(Ty), is
invertible in B(L9).

First assume feL'nL® If I—(T;), is invertible, there exists geL? such that
(1— f)*g= — f. Therefore for any he #(G), 1—f)*x(h—g=*h)=h.
Let R=(I—(T;),) "' € B(L?). We have (I—(T}),)[R(h)—(h—g*h)]=0 for all he ¥ (G).
Thus
(R=D(h)y=gxh (heA(G)).

As G is amenable, the argument in [5, Proposition 18.18] applies, from which we
conclude that for K=||R—1||

WR=Dh)|,<K|k|l, (heA(G)).
Thus, for M=K +1,
IR, <M|n|l, (hex(G). - (*)
Let he L? n L%, and choose {h,} <2¢'(G) such that ||h,—h||,—0 and ||h,—h||,~0. Then
uﬁc(ih,,)—R(h)Hp—»O, and R(h,) converges to some L, function by (x). Therefore R(h) €L,

IRW)||, < M|H||,  (heL”n L9 (%)

This inequality proves that R(LP n LY) < L9, so R(L?P n LYY= L? n L% From this it follows
that (I —(T;) ) (LP n L) =(1—(T;),)(L? n L) = LP n L%. Also, (=+) implies that

el = Ml = (T, (heL? A LY).

This inequality extends to all he L% so I—(Ty), is one-to-one and has closed range on
LA But L? n L?is in the range of I —(Ty),, so in fact, I —(T;), maps L onto L%
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Now in the general case choose {f,}<L'NL® such that ||f— f,||,~0. We may
assume that (I —(T},),)~" exists for n21 and R,=(I—(T},),) " has norm ||R,||<||R||+1,
n21. As argued above, for each n21, I —(T;), is invertible and, furthermore, for n>1

1= (T7.)a) = | =Rl +2) (#)

Now I —(T; ),—1—(T;),, so by (#) and [8, Theorem (1.4.7)] I —(Ty), is invertible.
Our first result follows by applying Hulanicki’s Theorem and Proposition 3.

Theorem 4. Assume G is amenable. Let S be a *-subalgebra of L'(G) with the property
that rp(f)=r((T;);) whenever f=f*eS. Then o,(f)=0((T;),) for all feS and all
pell,o].

Proof. Applying Hulanicki’s Theorem, we have

o(f)=0((Ty)2) (f€S).

Now fix p, 1 <p<oco. We may assume 2<p. By Proposition 3

o(f)=0((Ty);) s0((Ty),) (f€S).
Thus, ¢,(f)=0((T}),) for all feS. When p=1, 0, then o..(f)=0((T;),) as verified in
Note 2.

In [6], T. Pytlik, using Hulanicki’s Theorem, proves that certain convolution algebras,
LY(G,w)< L'(G), where w is a weight function, have the property that on(f)=0((Ty),)
whenever f = f*e L'(G,w). Applying Theorem 4 yields a stronger result.

Corollary 5. Let G be a locally compact group with polynomial growth. If fe L' (G,w)
for some polynomial weight w, then

on(f)=0((Ty),) forall pe[l, ]

The main result of this paper is the following characterization of when a((T}),) is
independent of pe[1, ] for all feLY(G).

Theorem 6. The following are equivalent:

(1) G is amenable and symmetric;

(2) For all feLY(G), 6((T}),) is independent of pe[1, c0];
(3) For all feLYG), o..(f)=0((Ty),) for all pe[1,00];
(4) For all feLYG) with f=f* ap.(f)=0(Ty),):

(5) For all feLY(G) with f=f* r.(f)=r((T)),).

Proof. That (2)<(3) follows from Note 2, and the implications (3)=(4)=>(5) are
obvious.
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Let y denote the largest C*-norm on L'(G). The following two results hold:
y(f)= ”(Tf)z)” for all f = f*€L'(G)if and only if G is amenable; (A)
() =rp(f) for all f= f*eLY(G) if and only if G is symmetric. (S)

(A) follows from [5, Theorem 8.9(i), p. 80], and (S) results from [2, Theorem 11, p. 227,
and Theorem 5, p. 226]. Therefore if G is amenable and symmetric, then combining (A)
and (S) we have that (5) holds.

Assume that (5) holds. By Hulanicki’s Theorem (4) holds. This implies that for all
f=f*eLYG), o..(f)<=R. By Shirali’s Theorem [2, Theorem 5, p. 226] it follows that
L'(G) is symmetric. Therefore [2, Corollary 8, p. 227] shows that y(f)=rp.(f* *+ f)*/? for
all f e L'(G). Combining this with (5), we have for all f = f*e LY(G)

(f)=ru(f) =r((Tf)2) = “(Tf)ZH

Thus, by (A), G is amenable. This completes the proof that (1)<>(5).

Finally, assume (1) holds. Then G is amenable, and as noted above, (5) is true. By
Theorem 4 o,:(f) =0((T;),) for all feL'(G) and all pe[1,0].

It is known that when G is amenable, the o.:(f)=0((T}),) for all feL'(G) and all
pe[l, 0] [1, Theorem 3.4] (here o, (T) denotes the order spectrum of T). Therefore
when G is both amenable and symmetric, applying Theorem 6 we have o4((T;),) =
o((Ty),) for all feL'(G) and all pe[1, c].
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