WHEN IS THE SPECTRUM OF A CONVOLUTION OPERATOR ON L^p INDEPENDENT OF p?

by BRUCE A. BARNES

(Received 14th June 1989)

In this paper conditions are given that imply that a convolution operator has the same spectrum on all of the spaces $L^p(G)$, $1 \le p \le \infty$.

1980 Mathematics subject classification (1985 Revision): 47A10.

Introduction

Let G be a locally compact topological group equipped with a fixed left Haar measure. For $f \in L^1(G)$ the convolution operators

$$(T_f)_p(g) = f * g \qquad (g \in L^p(G))$$

are bounded linear operators for all $p \in [1, \infty]$. In general, $\sigma((T_f)_p)$, the spectrum of the operator $(T_f)_p$, can vary with p. In this situation, where a linear operator determines a family of bounded linear operators T_p on the L^p -spaces of some measure space, it is of interest to have information concerning how $\sigma(T_p)$ varies with p; see for example the recent interesting paper [7] in which T. Ransford studies the general situation. In this paper we give conditions under which the convolution operators $(T_f)_p$ have the same spectrum for all p. We prove in our main result that $\sigma((T_f)_p)$ is independent of p for all $f \in L^1(G)$ exactly when p is both amenable and symmetric (p is symmetric if the Banach *-algebra p is symmetric). When p is abelian, this result is well-known. In the abelian case, using a theorem of Wiener, it is shown that for all p is p in the spectrum of the symmetric of the Banach are specified by the symmetric of the Banach this result is well-known.

$$\sigma_{L^1}(f) = \sigma((T_f)_p) \qquad (p \in [1, \infty])$$

where $\sigma_{L^1}(f)$ denotes the spectrum of f in the algebra $L^1(G)$; a proof of this for $G = \mathbb{R}^m$ is given in [4, Theorem 13.3, p. 342] for example.

The results in this paper are related to some of the work of Hulanicki in [3] and T. Pytlik in [6]. Hulanicki proves that if G has polynomial growth, $f = f^* \in L^1(G)$, and f is rapidly decreasing, then $\sigma_{L^1}(f) = \sigma((T_f)_2)$. T. Pytlik shows more generally that when $f = f^*$ is in certain Beurling subalgebras of $L^1(G)$, then $\sigma_{L^1}(f) = \sigma((T_f)_2)$. Making use of some of the methods of Hulanicki and Pytlik we prove more general results.

The results

Let A be an algebra. Recall that there is an operation defined on A by

$$f \circ g = f + g - fg$$
 $(f, g \in A),$

and that $f \in A$ is quasiregular in A if $\exists g \in A$ such that $f \circ g = g \circ f = 0$ [8, p. 16]. In fact, the set, Q(A), consisting of all quasiregular elements of A is a group with operation \circ and unit 0. When A has an identity 1, $f \in Q(A)$ if and only if 1 - f is invertible in A.

Note 1. Let A be a Banach algebra, and let $f \to T_f$ be a continuous and faithful representation of A into B(X) (with $T_1 = I$ when A has an identity 1). The property,

whenever
$$I - T_f$$
 is invertible in $B(X)$, then $f \in Q(A)$, (1)

implies that

$$\sigma_A(f) = \sigma(T_f) \qquad (f \in A).$$

The verification of Note 1 is straightforward except for one technical detail. It is necessary to show (with the assumption that (1) holds) that if T_f is invertible in B(X) for some $f \in A$, then A has an identity. Assume T_f is invertible, so $0 \notin \sigma(T_f)$. Now (1) easily implies that $\sigma_A(f) \setminus \{0\} = \sigma(T_f)$. Choose U an open set such that $\sigma(T_f) \subseteq U$ and $0 \notin U$. Let γ be a cycle in U surrounding $\sigma(T_f)$ in the usual way and such that the index of every point $z \notin U$ with respect to γ is zero. Let

$$p = \frac{1}{2\pi i} \int_{\mathcal{X}} (\lambda 1 - f)^{-1} d\lambda.$$

This integral makes sense in A with identity adjoined if necessary. For all λ on the image of γ ,

$$(\lambda 1 - f)^{-1} = \lambda^{-1} (1 - \lambda^{-1} f)^{-1} = \lambda^{-1} (1 - g_{\lambda})$$

where g_{λ} is the quasi-inverse of $\lambda^{-1}f$ in A. Then for all λ on the image of γ ,

$$(\lambda 1 - f)^{-1} - \lambda^{-1} 1 = -\lambda^{-1} g_{\lambda} \in A,$$

and it follows that

$$p = \frac{1}{2\pi i} \int_{\gamma} ((\lambda 1 - f)^{-1} - \lambda^{-1} 1) d\lambda \in A.$$

Now

$$T_p = \frac{1}{2\pi i} \int_{\gamma} (\lambda I - T_f)^{-1} d\lambda = I.$$

Since $g \to T_g$ is 1-1 on A, we have that p is an identity for A.

Note 2. Assume $f \in L^1(G)$. Then

$$\sigma_{L^1}(f) = \sigma((T_f)_1) = \sigma((T_f)_{\infty}).$$

Proof. First we verify that $\sigma_{L^1}(f) = \sigma((T_f)_1)$. By Note 1 it suffices to show that if $I - (T_f)_1$ is invertible in $B(L^1)$, then $f \in Q(L^1)$. Since $f \in L^1$, $\exists g \in L^1$ such that $(I - (T_f)_1)(g) = -f$. But this means g - f * g = -f. Using this last equality, a straightforward computation shows that $(I - (T_f)_1)(f * g - g * f) = 0$, so f * g = g * f. Therefore $g \circ f = f \circ g = f + g - f * g = 0$, so $f \in Q(L^1)$.

Now for $f \in L^1(G)$, the function

$$\check{f}(x) = f(x^{-1})\Delta(x^{-1}) \ (x \in G)$$

is in $L^1(G)$ (here Δ is the modular function of G). For $k \in L^1$ and $h \in L^{\infty}$ let $\langle k, h \rangle = \int_G kh \, dx$. Then for $f \in L^1$, $g \in L^1$, $h \in L^{\infty}$,

$$\langle (T_f)_1(g), h \rangle = \langle g, (T_f)_{\infty}(h) \rangle.$$

Therefore $(T_f)_{\infty}$ is the conjugate operator of $(T_f)_1$, and so $\sigma((T_f)_1) = \sigma((T_f)_{\infty})$. The relation $(f * g) = \check{g} * \check{f}$ for $f, g \in L^1$ implies $\sigma_{L^1}(f) = \sigma_{L^1}(\check{f})$. We conclude that

$$\sigma((T_t)_{\infty}) = \sigma((T_t)_1) = \sigma_{L^1}(f) = \sigma_{L^1}(f).$$

If A is a Banach algebra, let $r_A(f)$ denote the spectral radius of an element $f \in A$. A key ingredient in the proof of our results is a theorem of A. Hulanicki [3, Prop. 2.5]. We need a slightly extended form of this theorem given as follows.

Hulanicki's Theorem. Assume A is a Banach *-algebra and S is a *-subalgebra of A. Let $f \to T_f$ be a faithful *-representation of A on a Hilbert space H, and assume that

$$r_A(f) = ||T_f|| \quad (f = f^* \in S).$$

Then

$$\sigma_A(f) = \sigma(T_f)$$
 $(f \in S)$.

Proof. The conclusion in [3, Prop. 2.5] is that $\sigma_A(f) = \sigma(T_f)$ whenever $f = f^* \in S$. To extend this result to an arbitrary element $f \in S$, by Note 1 it suffices to prove that when $I - T_f$ is invertible on H, then $f \in Q(A)$. Assuming $I - T_f$ is invertible, then $(I - T_f)^* = I - T_{f^*}$ is also invertible. Therefore $I - T_g$ and $I - T_h$ are invertible where $g = f + f^* - ff^*$ and $h = f + f^* - f^*f$. By [3, Prop. 2.5] both g and h are quasiregular in A. Now

 $g = f \circ f^*$ and $h = f^* \circ f$. Since Q(A) is a group, and $f \circ f^*$ and $f^* \circ f \in Q(A)$, f is both left and right quasiregular in A. Therefore $f \in Q(A)$.

A second major ingredient needed to prove our results is some information concerning the continuity of certain linear maps on $L^p(G)$ when G is amenable. The ideas involved are due to C. Herz; we use [5, Prop. 18.18].

Let $\mathcal{K}(G)$ denote the space of all continuous complex-valued functions on G with compact support.

Proposition 3. Assume G is amenable. Fix p, $1 , and suppose either <math>p \le q \le 2$ or $2 \le q \le p$. For any $f \in L^1(G)$

$$\sigma((T_f)_q) \subseteq \sigma((T_f)_p).$$

Proof. It suffices to show that when $I-(T_f)_p$ is invertible in $B(L^p)$, then $I-(T_f)_q$ is invertible in $B(L^q)$.

First assume $f \in L^1 \cap L^{\infty}$. If $I - (T_f)_p$ is invertible, there exists $g \in L^p$ such that (1-f)*g = -f. Therefore for any $h \in \mathcal{K}(G)$, (1-f)*(h-g*h) = h.

Let $R = (I - (T_f)_p)^{-1} \in B(L^p)$. We have $(I - (T_f)_p)[R(h) - (h - g * h)] = 0$ for all $h \in \mathcal{K}(G)$. Thus

$$(R-I)(h) = g * h \qquad (h \in \mathcal{K}(G)).$$

As G is amenable, the argument in [5, Proposition 18.18] applies, from which we conclude that for K = ||R - I||

$$||(R-I)(h)||_q \leq K||h||_q \qquad (h \in \mathcal{K}(G)).$$

Thus, for M = K + 1,

$$||R(h)||_q \le M||h||_q \qquad (h \in \mathcal{K}(G)). \tag{*}$$

Let $h \in L^p \cap L^q$, and choose $\{h_n\} \subseteq \mathcal{X}(G)$ such that $||h_n - h||_p \to 0$ and $||h_n - h||_q \to 0$. Then $||R(h_n) - R(h)||_p \to 0$, and $R(h_n)$ converges to some L_q function by (*). Therefore $R(h) \in L^q$, and

$$||R(h)||_q \le M ||h||_q \qquad (h \in L^p \cap L^q).$$
 (**)

This inequality proves that $R(L^p \cap L^q) \subseteq L^q$, so $R(L^p \cap L^q) \subseteq L^p \cap L^q$. From this it follows that $(I - (T_f)_q)(L^p \cap L^q) = (I - (T_f)_p)(L^p \cap L^q) = L^p \cap L^q$. Also, (**) implies that

$$||h||_q \le M ||(I - (T_f)_q)(h)||_q \quad (h \in L^p \cap L^q).$$

This inequality extends to all $h \in L^q$, so $I - (T_f)_q$ is one-to-one and has closed range on L^q . But $L^p \cap L^q$ is in the range of $I - (T_f)_q$, so in fact, $I - (T_f)_q$ maps L^q onto L^q .

Now in the general case choose $\{f_n\}\subseteq L^1\cap L^\infty$ such that $||f-f_n||_1\to 0$. We may assume that $(I-(T_{f_n})_p)^{-1}$ exists for $n\ge 1$ and $R_n=(I-(T_{f_n})_p)^{-1}$ has norm $||R_n||\le ||R||+1$, $n\ge 1$. As argued above, for each $n\ge 1$, $I-(T_{f_n})_q$ is invertible and, furthermore, for $n\ge 1$

$$||(I - (T_{f_n})_a)^{-1}|| \le (||R|| + 2).$$
 (#)

Now $I - (T_{f_n})_q \to I - (T_f)_q$, so by (#) and [8, Theorem (1.4.7)] $I - (T_f)_q$ is invertible. Our first result follows by applying Hulanicki's Theorem and Proposition 3.

Theorem 4. Assume G is amenable. Let S be a *-subalgebra of $L^1(G)$ with the property that $r_{L^1}(f) = r((T_f)_2)$ whenever $f = f^* \in S$. Then $\sigma_{L^1}(f) = \sigma((T_f)_p)$ for all $f \in S$ and all $p \in [1, \infty]$.

Proof. Applying Hulanicki's Theorem, we have

$$\sigma_{L^1}(f) = \sigma((T_f)_2) \ (f \in S).$$

Now fix p, $1 . We may assume <math>2 \le p$. By Proposition 3

$$\sigma_{L^1}(f) = \sigma((T_f)_2) \subseteq \sigma((T_f)_p) \ (f \in S).$$

Thus, $\sigma_{L^1}(f) = \sigma((T_f)_p)$ for all $f \in S$. When $p = 1, \infty$, then $\sigma_{L^1}(f) = \sigma((T_f)_p)$ as verified in Note 2.

In [6], T. Pytlik, using Hulanicki's Theorem, proves that certain convolution algebras, $L^1(G,\omega) \subseteq L^1(G)$, where ω is a weight function, have the property that $\sigma_{L^1}(f) = \sigma((T_f)_2)$ whenever $f = f^* \in L^1(G,\omega)$. Applying Theorem 4 yields a stronger result.

Corollary 5. Let G be a locally compact group with polynomial growth. If $f \in L^1(G, \omega)$ for some polynomial weight ω , then

$$\sigma_{L^1}(f) = \sigma((T_f)_p)$$
 for all $p \in [1, \infty]$.

The main result of this paper is the following characterization of when $\sigma((T_f)_p)$ is independent of $p \in [1, \infty]$ for all $f \in L^1(G)$.

Theorem 6. The following are equivalent:

- (1) G is amenable and symmetric;
- (2) For all $f \in L^1(G)$, $\sigma((T_f)_p)$ is independent of $p \in [1, \infty]$;
- (3) For all $f \in L^1(G)$, $\sigma_{L^1}(f) = \sigma((T_f)_p)$ for all $p \in [1, \infty]$;
- (4) For all $f \in L^1(G)$ with $f = f^*$, $\sigma_{L^1}(f) = \sigma((T_f)_2)$;
- (5) For all $f \in L^1(G)$ with $f = f^*$, $r_{L^1}(f) = r((T_f)_2)$.

Proof. That $(2) \Leftrightarrow (3)$ follows from Note 2, and the implications $(3) \Rightarrow (4) \Rightarrow (5)$ are obvious.

Let γ denote the largest C^* -norm on $L^1(G)$. The following two results hold:

$$\gamma(f) = ||(T_f)_2||$$
 for all $f = f^* \in L^1(G)$ if and only if G is amenable; (A)

$$\gamma(f) = r_{L^1}(f)$$
 for all $f = f^* \in L^1(G)$ if and only if G is symmetric. (S)

(A) follows from [5, Theorem 8.9(i), p. 80], and (S) results from [2, Theorem 11, p. 227; and Theorem 5, p. 226]. Therefore if G is amenable and symmetric, then combining (A) and (S) we have that (5) holds.

Assume that (5) holds. By Hulanicki's Theorem (4) holds. This implies that for all $f = f^* \in L^1(G)$, $\sigma_{L^1}(f) \subseteq \mathbb{R}$. By Shirali's Theorem [2, Theorem 5, p. 226] it follows that $L^1(G)$ is symmetric. Therefore [2, Corollary 8, p. 227] shows that $\gamma(f) = r_{L^1}(f^* * f)^{1/2}$ for all $f \in L^1(G)$. Combining this with (5), we have for all $f = f^* \in L^1(G)$

$$\gamma(f) = r_{L^1}(f) = r((T_f)_2) = ||(T_f)_2||.$$

Thus, by (A), G is amenable. This completes the proof that $(1) \Leftrightarrow (5)$.

Finally, assume (1) holds. Then G is amenable, and as noted above, (5) is true. By Theorem 4 $\sigma_{L^1}(f) = \sigma((T_f)_p)$ for all $f \in L^1(G)$ and all $p \in [1, \infty]$.

It is known that when G is amenable, the $\sigma_{L^1}(f) = \sigma_0((T_f)_p)$ for all $f \in L^1(G)$ and all $p \in [1, \infty]$ [1, Theorem 3.4] (here σ_0 (T) denotes the order spectrum of T). Therefore when G is both amenable and symmetric, applying Theorem 6 we have $\sigma_0((T_f)_p) = \sigma((T_f)_p)$ for all $f \in L^1(G)$ and all $p \in [1, \infty]$.

REFERENCES

- 1. W. Arenot, On the o-spectrum of regular operators and the spectrum of measures, Math. Z. 178 (1981), 271-278.
 - 2. F. Bonsall and J. Duncan, Complete Normed Algebras (Springer-Verlag, Berlin, 1973).
- 3. A. HULANICKI, On the spectrum of convolution operators on groups with polynomial growth, *Invent. Math.* 17 (1972), 135–142.
 - 4. K. JÖRGENS, Linear Integral Operators (Pitman, Boston-London-Melbourne, 1982).
 - 5. J. Pier, Amenable Locally Compact Groups (John Wiley & Sons, New York, 1984).
- 6. T. Pytlik, On the spectral radius of elements in group algebras, Bull. Acad. Polon. Sci. Ser. Sci. Math. 21 (1973), 899-902.
- 7. T. Ransford, The spectrum of an interpolated operator and analytic multivalued functions, *Pacific J. Math.* 121 (1986), 445–466.
 - 8. C. RICKART, Banach Algebras (D. Van Nostrand Co., Princeton, 1960).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF OREGON EUGENE, OREGON 97403 U.S.A.