
J. Austral. Math. Soc. (Series A) 55 (1993), 60-71

TOPOLOGICALLY RIGID NON-HAKEN 3-MANIFOLDS

J. HASS and W. MENASCO

(Received 8 June 1992)

Communicated by J. H. Rubinstein

Abstract

A closed irreducible 3-manifold M is topologically rigid if any homotopy equivalent irreducible
3-manifold is homeomorphic to M. A construction is given which produces infinitely many
non-Haken topologically rigid 3-manifolds

1991 Mathematics subject classification (Amer. Math. Soc): 57 N 10.

1. Introduction

A closed irreducible 3-manifold M is topologically rigid if any homotopy-
equivalent irreducible 3-manifold is homeomorphic to M. It is conjectured that
any closed irreducible 3-manifold with infinite fundamental group is topologic-
ally rigid. Waldhausen [13] proved this for Haken 3-manifolds. Scott showed
that all Seifert fiber spaces with infinite fundamental group are topologically
rigid [11]. If M and M' are homotopy equivalent hyperbolic 3-manifolds, then
the Mostow rigidity theorem implies they are homeomorphic [10], but if only M
is known to be hyperbolic then the question is open. Recently it was shown in [5]
that an irreducible 3-manifold which contains an immersed surface satisfying the
l-line and 4-plane properties is topologically rigid. Various constructions are
described there of 3-manifolds containing such surfaces. Non-Haken manifolds
are probably generic in these constructions, but explicit non-Haken examples
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were not given in [5].
Aitchison and Rubinstein have studied geometrically cubed 3-manifolds,

which contain immersed surfaces satisfying the conditions of [5], and shown
that such surfaces persist under most surgeries on certain links [2]. In this
paper we combine their ideas with an explicit calculation to construct the first
examples of non-Haken, non-Siefert fibered 3-manifolds which are topologically
rigid. We produce infinitely many such manifolds.

The first step is to construct a link L in S3 whose complement admits a
complete hyperbolic structure which is the union of two regular ideal hyperbolic
cubes. Next we show that S3 — L contains no closed incompressible surfaces
other than the peripheral tori. This is done using ideas developed in [8, 9] for
classifying incompressible surfaces in link complements. Next we use results of
Hatcher [6] and Gromov-Thurston [4] to show that infinitely many surgeries on
this link give non-Haken negatively curved 3-manifolds. Finally we use ideas
of [2] to show that these manifolds contain immersed surfaces with the 1-line
and 4-plane properties, and so are topologically rigid by [5].

The paper is organized as follows. In Section 2 we exhibit a 3-component link
L in S3 whose complement is the union of two hyperbolic cubes. In Section 3
we show that the complement of L contains no closed incompressible surfaces.
In Section 4 we show that infinitely many surgeries on L give manifolds which
contain immersed surfaces with the 1-line and 4-plane properties.

2. A link L whose complement is a union of two ideal hyperbolic cubes

We consider the following 3-component alternating link L in S3 (see Fig-
ure 2.1).

Let M denote the complement of L in the 3-sphere. M has a a natural
decomposition into two ideal cubes, one above and one below the projection
plane. This decomposition is similar to the decomposition of the figure eight
knot, the Borromean rings and other examples in [12]. See [7] for a general
construction. The choice of L was inspired by similar examples in [2], but those
link complements do contain closed incompressible surfaces.

In this decomposition the two cubes are identified so that after the identific-
ations there are six faces meeting each edge, and a total of three vertices, four
edges and six faces. If the vertices are deleted and the two cubes are taken
to be regular ideal cubes, then this gluing is realized by hyperbolic isometries,
showing that M has a complete hyperbolic structure.
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FIGURE 2.1

3. The complement of L contains no closed incompressible surfaces

We wish to understand how incompressible surfaces can be embedded in M.
To do so we study pairwise incompressible surfaces, incompressible surfaces
whose boundaries consist of curves parallel to a meridian of L and for which
any curve parallel in M to a meridian of dM is boundary parallel in the surface.
Any closed incompressible surface in S3 — L becomes pairwise incompressible
after a series of surgeries along disks intersecting L in one point. We study
such surfaces via the techniques developed in [8]. We position L in S3 so that it
lies on the union of two 2-spheres, 5+ and S2_. These agree except in a bubble
around each crossing, where S+ goes over the top hemisphere and S2_ goes
over the bottom hemisphere. We can assume that F intersects L, S+ and S£
transversely and that F rneets the bubbles in saddles, as in [8]. We will classify
all possibilities for F f~\ S^.

F C\S+ consists of a collection of curves, meeting L in punctures at boundary
components off. L DS+ and the bubbles together cut S+ into components which
we call regions. These are the complementary components of L in S2

+ Pi S£.
A curve of F n S\ enters and leaves a region through a puncture or a bubble.
Possibly there are some components of F D 5^ contained entirely in a region.
Let | F | denote the sum of the number of saddles, punctures and the number of
components contained in a region. We isotop F to minimize |F | . We then have
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FIGURE 3.1

LEMMA 3.2. Let F be a pairwise-incompressible surface in the complement
of an alternating link L, with \F\ minimal in its isotopy class. Then either F is
a boundary parallel annulus or:

(i) Each curve in F n S2
+ bounds a disk in B\, the 3-ball in S3 - L that S2

+

bounds,
(ii) No component of F f\ S2

+ is contained in a region.
(iii) A component ofFtlSl does not meet a bubble in more than one arc.
(iv) An arc ofF C\ S+ in a given region which meets a bubble is disjoint from

the two boundary arcs of the region meeting that bubble.
(v) A curve in F C\ S*_ does not meet an arc in the boundary of a region in

more than one point.

PROOF. Assume that F is not a boundary parallel annulus.
(i) This follows from incompressibility of F.

(ii) If there is a component of F D S+ with no saddles or punctures, take an
innermost such. It bounds a disk in B\, so we can isotop across it to reduce \F\.

(iii) If it does, we can reduce |F | as in [8].
(iv) If it does, we can reduce |F | as in [9].
(v) If it does, then F is boundary compressible and hence compressible,

since dM is union of tori and F is not an annulus.

There are three types of regions we need to study, as shown in Figure 2.1.
(1) Two-sided regions which we label T. There are four of these.
(2) Four-sided regions which meet T regions on two sides. We label these

D. There are two of these.
(3) Four-sided regions which meet T regions on one side and D regions on

an opposite side. We label these R. There are four R regions.
We now analyze all of the different possible ways that F D S\ can cut through
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these regions for F pairwise incompressible. We then piece together the different
possibilities to construct all possible F's.

LEMMA 3.3. The only pairwise-incompressible surface in M is a 4-punctured
sphere passing once through each R region. There are no closed incompressible
surfaces in M other than the peripheral torus.

PROOF. Let F be an incompressible, pairwise-incompressible surface with
|F | minimal.
STEP 1. We can isotop F so that its intersection with a T region consists of n
arcs passing through each of the two bubbles in T, n > 0. See Figure 3.4.

FIGURE 3.4. The configuration in a T region.

PROOF OF STEP 1. An arc with a puncture passing through a bubble would
violate (iv) of Lemma 3.2. An arc with two punctures would either violate (v)
of Lemma 3.2, or would run between the two sides of T. In the latter case, we
can isotop F through a crossing so that it no longer meets T, as in Figure 3.5.
This isotopy does not change \F\.

FIGURE 3.5
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STEP 2. The intersection of F with a D region consists of a finite number of
arcs running between the two R regions meeting it as in Figure 3.6a, or n arcs
passing through each of the saddles in the D region, as in Figure 3.6b.

\ T

(b)

FIGURE 3.6. The possible configurations in a D region.

PROOF OF STEP 2. If a saddle occurs at any one of the four crossings meeting
D, then the picture for the adjacent T region is given by Step 1, so that n arcs
emerge from each of the bubbles meeting that T region. None of these arcs can
join up to one another by (iii) of Lemma 3.2. Neither can they leave D in a
puncture, by (iv) of Lemma 3.2. We conclude that they must emerge through
the other two bubbles as in Figure 3.6b.

If no saddles occur, then the only possibility is n arcs running from one of the
R regions meeting the D region to the other one, since no punctures meet the
adjacent T regions by Step 1. This is shown in Figure 3.6a.
STEP 3. The intersection of F with an R region consists of a finite number of arcs
running between the two adjacent R regions, as in Figure 3.7a, or a finite number
of arcs passing through each of the bubbles in the R region, as in Figure 3.7b.
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(a) (b)

FIGURE 3.7. The possible configurations in an R region.

PROOF OF STEP 3. If an arc enters the R region through a bubble from the
adjacent D region then Step 2 implies that the picture in that D region is given
by Figure 3.8a. The same argument that applied in Step 2 now shows that the
picture in the R region is as in Figure 3.8b.

(a )

FIGURE 3.8

If the arc enters through a bubble on the T side, as in Figure 3.9a, then we
consider the adjacent R region, where an arc enters through a bubble on the
D side. The picture in the adjacent R region is determined by the previous
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argument, implying that an arc also enters the original R region from a bubble
meeting the adjacent D region, and the original R region is as in Figure 3.7b.

(a) (b)

FIGURE 3.9

T D

R

(b)

FIGURE 3.10

The remaining possibility is that there are no saddles in the R region. Either
we are in the case of Figure 3.7a, as desired, or the picture consists of arcs of
the type shown in Figure 3.10a. The picture in the adjacent T and D regions is
then determined by Steps 1 and 2. If such arcs exist, we can isotop across a T
region to get a picture in the adjacent D region which violates (v) of Lemma 3.2,
allowing |F | to be reduced and finishing Step 3.

Putting these pictures together, we get closed curves which have either only
punctures or only saddles as they cross the link projection. The first case gives
a collection of parallel four-punctured spheres cutting through each R region
once. The second possibility gives rise to curves meeting a single saddle twice,
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violating (iii) of Lemma 3.2, and so is impossible.
Suppose we tube together the boundary components of a collection of parallel

4-punctured spheres to get a closed incompressible surface. All the boundary
components of the punctured spheres are parallel curves on a peripheral torus
of one of the components of L. Therefore some tube runs between curves
which are adjacent on the peripheral torus. If this tube connects two parallel
4-punctured spheres then the region between them is compressible, irrespective
of where the other tubes run. If the tube runs from a punctured sphere to itself,
as in Figure 3.11, then the resulting punctured torus is compressible, irrespective
of where the other tubes are located. In Figure 3.11 there is a compressing disk
for the twice-punctured torus running twice over the tube. The boundary of the
disk is shown as a dashed line. We conclude that there are no non-trivial closed
incompressible surfaces in the link complement.

FIGURE 3.11
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4. Construction of topologically rigid non-Haken 3-manifolds

THEOREM 4.1. An infinite number of surgeries on L give rise to topologically
rigid non-Haken 3-manifolds.

PROOF. Simple curves on the peripheral tori of M, and thus surgeries on L,
are parametrized by (Z2/±)3. Projectivizing to identify a collection of parallel
copies of a curve gives rise to the projective lamination space called PL(dM),
homeomorphic to S5 [6]. This is a completion of the space of surgeries, which
form a dense subset. The rational points on PL(dM) correspond to Dehn sur-
geries on L. A theorem of Hatcher states that the points in PL(dM) which
bound an incompressible, boundary incompressible surface in M are contained
in a two-dimensional submanifold of S5 [6]. Since M contains no closed incom-
pressible surfaces, and boundary compressible surfaces are either compressible
or boundary parallel annuli, this implies that away from this two dimensional
submanifold, Dehn surgeries give rise to closed non-Haken 3-manifolds.

Since the complement of L has a complete hyperbolic structure, the 2n-
Theorem of Gromov-Thurston [3, 4] implies that after finitely many surgery
coefficients are excluded for each component, all surgeries on L yield closed
3-manifolds of strictly negative curvature. The metrics on these manifolds agree
with the hyperbolic metric on S3 — L in an arbitrarily large compact subset. Thus,
given a compact subset K of the link complement, there is a codimension one
submanifold of PL(dM) such that all surgeries on L which miss this submani-
fold yield closed negatively curved 3-manifolds with constant hyperbolic metric
on a neighborhood of K. Since the union of the two exceptional submanifolds
just described has positive codimension, infinitely many surgeries on L give
non-Haken, negatively curved 3-manifolds, with the same hyperbolic metric on
K.

The complement of L in these closed negatively curved manifolds is the
union of two cubes with deleted vertices. Consider the immersed surface G
constructed by taking the union of the six bisecting squares in the two cubes.
In the complete hyperbolic 3-manifold M, G is a totally geodesic immersed
surface which has angles n/2 along all self-intersections. As observed in [5],
this implies that G has the 1-line and 4-plane properties. Take K to be the image
of G in S3 — L. Then for large surgery coefficients the manifolds obtained
by surgery on L have metrics of non-positive curvature which agree with the
metric of M in a neighborhood of G. Thus these manifolds have a metric
of non-positive curvature in which G is a totally geodesic surface whose self-
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intersections consist of double curves where two sheets meet at right angles.
The lift of G to the universal cover of one of these negatively curved manifolds
consists of a collection of embedded totally geodesic planes which intersect
orthogonally. It follows immediately that G is 7Ti-injective. G satisfies the
1 -line property, since two totally geodesic planes can intersect in at most one
line by the uniqueness of geodesic arcs connecting two points in a simply
connected negatively curved manifold. It remains to check that G satisfies the
4-plane property. Note first that if three planes meet pairwise then they have
a common point, as otherwise we could form a geodesic triangle with all right
angles, impossible in a negatively curved space. Suppose now that we have four
planes, all meeting pairwise. Looking at one of these planes, the three lines of
intersection with the other three planes form an all right triangle on this plane,
impossible since its induced curvature is strictly negative. Thus G satisfies the
4-plane property in any of these manifolds.

Combining the above results we see that an infinite number of surgeries on L
give rise to closed, non-Haken 3-manifolds that contain surfaces satisfying the
1-line and 4-plane properties. The principal result of [5] is that such 3-manifolds
are topologically rigid, concluding the proof of Theorem 4.1.
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