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Abstract

The group near-ring constructed from a right near-ring R and a group G is studied in the
special case where the near-ring is distributively generated. In particular, results concerning
homomorphisms of near-rings or of groups and the augmentation ideal are obtained which
resemble closely those obtained for group rings.

1991 Mathematics subject classification (Amer. Math. Soc.) 16 A 76.

1. Introduction

By denning the group near-ring of a group G over an arbitrary near-ring R as
a subnear-ring of M(R ) , generated by certain functions of R into itself,
Le Riche, Meldrum and van der Walt [2] developed a general theory of group
near-rings which coincides with the usual notion when the base near-ring is
a ring and so laid the foundation for further development of this subject.
In this paper we study the group near-ring constructed in this way in the
special case of our near-ring R being distributively generated. We first give
alternative proofs of results in [2] concerning homomorphisms of near-rings
or of groups which can more readily be restated in the dg case to resemble
similar known results in group rings. We also devote some attention to the
augmentation ideal which was defined in [2].
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[2] Near-rings 41

2. Notation

Let G be a (multiplicatively written) group with identity e. RG denotes
the cartesian direct sum of |G| copies of (R, +) indexed by the elements
of G. M(RG) is the right near-ring of all mappings of the group RG into
itself. Denote by [r, g] the function of M{RG) denned by ([r, g](n))(h) =
rn(hg), for all n e RG, h e G. The set {[r, g]\r e R, g e G} generates
a subnear-ring of M(RG) which in [2] is denoted by R[G], and called the
group near-ring constructed from R and G.

Since R[G] is a subnear-ring of M(RG) it follows that for all A, B e
R[G], fieRG, (A + B)/i = Afi + Bn and (AB)fi = A(B/i). This makes RG

into an /?[G]-module. Moreover, R is a faithful /?[G]-module, because
An = 0 for all n e RG implies that A = 0 .

3. Generating sequences

Let 5 be a non-empty subset of the right near-ring (N, +, . ) . For an
element A of N(S), the subnear-ring of iV generated by S, we first describe
how A is constructed starting from elements of S. For our purposes this
description must be such that it facilitates proofs by induction.

We introduce the notion of a generating sequence on 5 . A generating
sequence of length m on S is a sequence Ax, A2, ... , Am where each At

for all 1 ̂  i ^ n has either of the following two forms:

(i) At is an element of 5 ;
(ii) At = tt, where tt € N(S) and t( = tk *,. t, with 1 g fc, I < i,

* , - € { + , - , . } .

For example, let sx, s2, 53 € S C iV then yl,, ^ 2 , . . . , A9 is a generating
sequence on S where

Note that for all i, 4 ^ i ^ 9, /I, = 4̂̂ . *, A{ for some 1 ^ A;, / < / and
* , € { + , - , . } .

Given any A e ^(.S1) it is possible to construct a generating sequence for
A. Let Ax, ... , Am be such a generating sequence on S with Am = A for
some integer m ^ 1. Then we say A is the result of the generating sequence.
It is now possible to express N(S) in terms of generating sequences in the
following way.
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42 R. L. Fray [3]

PROPOSITION 3.1. N(S) = {A\A is the result of some generating sequence
on S}.

If Ax, ... , An is a generating sequence on S then clearly Ax, ... , Ai for
each /, 1 ̂  i ^ n is a generating sequence for At e N{S). Since A{ — tk * • tl

with 1 fS k, I < i, * , - € { + , - , . } for each i, 1 ^ i' ̂  n , it follows that
A( = Ak±At or Ai — AkAl with 1 ^ fc, / < / or ^ € 5 . The length of a
generating sequence of minimal length for A will be called the complexity of
A and denoted c(A). Intuitively speaking, the complexity is an indication
of how far A is from being an element of S. From the above, since A is
the result of some generating sequence on S, it follows that c{A) = 1 if
and only if A e S and if c{A) > 1 then A = B + C or A = BC where
B,C€ N(S) with c(B), c(C) < c{A).

REMARK. For A, B € N(S) it is possible to construct a generating se-
quence for A±B, AB in the following way. If Ax, A2, ... , Am = A and
Bx, B2, ... , Bn = B are generating sequences for A and B, respectively,
then Cx, C 2 , . . . , Cm, Cm+X, ... , Cm+n+x where

Ai for i = 1 , . . . , m
C = . _

for z = m + 1, . . . , m + n
and Cm+n+x — A*B with * € { + , - , . } is a generating sequence for A *B
where * e { + , - , . } .

Now let Nx and Â 2 be right near-rings with non-empty subsets Sx and
S2 , respectively. Suppose that <£: Sx —> S2 is a surjection and let Ax,... ,Am,
m ^ 1, be a generating sequence on Sx. Consider the generating sequence
Bx, B2, B3, ... , Bm on S2 where

if A, = t< 6 5,

\ t';*;t'k*;.*; if At = tk*.*,, with i g * , / < i

with 4*! ' / e ^2(^2) where ^ a n d 4 are elements of N2(S2) obtained from
tk and ^ , respectively, by replacing every occurrence of s e Sx by (f>(s) and
*'t is the corresponding operation in N2 . This defines a mapping O from the
set of all generating sequences on Sx onto the set of all generating sequences
on S2. We are interested in the case where O induces a mapping from
iVj(5j) onto N2(S2). We collect sufficient conditions for this to be the case
in our next two results. We first introduce the following notation. Denote
by T = (Ax, ... , Am) the generating sequence Ax, ... , Am , of length m,
m ^ 1 on 5, and by O(T) the generating sequence T1 = (Bl, ... , Bm) on
S2 obtained from T in the way described above. Note that the result of T,
denoted r(T), is Am .

Our next result gives the first of these sufficient conditions.
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THEOREM 3.2. Let Nx, N2 be right near-rings with faithful left modules
H{,H2, respectively. Suppose St c Ni are such that Nt = A^S,.) for
i = 1 , 2 . Let <j>: Sx —> S2 be a surjection. Let 6: H2^> Hx be a (group)
monomorphism such that for every generating sequence Tx on Sx we have

r(Tx)d(h2) = d(r(<&(Tx))h2) for all h2 e H2.

Then <b: r(Tx) —* r(Q>(Tx)) defines an epimorphism from Nx onto N2 .

PROOF. Suppose O is not well defined. Then there are generating se-
quences T, and T[ on Sx such that r(T{) = r(T[) but r(^>(T{)) ± r(Q>(T\)).
From Tx and T[ we can easily by concatenation and renumbering (as we in-
dicated earlier) construct a generating sequence T for 0 such that /•($(T)) j=
0. Since r(<P(T)) ^ 0, there is h2 e H2 such that r(<&(T))(h2) / 0, since
H2 is a faithful A^ module. But then d(r(®(T))h2) ± 0 since d is a
monomorphism and so r(T)6(h2) ^ 0 which contradicts r(T) = 0.

We have established that the mapping is well defined.
To show that <b: Nx -* N2 is a homomorphism, let A, B e Nx, then by

Proposition 3.1 A — r(Tx) and B = r(T[) for some generating sequences
T{ = (A{, ... , Am), T[ = (Bx, ... , Bn) on S{. We can find a generating
sequence T = (C,, C2, . . . , Cm+n+l) on S{ such that

r(Tl) + rtf) + r(T) = Cm+n+i

where
_ ( Ajfor i=l,2, ... ,m

i~{Bi_mfori = m+l,...,m + n

Then O(T) = (C[, ... , C'm+n+l), where for each / = 1, 2, ... , m + n +
1, C\ are the elements of N2(S2) obtained from C; e ^ ( 5 , ) in the way
described earlier. In particular, Cm+n+l = A'm + B'n , where we use the same
symbol without ambiguity for the addition in A^ and A^ . Therefore

We can also find a generating sequence T = (C,, . . . , Cm+n+l) on Sx such
that AB = r(Tx)r(T[) = r(T), where the C( are defined in the same way
as above for i - 1, 2, . . . , m + n and Cm+n+l - AmBn . Define C[ for
i = 1, 2, ... , m + n as above and C'm+n+l = A'mB'n , where we use the same
symbol without ambiguity for multiplication in N{ and JV2 . Then

= A'Jn =
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This completes the proof that O is a homomorphism.

To show that O is an epimorphism, take any «2 e N2. Then n2 = r(T2)
where T2 is a generating sequence on S2 , by Proposition 3.1. But then there
is a generating sequence Tx on Sx such that O( Tx) = T2 and so

This implies that O is an epimorphism.

The last of these sufficient conditions which will be of interest to us is
given next.

THEOREM 3.3. Let Nx and N2 be right near-rings with faithful left mod-
ules Hx and H2, respectively. Suppose St c N{ are such that N( — N^Sj) for
i = 1, 2 and let <\>: Sx —• S2 be a surjection. Let 6: Hx —> H2 be a {group)
epimorphism such that for every generating sequence Tx on Sx we have
6{r{Tx)hx) = r(<t>(Tx))6(hx), for all hx e Hx. Then O: r(Tx) ~ r(<D(r,))
is an epimorphism from Nx onto N2.

PROOF. We shall only prove that the mapping is well denned. The remain-
der of the proof follows in exactly the same way as in Theorem 3.2. Suppose
the mapping is not well denned. Then there are generating sequences Tx

and T[ on Sx such that r(Tx) = r{j[) but r(O(7;)) ± r(<D(r,')). From
Tx and T[ we can construct by concatenation and renumbering a generating
sequence T for 0, such that r(O(T)) ^ 0. Now since r(<J>(T)) ^ 0, there is
h2 e H2 such that r(®(T))h2 / 0 since H2 is a faithful N2-module. Since
6 is an epimorphism, there exists hx e Hx such that

This contradicts r(T) = 0. So we have established that the mapping is well
denned.

4. Applications in group near-rings

It was shown inJ2] that every near-ring epimorphism </>: R -* T induces
an epimorphism O: R[G] —> T[G] on the corresponding group near-rings,
where G is an arbitrary (multiplicatively written) group and every group
epimorphism <j>: G —• H induces an epimorphism O: R[G] -* R[H] on the
corresponding group near-rings, where R is an arbitrary right near-ring. We
show now that the results of the previous section yield alternative proofs for
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[6] Near-rings 45

the above mentioned results. This facilitates the statement of similar results
in the special case of our near-rings being distributively generated. This will
be dealt with in our next section.

Let R be a right near-ring and let G and H be (multiplicatively written)
groups. Let <f>: G -> H be an epimorphism. As an application of Theorem
3.2 we want to show that <f> induces an epimorphism O: R[G] -> R[H] on
the corresponding group near-rings.
_ L e t S l = {[r, g]\r € R , g € G } , S 2 = _ { [ r , h]\r e R , h e H } a n d l e t
<f>: Sx -» S2 be the surjection denned by <f>: [r, g] i-> [r, <j>(g)]. Let the

mapping 6: RH -» RG be denned by (dfi)(g) = n{<j){g)), for all JU G RH,
geG. For any nx,n2eRH,

(00*, + n2)){g) = (/i, + fi2)(<t>(g)) = n, (<f>(g)) + fi2(<t>(g))

= (ty*,)(s) + (^2)(^) = (^i + ^2)(^)»

for all g & G, and therefore,

0(0! + 02) = 0/*! + 002 .

This proves that 6 is a homomorphism.
To show that 0 is injective, let nx, n2 & R be such that 6/nl = 6fi2.

Then (0/*,)(g) = (0 | i 2)U), for all g G G. Therefore, nx{4>(g)) - |/2(0(^))
and so nx = ji2 since <j> is an epimorphism.

It only remains to show that r(T)(6/i) = d{r(<t>{T))n) for all generating
sequences T on 5 , , fi e RH. We do this by induction on the length of r(T).
If the length of r(T) is one, then r(T) - [r, g] for some r G R, g G G,
and therefore r(&(T)) = [r, 4>{g)].

Now we have

r(T)(dn)(h) = [r, g](d/i)(h) = r(6fi)(hg) = rn{<t>{hg)),

for all h G G. On the other hand,

= ([r, 4>{g)]ti){<t>(h)) = rn(<Kh)<Kg)) = r/t(<Khg)),

for all /i G G. So in this case we have r(T)(dfi) = 6(r(<b(T))/i), for all
generating sequences T on Sx of length one and for all fi G i?w .

For any generating sequence T on 5 , , r(T) is either of the form r(T) =
r{Tx) + r(T[) or r(T) = r{Tx)r(T[) for some generating sequences Tx, T,'
on Sx of shorter length. We assume the result is true for Tx and T[. We
consider the two cases separately.
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46 R. L. Fray [7]

(1) r{T) = r{Tl) + r{T[). Then

= r{Tx)(6n) + r(T[)(6n) =

for all neRG.
(2) r(r) = r(ri)r(ri').Then

This completes the proof by induction. We have proved

THEOREM 4.1. Let G and H be groups and let <j>: G —» H be an epimor-
phism, then 4> induces an epimorphism 4>: R[G] —> R[H] of the correspond-
ing group near-rings. Moreover, R[G]/AnnR.GJlmd) ~ R[H] where

Im0 = {/i 6 i?G|//(g) = )S(0(^)) for some peRH ,VgeG}.

Observe that for any generating sequence T on {[r, g]\r e R, g e G},
r{T) e kerO if and only if r(&(T)) = 0 if and only if r(O(r))/i = 0 if and
only if d(r(®(T))fi) = 0 if and only if r(T){dfi) = 0, for all fi e RH. It
therefore follows that kerO = Annij[G,(Im0), where

Im0 = {A* € /?G|/< = O(fi) for some /? e RH}

= {ne RG\n(g) = (0^)(g) for some J? € i?w, for all g e G}

= {fie RG\n(g) = fi(4>(g)) for some j S e / , for all geG}.

The last part of Theorem 4.1 therefore follows from the fundamental homo-
morphism theorem.

COROLLARY 4.2. Let H be a normal subgroup of G. Then

R[G]/AnnR[G]R
G

H ~ R[G/H]

where

RG
H = ImO = {ne RG\Hx = Hy imply /i(x) = n{y) for all x, y € G}

and where 6: RG/H -> RG is defined by

(ff/l)(g) = 7i(Hg) for all geG, ]le RG/H.
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Let N{ = R, N2 = T be right near-rings and let <j>: R —> T be a near-ring
epimorphism. As an application of Theorem 3.3 we wish to show that 4>
induces an epimorphism O: R[G] -* T[G], where G is a (multiplicatively
written) group. Let 5 , = {[r, g]\r eR,geG}, S2 = {[*, g]|f e T , g 6 G }
and let <£: 5 , —> 5 2 be the surjection denned by (f>: [r, g] i-> [<f>(r), g].
Define a mapping 6: RG -> TG by (0^ )U) = <£(/*(#)) for all fi e RG,
g €G. Let nx, n2&RG, then for all # e G,

fi2))(g) - 0((^, + //2)(^)) = 4>{nx(g) + H2(g))

x 2 f o r a l l g e G .

Hence 0(/z, +//2) = ^ i + ^ 2 ant^ s o ^ is a homomorphism. To show that
6 is an epimorphism, let p e TG and define fi e RG by /*(#)
where <j>: T -> R is such that <0<£(f) = t for all f G T . Then

(6fi)(g) = <j>(n(g)) = <Kkfi{g))) - fi(g). for all g e G.

Hence dn = fi.
It only remains to show that for any generating sequence T, on Sx,

for all fi G RG. We do this by induction on the length of r(T,). If r(T{)
is of length one, then r(T{) — [r, g] for some r e R, g € G. Then

= [0(r), g]. Now we have

0{[r, g]f*){h) = </»(([r, g]Ai)(A)) = </>(r//(/?g)) = 4>(r)cf>(fi(hg)),

for all /i e G. On the other hand,

[0(r) , g)(6fi)(h) = <t>(r)(dfi)(hg) = <j,

for all /z G G. So in this case we have d(r{Tx)n) = r(O(ri))(0/i), for all
fi & RG and for all generating sequences of length 1.

For any T on S, , r(T) is either of the form r(T) = r{Tx) + r(T[) or
r(T) = r(Tx)r(T[) for some generating sequences T, and T[ on 5 , . We as-
sume the result is true for T, and T[. We consider the two cases separately.
(1) r ( r ) = '

6{r{T)fi) = d((r(Tl) + r{?x))ii) = e{r{Tx)fi + r(T[)fi)

= 6{r{T{)fi) + d(r(T[)fi) = r(«D(r,))(^) + r

- (r(*(r,)) + r(®(T'l)))(dfi) = r{<3>(T))(dfi), for all fi G
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(2) r(r) = r(7>(ri').Then

6{r{T)n) =

This completes the proof by induction. We have thus proved

THEOREM 4.3. Let R and T be near-rings and G a (multiplicatively writ-
ten) group and let <t>: R —> T be a near-ring epimorphism, then <f> induces an
epimorphism O: R[G] —> T[G] of the corresponding group near-rings.

Denote the kernel of 4> by A. Then ft e ker 6 if and only if 8fi = 0 if
and only if (6fi)(g) = 0 if and only if (f>(ji(g)) = 0 if and only if n{g) e A,
for all g € G, if and only if fi e AG . Therefore, ker 0 = AG.

COROLLARY 4.4. Let R and T be near-rings, G a group and </>:/? -•
T an epimorphism of near-rings. Then R[G]/A* ~ T[G], where A* =
(AG: RG) := {B\ e R[G]\Bfi e A° for all ft e RG} and A = ker<£.

5. The group distnbutively generated near-ring (R[G], S[G])

Recall that a distnbutively generated near-ring (hereafter written as dg
near-ring) is a near-ring R such that (/?,+) is generated as an additive
group by the subset S, which need not be the set of all distributive elements
of R. We denote a dg near-ring by (R, S). We state as the first result of
this section the following theorem, the proof of which can be found in [1].

THEOREM 5.1. If (R, S) is a dg near-ring then

R[G] = j f>/ [ J , - , g,]\m G N, at, = ±1, st•, e S, gt:e G\ .

If (R, S) is a dg near-ring we can now, in view of Theorem 5.1, redefine
the complexity of A e R[G], which we also denote by c(A), as the smallest
natural number m such that

1=1

for some st £ S, gt G G and al, = ± 1. It is now obvious that if (R, S)
is a dg near-ring and A e R[G] with c(A) ^ 2, then A — Ax + A2 with
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c{Ax), c(A2) < c(A) and Ay, A2 e R[G]. We shall henceforth always write
(/?[G], S[G]) for the group dg near-ring R[G] if (R,S) is dg.

We would like to restate the results in section 4 in the special case of our
near-rings being distributively generated in a way which will resemble similar
results in group rings.

Let (R, S) be a dg near-ring and let (f>: G -» H be an epimorphism
of groups. Consider the dg near-rings [R[G], S[G]) and (R[H], S[H])
having generating sets of distributive elements S{ = {[s, g]\s e S, g e G}
and S2 = {[s, h]\s € S, h € H} , respectively. Let <j> and 6 be the mappings
denned in the proof of Theorem 4.1.

It can now easily be shown that

for all g&G, neRH .
By Theorem 3.2 it now follows that the mapping

defines an epimorphism from {R[G], S[G]) onto (R[H], S[H]).
We state this result as follows.

THEOREM 5.2. Let {R, S) be a dg near-ring and let <j>: G -»• H be an
epimorphism of groups. Then O: (R[G],S[G)) -> {R[H], S[H]) defined by

/=i / i=i

is an epimorphism of dg group near-rings.

Let (R, S) and (T, U) be fi?g near-rings and let </>: i? —> T be a near-
ring epimorphism. Consider the dg near-rings (R[G],S[G\) and (r[G],
C/[G]) with generating sets of distributive elements S{ = {[s, g]\s e 5 , g e
G} and_S2 = {[u,g)\ueU,geG}.

Let <j> and 6 be the mappings defined in the proof of Theorem 4.3. It is
easily shown that

for all g € G, fi e RG . Thus by Theorem 3.3 the mapping
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is an epimorphism from (R[G], S[G\) onto (T[G], U[G]).
We have thus proved

THEOREM 5.3. Let (R,S) and (T, U) be two dg near-rings and G
a group. Let (j>: R —> T be a near-ring epimorphism, then the mapping
<D: (R[G], S[G]) -> (T[G], U[G]) defined by

n n

<*>: E atsi' *J ~ E °iMsi)' *J
1=1 1=1

is a group dg near-ring epimorphism.

We can combine the results of Theorems 5.2 and 5.3 into a single result.

THEOREM 5.4. Let (R,S) and (T, U) be two dg near-rings and let G
and H be groups. Let <f>: G —> H be an epimorphism of groups and let
6: R —> T be an epimorphism of near-rings. Then there is an epimorphism
O: {R[G],S[G] -> (T[H], U[H]) defined by

* ( E "fa - *,-]) = E ff/Mj,-)' ^)].
\i=\ I i=l

PROOF. By Theorem 5.2 the mapping <f>*: (R[G), S[G]) -> (R[H], S[H])
denned by 0*(E"=i ot[st, gt]) = £"= 1 ai[si, 0(g.)] is an epimorphism.

By Theorem 5.3 the mapping 0*: (/?[#], S[H]) -» ( r [ / / ] , [/[//]) denned
by

is an epimorphism. Then O = 6*(j)* is the required epimorphism.

Before we leave this section we turn our attention to the ideals / + and /*
of the group near-ring. Recall that for an ideal / of the right near-ring R, the
ideals /* - (/G: RG) = {A € R[G]\{Afi)(g) € / for all g e G, fi e RG} and
I+ - id{[a, e]\a 6 /} , the ideal of R[G] generated by the subset {[a, e]\a e
/ } , were defined in [2]. It was shown there that / + c /*. Theorem 5.1
facilitates proving that if R is a dg near-ring and / is an ideal of R such
that R is distributive over / , then R[G] is distributive over /*. We require
the following preliminary results.
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LEMMA 5.5. Let R be a near-ring, I an ideal of R. If R is distributive
over I, then

[r, g]Hx + [s, g']n2 = [s, g']fi2 + [r, g]nx,

where r, s e R, g, g € G, /nx, n2 e IG.

P R O O F . L e t r , s e R , x , y e l , t h e n

(r + s)(x + y) = r(x + y) + s(x + y) = rx + ry + sx + sy.

Also since R is distributive over / ,

(r + s)(x + y) — (r + s)x + (r + s)y = rx + sx + ry + sy.

Hence ry + sx = sx + ry. For every h e G,

([r, g]n{ + [s, g]/i2)(h) = [r, g)nx{h) + [s, g']»2(h)

= rnx (hg) + Sfi2(hg') - sn2{hg)

for all h G G. Hence the result follows.

LEMMA 5.6. Let R be a dg near-ring and I an ideal of R. If R is dis-
tributive over I, then Afi{ +Bfi2 = Bn2+Afi{, where A, B £ R[G], fi{, fi2e

G

PROOF. By induction on c{A) and c(B). If c(A) — c(B) = 1 then A =
[r, g] and B = [s, g] for some r, s e R, g, g € G. By Lemma 5.5,
the result is true in this case. Let m, n e N , m, n ^ 2 and c(A) = m,
c{B) = n. Then A = A{ + A2 and B = B{ + B2 where c(A), c{A2) < m
and c(Bx), c(B2) < n . Assume that for all A, B with c{A) < m, c(B) < n ,
Anx + Bn2 = Bfi2 + Anx.

Now we have

A/iy + Bfi2 = {A{ + A2)nx + (Bi + B2)n2

= Axiix + A2nx + Blfi2 + B2n2 = Axnx + Bxn2 + A2fix

= Bxn2 + Axnx + B2fi2

= Bxfi2 + B2n2 + Axnx

= {Bx + B2)n2 + (Ax + A2)nx = Bfi2 + Afix,

by the induction hypothesis. It remains to consider the case when c(A) = 1
and c(B) > 1 or c(A) > 1 and c(B) = 1. If c(A) = 1 and c(B) > 1 then
A - [s, g] for some s eS, g eG and B = Bx+B2 where c(Bx), c(B2) <
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c(B). The required result follows immediately from our induction hypothesis
that

[s, g]fi{ + Cn2 = Cfi2 + [s, g]/il

for all C with c(C) < c(B). The case c(A) > 1 and c{B) = 1 follows
similarly. This completes the proof.

LEMMA 5.7. If R is distributive over I, then

+ lr, g]M2»

where reR, g £G, nl, n2 G IG.

P R O O F . F o r all heG,

[r, g}{nx+H2)(h) = r((/z, + n2){hg))

= r{fix{hg) + H2{hg)) = rnx{hg) + rn2(hg)

= [r, g]Hx (h) + [r, g]fi2(h) = ([r, g]n, + [r, g]n2){h).

Hence the result follows.

LEMMA 5.8. If R is dg and distributive over I, then R[G] is distributive
over IG .

PROOF. We must show that for all A e R[G], //,, n2eIG , A(fi{ + n2) =
Afil +A/i2 . We do this by induction on c(A). If c(A) = 1, then A = [r, g]
for some r e R, g e G. By Lemma 5.7 the result is true in this case. Let
m € N , m ^ 2 and let c{A) = m. Then A = Ax+A2 where c{A{), c(A2) <
m . We assume for all B e R[G] with c(B) < m, B{nx + n2) = Bfi} + Bfi2

for all nx, n2 e IG. Now
A(fix + n2) = (Ax + A2)(/ix + fi2) = Ax(fix + n2) + A2{fix + n2)

= Axnx + Axfi2 + A2nx + A2fi2 = Axnx + A2nx + Axn2 + A2/i2

= {Ax + A2)nx + (Ax + A2)fi2 = Afix + Afi2,

the third last step being a result of Lemma 5.6.

We can now prove the result which we mentioned earlier.

THEOREM 5.9. If R is dg and distributive over I, then R[G] is distribu-
tive over I* .

PROOF. We must show that A{B + C) = AB + AC for all A e R[G],
B, C e / ' . For all n e RG,

(A(B + C))fi = A(Bfi + C/i) = A(Bfi) + A(Cfi),
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by Lemma 5.8 since Bfi, Cfi € IG. Hence

(A{B + C))n = A(B/i) + A(Cp) = {AB)n + {AC)fi = (AB + AC)fi,

for all n e R . Hence the result follows.

An immediate consequence of this result is

COROLLARY 5.10. If R is dg and distributive over an ideal I of R, then
R[G] is distributive over I+ .

PROOF. This follows immediately from Theorem 5.9 and the fact that

6. The augmentation ideal A = A(R[G], S[G])

It was shown in [2] that the augmentation ideal of the group near-ring R[G]
is generated as an ideal by the set {[1, g] - [1 , e]\g e G} . If (R, S) is a dg
near-ring we would like to give a set of generators for A = A(R[G], S[G])
as a normal subgroup of (R[G], + ) . In order to do this we make use of the
following result, the proof of which can be found in [4, Lemma 13.10].

LEMMA 6.1. Let (R,S) be a dg near-ring and let XCR. Then the ideal
of (R, S) generated by X is the normal subgroup of (R, +) generated by

SXR :- {sxr, sx, xr, x\x € X, r e R, s e S}.

We now restate Lemma 6.1 in the context of the group dg near-ring

LEMMA 6.2. Let (R, S) be a dg near-ring and let X C R[G]. Then the
ideal of {R[G], S[G]) generated by X is the normal subgroup of (R[G], +)
generated by

S[G]XR[G] := {[5, h]xr , [s, h]x, xr , x\x e X, r e R[G], s e S, h e G}.

If we take X = {[1, g] - [1, e]\g e G } c R[G] in Lemma 6.2 and remem-
bering that our near-rings have identity, we get the following result.

THEOREM 6.3. Let (R, S) be a dg near-ring. Then the augmentation
ideal of (R[G], S[G]) is the normal subgroup of {R[G], +) generated by the
set {[s, g] - [s, e] | s e S, g e G}.
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PROOF. By Lemma 6.2, A = A(R[G], S[G]) is the normal subgroup of
(R[G], +) generated by the set

{[s, h]([l ,g]-[l, e])r'\r e R[G],s G S, g, h G G],

since (R, S) has an identity. We show that the elements in this set are a
sum of conjugates of elements of the form [s, e]([\, g] - [1, e]) and their
inverses. Consider the element of the form [s, h]([l, g] - [1, e])r , where
r G R[G], s G S, g, h G G. Let r' = £ * , afc, gt]. Then

m m

o^, gt] = (Is, hg] - [s, h])

by the fact that [s, hg] and [s, h] are distributive. We then have

m m

m-1 m-1

= £ ff|.[M., hggt] + ajssm, hggj - om[ssm , hgj - J2 <*M

Consider the element am[ssm, hggj - om[ssm, hgj . If am = + 1 , then
this element can be written in the form

[ssm, e]([l, hggj - [1, e\) - [ssm , e]([l, hgj - [1, e]).

If om = -1 then it can be written in the form

-[ssm,hgm] + [ssm,e]([l,hgm]-[l,e])

- [ssm, e]([l, hggj - [1 ,<?]) + [ssm, hgj.

It therefore follows that if

m—1 m— 1

; = 1 ( = 1

- y + y - [w m , e]([ 1, hgm] - [ 1, e]) - y,
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where y = J
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m , hgj -[\,e])-y

+ y - [ssm, <?]([1, hggj -[l,e])-y,

where y = Xi/lT1 °iissi > ^ - l ~~ \-ss
m > ^£/J • ^ t^ien f°H°ws by an induction

argument that [5, /?]([1, g] - [I, e])r is a sum of conjugates of elements of
the form [s, e]([l, g] - [1, e]) and their inverses. This completes the proof.

The next result is an element wise characterization of A = A(R[G], S[G])
analogous to the one in the ring-theoretic case.

THEOREM 6.4. A(R[G], S[G]) - { £ " , *.[*., g.]\ £™=1 oft = 0}.

PROOF. Let T = { £ " , a\si > St]\ E™ i <Vi = 0} . It is clear that £™, CT,^

= 0 if and only if Y,?=i ai\.si>e] = 0. By Theorem 6.3 A(R[G],S[G]) is
the normal subgroup of (R[G], +) generated by the set {[s, g] — [s, e]\s e
S, g € G} . It is easy to see that sums and conjugates of elements of this type
lie in T. Hence the augmentation ideal is a subset of T. To show that T
is a subset of the augmentation ideal, let X — J2T=i aAsi» £«1 ^ e a n

in T. Then

i=\ 1=1 1=1

m—1 m—1

(=1 i=i

So if am = +1, then

m—\ m—\

x = y^ °i[si»Si] - y ^ aAsi. e l + y + t5m. ^]([i > ^m] - [i . e]) - y

where y = ^^=7* ff,-[^ ^].\i am^-\ then
m - l m - 1

^ = E ff/K-' *«] - E ff/[5i' el + y ~ lsm .
i=i i=i

where y = IC^T* "'/t5,» ^,] ~ [s
m > ^] • It now follows by an induction argu-

ment that X is a sum of conjugates of elements of the form [s, e]{[l, g] —
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[1, e]) and their inverses and hence X is an element of A(R[G], S[G]).
This completes the proof.

We conclude this section with a few remarks concerning the group dg
near-ring (R[G], S[G]). From Theorem 6.4 it is immediate that the augmen-
tation ideal A(R[G], S[G]) is the kernel of the dg near-ring homomorphism
<f>: (R[G], S[G]) - » ( / ? , S) denned by

It is shown in [1] and [2] that (R[G], S[G]) is an epimorphic image of
the group dg near-ring (R{G), SG) denned by Meldrum [3]. Many of
the results obtained by Meldrum [3] carry over to the group dg near-ring
(R[G], S[G]), some of which are immediate consequences of the epimor-
phism existing between the two group dg near-rings.
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