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Abstract

Let Ω ⊂ RN be a smooth bounded domain and let f . 0 be a possibly discontinuous and unbounded
function. We give a necessary and sufficient condition on f for the existence of positive solutions for
all λ > 0 of Dirichlet periodic parabolic problems of the form Lu = h(x, t, u) + λ f (x, t), where h is a
nonnegative Carathéodory function that is sublinear at infinity. When this condition is not fulfilled, under
some additional assumptions on h we characterize the set of λs for which the aforementioned problem
possesses some positive solution. All results remain true for the corresponding elliptic problems.
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1. Introduction

Let Ω be a C2+θ bounded domain in RN , θ ∈ (0, 1), N ≥ 2. For T > 0 and 1 ≤ p ≤∞, let
Lp

T be the Banach space of T -periodic functions g on Ω × R (that is, satisfying g(x, t) =

g(x, t + T ) a.e., (x, t) ∈Ω × R) such that g|Ω×(0,T ) ∈ Lp(Ω × (0, T )), equipped with the
norm ‖g‖Lp

T
:= ‖g|Ω×(0,T )‖Lp(Ω×(0,T )). Let C1+θ,(1+θ)/2

T and CT be the spaces of T -periodic

functions on Ω × R belonging to C1+θ,(1+θ)/2(Ω × R) and C(Ω × R) respectively, and let

P◦ := the interior of the positive cone of C1+θ,(1+θ)/2
T .

Let {ai j}, {b j}, 1 ≤ i, j ≤ N, be two families of T -periodic functions satisfying
ai j ∈C0,1(Ω × R), b j ∈ L∞T , ai j = a ji and∑

ai j(x, t)ςiς j ≥ α|ς|
2

for some α > 0 and all (x, t) ∈Ω × R, ς ∈ RN . Let A be the N × N matrix whose i, j
entry is ai j, let b = (b1, . . . , bN), let 0 ≤ c0 ∈ Lr

T , r > N + 2, and let L be the parabolic
operator given by

Lu := ut − div(A∇u) + 〈b, ∇u〉 + c0u.
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Let W := {u ∈ L2((0, T ), H1
0(Ω)) : ut ∈ L2((0, T ), H−1(Ω))} and g ∈ L2

T . We say that
u is a (weak) solution of the Dirichlet periodic problem

Lu = g in Ω × R

u = 0 on ∂Ω × R

u T -periodic

(1.1)

if u is T -periodic, u|Ω×(0,T ) ∈W and∫
Ω×(0,T )

[−uφt + 〈A∇u, ∇φ〉 + 〈b, ∇u〉φ + c0uφ] =

∫
Ω×(0,T )

gφ

for all φ ∈C∞c (Ω × R) (and so for all φ ∈ L∞T such that φ|Ω×(0,T ) ∈ V0, where V0 :=
L2((0, T ), H1

0(Ω))). For u ∈W, the inequality Lu ≥ g (respectively ≤) will be
understood in the same sense.

Let W̃ := {u ∈ L2((0, T ), H1(Ω)) : ut ∈ L2((0, T ), H−1(Ω))}. Following [13], we say
that v is a supersolution of (1.1) if v|Ω×(0,T ) ∈ W̃, vt ∈ L2((0, T ), H−1(Ω)) + L1+η(Ω ×
(0, T )) for η > 0 small enough, v|∂Ω×(0,T ) ≥ 0, v(·, 0) = v(·, T ) a.e. in Ω and∫

Ω×(0,T )
[−vφt + 〈A∇v, ∇φ〉 + 〈b, ∇v〉φ + c0vφ] ≥

∫
Ω×(0,T )

gφ

for all 0 ≤ φ ∈C∞c (Ω × (0, T )) (and so for all 0 ≤ φ ∈ L∞T such that φ|Ω×(0,T ) ∈ V0 with
V0 as above). A subsolution is similarly defined by reversing the above inequalities.

For 1 ≤ r ≤∞ let W2,1
r (Ω × (t0, t1)) be the Sobolev space of the functions u ∈

Lr(Ω × (t0, t1)), u = u(x, t), x = (x1, . . . , xN) such that ut, ux j and uxi x j belong to
Lr(Ω × (t0, t1)) for 1 ≤ i, j ≤ N, and let W2,1

r,T be the space of T -periodic functions such

that u|Ω×(0,T ) ∈W2,1
r (Ω × (0, T )). For g : Ω × R→R and r > N + 2 we say that v ∈W2,1

r,T
is a (strong) solution of (1.1) if the equation holds a.e. in the pointwise sense.

Let h : Ω × R × [0,∞)→ [0,∞) be a Carathéodory function, that is (x, t)→
h(x, t, ξ) is measurable for all ξ ≥ 0 and ξ→ h(x, t, ξ) is continuous in [0,∞) a.e.,
(x, t) ∈Ω × R. Assume that h(·, ξ) belongs to Lr

T , r > (N + 2)/2, for all ξ ≥ 0 and that
h is T -periodic in t.

Our aim in this paper is to study the existence and nonexistence of positive solutions
for periodic parabolic problems of the form

Lu = h(x, t, u) + λ f (x, t) in Ω × R

u = 0 on ∂Ω × R

u T -periodic

(1.2)

where 0 . f ∈ Lr
T for some r > (N + 2)/2, λ > 0 is a real parameter and h is a

nonnegative Carathéodory function that is sublinear at infinity. Let us mention that
as a consequence of our proofs all the results remain true for the corresponding elliptic
problems. For applications we refer to [5, 12, 20].
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To be more precise, let:

(H1) there exist p ∈ (0, 1), ξ ≥ 0 and 0 ≤ a ∈ Lr
T with r > (N + 2)/2 and a . 0, such

that
h(x, t, ξ) ≤ a(x, t)ξp for all ξ ∈ [ξ,∞) a.e., (x, t) ∈Ω × R; (1.3)

(H2) h(·, 0) = 0, and there exist q ∈ (0, 1), ξ > 0 and 0 ≤ b(x, t) . 0, such that

h(x, t, ξ) ≥ b(x, t)ξq for all ξ ∈ [0, ξ] a.e., (x, t) ∈Ω × R; (1.4)

(H3) h(·, 0) = 0, and there exist ξ > 0 and 0 ≤ b ∈ Lr
T with r > N + 2 and λ1(b) < 1,

such that

h(x, t, ξ) ≥ b(x, t)ξ for all ξ ∈ [0, ξ] a.e., (x, t) ∈Ω × R (1.5)

(λ1(b) denotes the unique positive principal eigenvalue with respect to the
weight b; see Remark 2.2 below).

Let us denote by L−1 the solution operator of (1.1). If h satisfies (H1), we shall prove
in Theorem 3.1 that (1.2) has a nontrivial solution 0 ≤ uλ ∈CT for all λ > 0 if and only
if L−1 f ≥ 0, and that if L−1 f > 0 or L−1 f ∈ P◦ and h(·, ξ) ∈ Lr

T for some r > N + 2 and
all ξ ≥ 0, then uλ can be chosen such that uλ > 0 or uλ ∈W2,1

r,T ∩ P◦ respectively.
Suppose now that L−1 f � 0. When either (H2) or (H3) is also fulfilled we shall see

that there exist some Λ > 0 and Λ ∈ [Λ,∞) such that (1.2) has a solution 0 < uλ ∈CT

for all λ ∈ (0, Λ] and that there is no nonnegative solution for (1.2) if λ > Λ (see
Theorem 3.2(i)). If in addition either f ≤ 0 or ξ→ h(·, ξ) is concave for all ξ ≥ 0, then
we shall show the existence of some nontrivial solution 0 ≤ uλ ∈CT for all λ ∈ (0, Λ].
Furthermore, when f ≤ 0 we shall provide an upper bound for Λ, and in the case where
ξ→ h(·, ξ) is concave then we shall see that uλ can be chosen such that uλ > 0 for all
λ ∈ (0, Λ) (see Theorem 3.2(ii)). In fact, in Remark 3.3 we show that the last assertion
holds without any assumptions on the sign of L−1 f . Also, if f and h(·, ξ) belong
to Lr

T for some r > N + 2 and all ξ ≥ 0, then we establish that uλ ∈W2,1
r,T whenever

such uλ exists (in particular, uλ ∈ P◦ whenever uλ > 0). Let us finally point out that
it can be proved in some cases that the condition λ1(b) < 1 in (H3) is necessary for
the existence of nonnegative solutions for (1.2) when f ≤ 0 in Ω × R (see Remark 3.4
below). These results will be obtained using the well-known sub- and supersolutions
method combined with some facts concerning linear problems with weight.

In order to relate our theorems to others in the literature, let us mention that
similar results to those in Theorem 3.1 can be found for the corresponding elliptic
problem in [10, Theorem 1.7] (see also [8]), for L = −∆, h(x, ξ) = ξq (0 < q < 1) and
f ∈C1(Ω)�{0}, and an extension for the p-Laplace operator is stated in [9]. In the
parabolic case, the existence of positive periodic solutions for some similar problems
with f ≥ 0 in Ω × R is treated in [17], but the approach used there fails if f < 0 in a
set of positive measure and to our knowledge no results are known in that case. We
refer to [4, Section 5], [21], [18, 19] and its references for related periodic parabolic
problems.
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On the other hand, analogous elliptic problems with f ≤ 0 (alternatively referred to
in the literature as nonpositone or semipositone) and h(x, ξ) = h(ξ) have been studied
by several authors. When Ω is a ball, L = −∆, f is a negative constant and h(ξ) is a
concave function satisfying some additional conditions, it was proved with variational
and symmetry arguments that there exist 0 < Λ1 < Λ2 <∞ such that there are exactly
two positive solutions for λ ∈ [Λ1, Λ2), exactly one for λ ∈ (0, Λ1) and λ = Λ2, and
no positive solutions for λ > Λ2 (see, for example, [24, Theorem 6.16] and [6]). For
general domains (and also L = −∆ and f a negative constant), existence/nonexistence
and uniqueness/multiplicity of positive solutions have been considered, for instance,
in [7, 11]. We refer the reader to the survey paper [5] for more details.

Let us finally mention some literature in the general case h = h(x, ξ). For a
nonselfadjoint operator, semipositone problems as above with Neumann or Robin
boundary conditions were considered in [2], while analogous Dirichlet superlinear
problems were treated in [3]. On the other hand, many papers studying elliptic reaction
diffusion equations with harvesting (which lead to nonlinearities satisfying (H1) and
(H3) or closely related conditions) have appeared recently; see, for example, [1, 14]
and the references therein.

2. Preliminaries

The following two remarks give some necessary facts about the solution operator
of (1.1) (denoted by L−1) and periodic parabolic problems with weight.

R 2.1. (i) For r > (N + 2)/2 we have that L−1(Lr
T ) ⊂CT and L−1 : Lr

T →CT is a
compact and positive operator (see, for example, [16, Remarks 2.1 and 2.2]).

(ii) Given g ∈ Lr
T , r > N + 2, there exists a unique solution u ∈W2,1

r,T of (1.1) and the

operator L−1 : Lr
T →W2,1

r,T is continuous (see, for example, [23, Section 4]). Moreover,
from the Sobolev imbedding theorems (for example, [22, Lemma 3.3, p. 80]) it
follows that u ∈C1+θ,(1+θ)/2

T ; and if g ≥ 0, the strong maximum principle (as stated, for
example, in [12, Theorem 13.5]) yields that u > 0 in Ω × R and ∂u/∂ν < 0 on ∂Ω × R,
where ν denotes the outward unit normal to ∂Ω. In particular, u ∈ P◦ and the boundary
and periodicity conditions in (1.1) are satisfied pointwise.

R 2.2. Let b ∈ Lr
T with r > (N + 2)/2, and let P(b) :=

∫ T

0
esssupx∈Ω b(x, t) dt.

(i) Then P(b) > 0 is necessary and sufficient for the existence of a (unique and
simple) positive principal eigenvalue λ1(b) for the problem

Lϕ = λbϕ in Ω × R

ϕ = 0 on ∂Ω × R

ϕ T -periodic

(2.1)

(see [15, Theorem 3.6]). We note that P(b) = +∞ is allowed (see [15, p. 218]). If
λ1(b) exists, we will denote by ϕ the positive principal eigenfunction normalized
by ‖ϕ‖∞ = 1. We have that ϕ ∈CT and ϕ > 0 in Ω × R (see [16, Lemma 2.3,
Corollary 2.12]), and if r > N + 2 then, from Remark 2.1, ϕ ∈W2,1

r,T ∩ P◦.
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(ii) Suppose that P(b) > 0 and let λ ∈ (0, λ1(b)). Then (L − λa)−1 : Lr
T →CT

is a well-defined compact and positive operator (see [16, Lemma 2.9] and [15,
Theorem 3.6]). In particular, if Lu > λbu (respectively <) with u ≥ 0, u T -periodic
and u = 0 on ∂Ω × R, then λ < λ1(b) (respectively λ > λ1(b)).

3. Main results

T 3.1. Let h satisfy (H1) and let 0 . f ∈ Lr
T for some r > (N + 2)/2. Then (1.2)

has a nontrivial solution 0 ≤ uλ ∈CT for all λ > 0 if and only if L−1 f ≥ 0. Moreover, if
L−1 f > 0 or L−1 f ∈ P◦ and h(·, ξ) ∈ Lr

T for some r > N + 2 and all ξ ≥ 0, then uλ can
be chosen such that uλ > 0 or uλ ∈W2,1

r,T ∩ P◦ respectively.

P. Let ξ, a(x, t) and p be given by (H1). For λ > 0, let 0 ≤ Ψ = Ψλ ∈CT be the
solution of (1.1) with a + λ f + in place of g, where as usual we write f = f + − f −

with f + = max( f , 0) and f − = max(− f , 0). One can verify that Φ := k(Ψ + 1) is a
supersolution of (1.2) for every k ≥max{ξ, (‖Ψ‖∞ + 1)p/(1−p)}. Indeed, from (1.3) it
follows that

LΦ ≥ k(a + λ f +) ≥ ka + λ f ≥ kp(‖Ψ‖∞ + 1)pa + λ f

= a‖Φ‖p∞ + λ f ≥ aΦp + λ f ≥ h(x, t, Φ) + λ f

in Ω × R and Φ = k on ∂Ω × R.
Let λ > 0, and suppose now that L−1 f ≥ 0. Since f . 0 we get that L−1 f . 0, and

clearly λL−1 f is a subsolution of (1.2) because h(·, ξ) ≥ 0 in Ω × R for all ξ ≥ 0.
Thus, taking into account the above paragraph, [13, Theorem 1] yields some uλ
solution of (1.2) satisfying λL−1 f ≤ uλ ≤ Φ. In particular uλ ∈ L∞T and hence uλ ∈CT

by Remark 2.1(i). Furthermore, uλ > 0 in Ω × R when L−1 f > 0 in Ω × R; and if
L−1 f ∈ P◦ and h(·, ξ) ∈ Lr

T for some r > N + 2 and all ξ ≥ 0, then from Remark 2.1(ii)
we find that uλ ∈W2,1

r,T ∩ P◦.
On the other hand, let λ j↗∞ and suppose there exist nontrivial uλ j ≥ 0 solutions

of (1.2) for every j ∈ N. Let

wλ j := uλ j/λ j, ξ0(x, t) := max
ξ∈[0,ξ]

h(x, t, ξ). (3.1)

We claim that ‖wλ j‖∞ ≤ c for some c > 0 not depending on j. Indeed, by (H1) we have
that

Lwλ j = λ−1
j h(x, t, uλ j ) + f ≤ λ−1

j h(x, t, ξ0) + λ
−(1−p)
j awp

λ j
+ f (3.2)

in Ω × R, and so for all j large enough we obtain that

‖wλ j‖L∞T ≤ ‖L
−1‖(‖h(·, ξ0)‖Lr

T
+ ‖a‖Lr

T
‖wλ j‖

p
L∞T

+ ‖ f ‖Lr
T
) (3.3)

and the claim is proved. Moreover, this fact and the inequality in (3.2) imply that also
‖λ−1

j h(x, t, uλ j ) + f ‖Lr
T

has a bound independent of j. Thus, since L−1 : Lr
T →CT is
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a compact operator (see Remark 2.1(i)), going to the limit in the equality in (3.2),
a standard compactness argument provides some nontrivial 0 ≤ w∞ ∈CT solution
of (1.1) with f in place of g. Therefore L−1 f ≥ 0 and this concludes the proof. �

T 3.2. Let h satisfy (H1) and either (H2) or (H3), let ξ, b(x, t) and q be given
by (H2) or (H3) as appropriate, and let ϕ be given by (2.1). Let 0 . f ∈ Lr

T for some
r > (N + 2)/2, and suppose L−1 f � 0.

(i) Then (1.2) has a solution 0 < uλ ∈CT for all λ ∈ (0, Λ], where

Λ := Cb inf
Ω×R

ϕ

L−1 f −
(3.4)

with

Cb :=


β − β1/q

λ1(b)1/(1−q)
, β := min{ξλ1(b)1/(1−q), qq/(1−q)} if (H2) holds,

ξ(1 − λ1(b)) if (H3) holds.
(3.5)

Also, there exists Λ ∈ [Λ,∞) such that there is no nonnegative solution for (1.2) if
λ > Λ.

Assume, in addition, that either f ≤ 0 or ξ→ h(x, t, ξ) is concave for all ξ ≥ 0
a.e., (x, t) ∈Ω × R.

(ii1) Then (1.2) has a nontrivial solution 0 ≤ uλ ∈CT for all λ ∈ (0, Λ].
(ii2) Let a(x, t) and p be given by (H1) and let ξ0 be given by (3.1). If f ≤ 0 then

Λ ≤ inf
Ω×R

L−1[h(·, ξ0) + max{1, [‖L−1h(·, ξ0)‖Lr
T

+ ‖L−1‖ ‖a‖Lr
T
]p/(1−p)}a]

L−1 f −
(3.6)

and if ξ→ h(·, ξ) is concave then uλ can be chosen such that uλ > 0 for all λ ∈ (0, Λ).
Also, if h(·, ξ), f ∈ Lr

T for all ξ ≥ 0 and some r > N + 2, then uλ ∈W2,1
r,T whenever

such uλ exists (in particular, uλ ∈ P◦ whenever uλ > 0).

P. We proceed in several steps. Let λ ∈ (0, Λ]. We start by constructing a
subsolution of (1.2) which is strictly positive in Ω × R and belongs to CT for all
such λs. Suppose first that (H2) is fulfilled. We assume without loss of generality
that b ∈ Ls

T for some s > N + 2. So, in particular, ϕ ∈W2,1
s,T ∩ P◦ and the infimum

in (3.4) is strictly positive. Let β be given by (3.5), and define β1 := βλ1(b)−1/(1−q) and
v := β1ϕ − λL−1 f −. Observe that β1 ≤ ξ and that 0 . L−1 f − ∈CT because L−1 f � 0. It
also holds that 0 < v ∈CT since λ ≤ Λ, (3.4) and (3.5) yield

v ≥ β1ϕ − ΛL−1 f − ≥ ( β1 −Cb)ϕ =
β1/q

λ1(b)1/(1−q)
ϕ. (3.7)

Taking into account (1.4), (3.4) and (3.5) and that ‖ϕ‖∞ = 1, q ∈ (0, 1) and λ ≤ Λ, after
some computations we find that

Lv = β1λ1(b)bϕ − λ f − ≤ β1λ1(b)bϕq + λ f

= bϕq( β1 −Cb)q + λ f ≤ b( β1ϕ − ΛL−1 f −)q + λ f
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≤ b( β1ϕ − λL−1 f −)q + λ f ≤ h(x, t, β1ϕ − λL−1 f −) + λ f

= h(x, t, v) + λ f

in Ω × R and therefore v is a subsolution of (1.2).
If (H3) holds we may argue almost exactly as above. Indeed, if we set v :=

ξϕ − λL−1 f − then, reasoning as in (3.7), v ≥ (ξ −Cb)ϕ = ξλ1(b)ϕ > 0 and from (H3)
and (3.5) we derive

Lv ≤ ξλ1(b)bϕ + λ f = bϕ(ξ −Cb) + λ f

≤ b(ξϕ − ΛL−1 f −) + λ f ≤ h(x, t, ξϕ − λL−1 f −) + λ f

= h(x, t, v) + λ f

in Ω × R. Therefore, since the first paragraph of the proof of Theorem 3.1 provides
supersolutions greater than k for any k > 0, in both cases we may apply [13,
Theorem 1] and obtain a solution 0 < uλ ∈CT of (1.2) for every λ ∈ (0, Λ].

We next define

Λ := sup{λ > 0 : there exists a solution uλ ≥ 0 of (1.2)}.

By the above paragraph, Λ ≥ Λ. Moreover, from either (H2) or (H3) we get that
h(·, 0) = 0 and then (since f . 0) u ≡ 0 cannot be a solution of (1.2) (in fact, it cannot
be a subsolution because L−1 f � 0). Hence, Theorem 3.1 says that Λ <∞.

Let us prove (ii1). Consider first λ ∈ (0, Λ). Recalling the beginning of the proof of
Theorem 3.1, in order to prove the existence of a nonnegative solution for (1.2) it is
enough to supply a nonnegative subsolution. Suppose that f ≤ 0 and choose λ ∈ (λ, Λ)
such that there exists uλ ≥ 0 solving (1.2) with λ in place of λ. Then clearly uλ is a
subsolution. Suppose now that ξ→ h(·, ξ) is concave. By the first part of the proof we
can take λ ∈ (0, λ) such that there exists a subsolution uλ > 0 for (1.2). Let uλ be as
above, and set s := (λ − λ)/(λ − λ) and wλ := suλ + (1 − s)uλ. We have

Lwλ ≤ s(h(x, t, uλ) + λ f ) + (1 − s)(h(x, t, uλ) + λ f )
= sh(x, t, uλ) + (1 − s)h(x, t, uλ) + (sλ + (1 − s)λ) f
≤ h(x, t, suλ + (1 − s)uλ) + λ f = h(x, t, wλ) + λ f

(3.8)

in Ω × R and so wλ > 0 is a subsolution for (1.2). Furthermore, note that the second
assertion of (ii2) also follows from (3.8).

We prove next the existence of nonnegative solution for λ = Λ. We proceed in a
similar way to the final part of the proof of Theorem 3.1. Let λ j↗ Λ and let uλ j ≥ 0 be
the corresponding solutions of (1.2) found by the above paragraph, and let ξ0 be given
by (3.1). From (H1) we have for all j that

Luλ j = h(x, t, uλ j ) + λ j f ≤ h(x, t, ξ0) + aup
λ j

+ Λ f (3.9)

in Ω × R and hence, arguing as in (3.3), we see that ‖uλ j‖L∞T ≤ c for some c > 0 not
depending on j. Passing to the limit in the equality in (3.9), again by compactness we
obtain some nontrivial u∞ ≥ 0 solving (1.2) for λ = Λ.
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Let us prove (3.6). Suppose that f ≤ 0. Notice first that the infimum in (3.6) is
strictly positive because, for instance, L−1a ≥ L−1(aχ{a≤1}) ∈ P◦. Observe next that if u
is a solution of (1.2) then in view of (H1), Lu ≤ h(x, t, ξ0) + aup in Ω × R and therefore

‖u‖L∞T ≤max{1, [‖L−1h(·, ξ0)‖Lr
T

+ ‖L−1‖ ‖a‖Lr
T
]1/(1−p)} := M.

Thus, (1.2) and (H1) imply that 0 ≤ u ≤ L−1(h(·, ξ0) + Mpa) − λL−1 f − in Ω × R, which
in turn yields (3.6).

To conclude the proof we note that the final statement follows as in Theorem 3.1
from Remark 2.1. �

R 3.3. Let us mention that if h satisfies (H1), (H2) or (H3), and ξ→ h(·, ξ) is
concave for all ξ ≥ 0, then as a consequence of the proof of Theorem 3.2 the solution uλ
provided by Theorem 3.1 can be chosen satisfying uλ > 0 in Ω × R for every λ > 0 by
requiring only that L−1 f ≥ 0 (in particular, under these assumptions, uλ ∈W2,1

r,T ∩ P◦

whenever h(·, ξ), f ∈ Lr
T for some r > N + 2). Indeed, a quick look at the paragraph

containing (3.8) shows that it suffices to proceed exactly as there.

R 3.4. Suppose that h fulfills (H3) with equality holding in (1.5), and assume
also that supξ>0 ξ

−1h(·, ξ) = limξ→0+ ξ−1h(·, ξ) (let us point out that this last hypothesis
occurs, for instance, in logistic-type nonlinearities). Then the condition λ1(b) < 1 in
(H3) is necessary for the existence of nonnegative solutions for (1.2) in the case f ≤ 0
in Ω × R. Indeed, if u is such a solution,

Lu < h(x, t, u) ≤ u sup
ξ>0

h(·, ξ)
ξ

= u lim
ξ→0+

h(·, ξ)
ξ

= bu

in Ω × R and hence Remark 2.2(ii) tells us that λ1(b) < 1.
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