ON THE NUMBER OF DIVISORS OF $\boldsymbol{n}^{2} \mathbf{- 1}$

ADRIAN W. DUDEK

(Received 11 June 2015; accepted 13 June 2015; first published online 2 October 2015)

Abstract

We prove an asymptotic formula for the sum $\sum_{n \leq N} d\left(n^{2}-1\right)$, where $d(n)$ denotes the number of divisors of n. During the course of our proof, we also furnish an asymptotic formula for the sum $\sum_{d \leq N} g(d)$, where $g(d)$ denotes the number of solutions x in \mathbb{Z}_{d} to the equation $x^{2} \equiv 1(\bmod d)$.

2010 Mathematics subject classification: primary 11N37; secondary 11A07.
Keywords and phrases: divisor sum, asymptotic estimate, arithmetic functions, Diophantine quintuples.

1. Introduction

The main purpose of this note is to prove the following theorem.
Theorem 1.1. Let $d(n)$ denote the number of divisors of n. Then

$$
\sum_{n \leq N} d\left(n^{2}-1\right) \sim \frac{6}{\pi^{2}} N \log ^{2} N \quad \text { as } N \rightarrow \infty
$$

In consideration of the more general sum $\sum_{n \leq N} d\left(n^{2}+a\right)$, it was noted by Hooley [5] that, in the case where $a=-k^{2}$, we may factorise $n^{2}+a$ as $(n-k)(n+k)$, and then the sum bears a close resemblance to

$$
\sum_{n \leq N} d(n) d(n+2 k)
$$

which was first studied by Ingham [6]. As mentioned by Hooley, it is certainly possible in this case to compare these sums to show that

$$
\sum_{n \leq N} d\left(n^{2}-k^{2}\right) \sim C(k) N \log ^{2} N
$$

as $N \rightarrow \infty$ for some constant $C(k)$. Elsholtz et al. [4, Lemma 3.5] showed that $C(1) \leq 2$. Trudgian [8] reduced this to $C(1) \leq 12 / \pi^{2}$, before Cipu [1] showed that $C(1) \leq 9 / \pi^{2}$. Theorem 1.1 of this note gives the result that $C(1)=6 / \pi^{2}$.

[^0]However, rather than work from Ingham's asymptotic formula, we give a proof that requires information on the number of solutions to the equation $x^{2} \equiv 1(\bmod d)$. Thus, before we prove Theorem 1.1, we first prove the following result which is of interest in its own right.

Theorem 1.2. Let $g(d)$ denote the number of solutions to the equation $x^{2} \equiv 1(\bmod d)$ such that $1 \leq x \leq d$. Then

$$
\sum_{d<N} g(d) \sim \frac{6}{\pi^{2}} N \log N \quad \text { as } N \rightarrow \infty
$$

After proving our two theorems, we give some insight into how one might generalise this work.

It should also be noted that the sum in Theorem 1.1 plays a role in the theory of Diophantine m-tuples. We call a set of m distinct integers $\left\{a_{1}, \ldots, a_{m}\right\}$ a Diophantine m-tuple if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$. For example, the set $\{1,3,8,120\}$ is a Diophantine quadruple. It has been shown by Dujella [3] that there are no Diophantine m-tuples for $m \geq 6$, and it has been conjectured that there are no Diophantine quintuples, though this has yet to be proven. The best result in this direction is that of Trudgian [8], who has recently shown that there are at most 2.3×10^{29} Diophantine quintuples. In this context, the sum appearing in Theorem 1.1 is useful, for it is equal to twice the number of Diophantine 2-tuples $\{a, b\}$ such that $a b+1 \leq N^{2}$.

2. Proof of the main theorems

We start by manipulating the divisor sum in the usual way. We have that

$$
\sum_{n \leq N} d\left(n^{2}-1\right)=\sum_{n \leq N}\left(2 \sum_{\substack{d \mid\left(n^{2}-1\right) \\ d<n}} 1\right)=2 \sum_{d<N} \sum_{\substack{d<n \leq N \\ n^{2} \equiv 1(\bmod d)}} 1,
$$

where the inner sum is now over the integers n in the interval $(d, N]$ such that n^{2} is congruent to 1 modulo d. We let $g(d)$ denote the number of solutions to the equation $x^{2} \equiv 1(\bmod d)$, where $x \in \mathbb{Z}_{d}$. To estimate the inner sum, we first require the following lemma.

Lemma 2.1. Let d be a positive integer. Writing $d=2^{a} q$, where q is odd and $a \geq 0$, it follows that $g(d)=2^{\omega(q)+s(a)}$, where $\omega(q)$ denotes the number of distinct prime factors of q and

$$
s(a)= \begin{cases}0 & \text { if } a \leq 1, \\ 1 & \text { if } a=2, \\ 2 & \text { if } a \geq 3 .\end{cases}
$$

Proof. This follows from Cipu [1, Lemma 4.1].

Denote by $Q(x, d)$ the number of positive integers $n \leq x$ such that $n^{2} \equiv 1(\bmod d)$. Lemma 2.1 allows us to estimate $Q(x, d)$, because in an interval of length d there will be $g(d)$ such numbers that satisfy the congruence. Therefore,

$$
\begin{equation*}
Q(x, d)=g(d) \frac{x}{d}+O(g(d)) \tag{2.1}
\end{equation*}
$$

With this notation, we can write our original sum as

$$
\sum_{n \leq N} d\left(n^{2}-1\right)=2 \sum_{d<N}(Q(N, d)-Q(d, d))
$$

It follows now from (2.1) and the fact that $Q(d, d)=g(d)$ that

$$
\begin{equation*}
\sum_{n \leq N} d\left(n^{2}-1\right)=2 N \sum_{d<N} \frac{g(d)}{d}+O\left(\sum_{d<N} g(d)\right) \tag{2.2}
\end{equation*}
$$

The order of the error term can be bounded in the straightforward way by

$$
\sum_{d<N} g(d) \ll \sum_{d<N} 2^{\omega(d)} \ll N \log N
$$

and so it remains to show that

$$
\sum_{d<N} \frac{g(d)}{d} \sim \frac{3}{\pi^{2}} \log ^{2} N
$$

as $N \rightarrow \infty$. To estimate this sum, we will use the following result, which can be found in Cojocaru and Murty [2, Theorem 2.4.1].

Lemma 2.2. Let

$$
F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

be a Dirichlet series with nonnegative coefficients converging for $\operatorname{Re}(s)>1$. Suppose that $F(s)$ extends analytically at all points on $\operatorname{Re}(s)=1$ apart from $s=1$, and that at $s=1$ we can write

$$
F(s)=\frac{H(s)}{(s-1)^{1-\alpha}}
$$

for some $\alpha \in \mathbb{R}$ and some $H(s)$ holomorphic and nonzero in the region $\operatorname{Re}(s) \geq 1$. Then

$$
\sum_{n \leq x} a_{n} \sim \frac{c x}{(\log x)^{\alpha}}
$$

with

$$
c:=\frac{H(1)}{\Gamma(1-\alpha)},
$$

where Γ is the Gamma function.

This result allows one to step from some 'well-behaved' Dirichlet series to an asymptotic formula for the partial sum of its coefficients. We will use this to prove Theorem 1.2 , by exploiting the multiplicity of the function $g(d)$ to construct an appropriate Dirichlet series.

Proof of Theorem 1.2. We will consider the Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}
$$

Note that, as $g(n)$ is multiplicative,

$$
F(s)=\prod_{p}\left(1+\frac{g(p)}{p^{s}}+\frac{g\left(p^{2}\right)}{p^{2 s}}+\cdots\right) .
$$

More specifically, from Lemma 2.1 it follows that

$$
F(s)=\left(1+\frac{1}{2^{s}}+\frac{2}{4^{s}}+4\left(\frac{1}{8^{s}}+\frac{1}{16^{s}}+\cdots\right)\right) \cdot \prod_{p \text { odd }}\left(1+\frac{2}{p^{s}}+\frac{2}{p^{2 s}}+\cdots\right) .
$$

We now use the fact that

$$
\frac{\zeta^{2}(s)}{\zeta(2 s)}=\prod_{p} \frac{1-p^{-2 s}}{\left(1-p^{-s}\right)^{2}}=\prod_{p} \frac{1+p^{-s}}{1-p^{-s}}=\prod_{p}\left(1+\frac{2}{p^{s}}+\frac{2}{p^{2 s}}+\cdots\right)
$$

where $\zeta(s)$ is the Riemann zeta-function (see [7] for more details). Thus

$$
F(s)=\left(1+\frac{1}{2^{s}}+\frac{2}{4^{s}}+\frac{4}{8^{s}-4^{s}}\right)\left(\frac{1-2^{-s}}{1+2^{-s}}\right) \frac{\zeta^{2}(s)}{\zeta(2 s)}
$$

By the properties of the Riemann zeta-function, $F(s)$ satisfies the conditions of Lemma 2.2 with $\alpha=-1$, so

$$
\sum_{d<N} g(d) \sim c N \log N
$$

where

$$
c:=\lim _{s \rightarrow 1}(s-1)^{2} F(s)=\frac{1}{\zeta(2)}=\frac{6}{\pi^{2}} .
$$

This completes the proof of Theorem 1.2.
Proof of Theorem 1.1. Now, it follows by partial summation that

$$
\begin{aligned}
\sum_{d<N} \frac{g(d)}{d} & =\frac{6}{\pi^{2}} \int_{1}^{N} \frac{\log t}{t} d t+o\left(\int_{1}^{N} \frac{\log t}{t} d t\right) \\
& =\frac{3}{\pi^{2}} \log ^{2} N+o\left(\log ^{2} N\right)
\end{aligned}
$$

Using the above estimate in (2.2) finishes the proof of Theorem 1.1.

3. Further notes

It would be interesting to see if one could extend this work so as to determine asymptotic estimates for the sums

$$
\sum_{n \leq N} d\left(n^{2}-r^{2}\right) \quad \text { and } \quad \sum_{d<N} g_{r}(d)
$$

where $g_{r}(d)$ denotes the number of solutions of the equation $x^{2} \equiv r^{2}(\bmod d)$ such that $1 \leq x \leq d$. If r is fixed, then note that if p is an odd prime and $k \geq 1$, the equation $x^{2} \equiv r^{2}\left(\bmod p^{k}\right)$ yields

$$
p^{k} \mid(x-r)(x+r)
$$

For a sufficiently large prime p, there will be exactly two solutions to the above, namely $x=r$ and $x=p^{k}-r$. Therefore, we have $g_{r}\left(p^{k}\right)=2$ for all sufficiently large primes p, and thus one will inevitably require the factor $\zeta^{2}(s) / \zeta(2 s)$ in the construction of an appropriate Dirichlet series. Thus, one can expect to obtain asymptotics of the form

$$
\sum_{n \leq N} d\left(n^{2}-r^{2}\right) \sim \frac{A(r)}{\pi^{2}} N \log ^{2} N \quad \text { and } \quad \sum_{d<N} g_{r}(d) \sim \frac{B(r)}{\pi^{2}} N \log N,
$$

where $A(r)$ and $B(r)$ are rational numbers dependent on r.

Acknowledgement

The author would like to thank Dr Timothy Trudgian for introducing him to this problem, and for many conversations of a helpful nature.

References

[1] M. Cipu, 'Further remarks on Diophantine quintuples', Acta Arith. 168 (2015), 201-219.
[2] A. C. Cojocaru and M. R. Murty, An Introduction to Sieve Methods and Their Applications (Cambridge University Press, Cambridge, 2006).
[3] A. Dujella, 'There are only finitely many Diophantine quintuples', J. reine angew. Math. $\mathbf{5 6 6}$ (2004), 183-214.
[4] C. Elsholtz, A. Filipin and Y. Fujita, 'On Diophantine quintuples and $D(-1)$-quadruples', Monatsh. Math. 175(2) (2014), 227-239.
[5] C. Hooley, 'On the number of divisors of quadratic polynomials', Acta Math. 110(1) (1963), 97-114.
[6] A. E. Ingham, 'Some asymptotic formulae in the theory of numbers', J. Lond. Math. Soc. (2) $\mathbf{1}$ (3) (1927), 202-208.
[7] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function (Oxford University Press, New York, 1986).
[8] T. S. Trudgian, 'Bounds on the number of Diophantine quintuples', J. Number Theory 157 (2015), 233-249.

ADRIAN W. DUDEK, Mathematical Sciences Institute, The Australian National University, Canberra, Australia e-mail: adrian.dudek@anu.edu.au

[^0]: The author is grateful for the financial support provided by an Australian Postgraduate Award and an ANU Supplementary Scholarship.
 (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

