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ON THE NUMBER OF DIVISORS OF n2 − 1
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Abstract

We prove an asymptotic formula for the sum
∑

n≤N d(n2 − 1), where d(n) denotes the number of divisors
of n. During the course of our proof, we also furnish an asymptotic formula for the sum

∑
d≤N g(d), where

g(d) denotes the number of solutions x in Zd to the equation x2 ≡ 1 (mod d).
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1. Introduction

The main purpose of this note is to prove the following theorem.

Theorem 1.1. Let d(n) denote the number of divisors of n. Then∑
n≤N

d(n2 − 1) ∼
6
π2 N log2 N as N →∞.

In consideration of the more general sum
∑

n≤N d(n2 + a), it was noted by Hooley
[5] that, in the case where a = −k2, we may factorise n2 + a as (n − k)(n + k), and then
the sum bears a close resemblance to∑

n≤N

d(n) d(n + 2k),

which was first studied by Ingham [6]. As mentioned by Hooley, it is certainly possible
in this case to compare these sums to show that∑

n≤N

d(n2 − k2) ∼ C(k)N log2 N

as N→∞ for some constant C(k). Elsholtz et al. [4, Lemma 3.5] showed that C(1) ≤ 2.
Trudgian [8] reduced this to C(1) ≤ 12/π2, before Cipu [1] showed that C(1) ≤ 9/π2.
Theorem 1.1 of this note gives the result that C(1) = 6/π2.
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However, rather than work from Ingham’s asymptotic formula, we give a proof that
requires information on the number of solutions to the equation x2 ≡ 1 (mod d). Thus,
before we prove Theorem 1.1, we first prove the following result which is of interest
in its own right.

Theorem 1.2. Let g(d) denote the number of solutions to the equation x2 ≡ 1 (mod d)
such that 1 ≤ x ≤ d. Then∑

d<N

g(d) ∼
6
π2 N log N as N →∞.

After proving our two theorems, we give some insight into how one might
generalise this work.

It should also be noted that the sum in Theorem 1.1 plays a role in the theory of
Diophantine m-tuples. We call a set of m distinct integers {a1, . . . , am} a Diophantine
m-tuple if aia j + 1 is a perfect square for all 1 ≤ i < j ≤ m. For example, the set
{1, 3, 8, 120} is a Diophantine quadruple. It has been shown by Dujella [3] that there
are no Diophantine m-tuples for m ≥ 6, and it has been conjectured that there are
no Diophantine quintuples, though this has yet to be proven. The best result in this
direction is that of Trudgian [8], who has recently shown that there are at most
2.3 × 1029 Diophantine quintuples. In this context, the sum appearing in Theorem 1.1
is useful, for it is equal to twice the number of Diophantine 2-tuples {a, b} such that
ab + 1 ≤ N2.

2. Proof of the main theorems

We start by manipulating the divisor sum in the usual way. We have that

∑
n≤N

d(n2 − 1) =
∑
n≤N

(
2

∑
d|(n2−1)

d<n

1
)

= 2
∑
d<N

∑
d<n≤N

n2≡1 (mod d)

1,

where the inner sum is now over the integers n in the interval (d, N] such that n2 is
congruent to 1 modulo d. We let g(d) denote the number of solutions to the equation
x2 ≡ 1 (mod d), where x ∈ Zd. To estimate the inner sum, we first require the following
lemma.

Lemma 2.1. Let d be a positive integer. Writing d = 2aq, where q is odd and a ≥ 0, it
follows that g(d) = 2ω(q)+s(a), where ω(q) denotes the number of distinct prime factors
of q and

s(a) =


0 if a ≤ 1,
1 if a = 2,
2 if a ≥ 3.

Proof. This follows from Cipu [1, Lemma 4.1]. �
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Denote by Q(x, d) the number of positive integers n ≤ x such that n2 ≡ 1 (mod d).
Lemma 2.1 allows us to estimate Q(x, d), because in an interval of length d there will
be g(d) such numbers that satisfy the congruence. Therefore,

Q(x, d) = g(d)
x
d

+ O(g(d)). (2.1)

With this notation, we can write our original sum as∑
n≤N

d(n2 − 1) = 2
∑
d<N

(Q(N, d) − Q(d, d)).

It follows now from (2.1) and the fact that Q(d, d) = g(d) that∑
n≤N

d(n2 − 1) = 2N
∑
d<N

g(d)
d

+ O
(∑

d<N

g(d)
)
. (2.2)

The order of the error term can be bounded in the straightforward way by∑
d<N

g(d)�
∑
d<N

2ω(d) � N log N,

and so it remains to show that ∑
d<N

g(d)
d
∼

3
π2 log2 N

as N →∞. To estimate this sum, we will use the following result, which can be found
in Cojocaru and Murty [2, Theorem 2.4.1].

Lemma 2.2. Let

F(s) =

∞∑
n=1

an

ns

be a Dirichlet series with nonnegative coefficients converging for Re(s) > 1. Suppose
that F(s) extends analytically at all points on Re(s) = 1 apart from s = 1, and that at
s = 1 we can write

F(s) =
H(s)

(s − 1)1−α

for some α ∈ R and some H(s) holomorphic and nonzero in the region Re(s) ≥ 1. Then∑
n≤x

an ∼
cx

(log x)α

with

c :=
H(1)

Γ(1 − α)
,

where Γ is the Gamma function.
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This result allows one to step from some ‘well-behaved’ Dirichlet series to an
asymptotic formula for the partial sum of its coefficients. We will use this to prove
Theorem 1.2, by exploiting the multiplicity of the function g(d) to construct an
appropriate Dirichlet series.

Proof of Theorem 1.2. We will consider the Dirichlet series

F(s) =

∞∑
n=1

g(n)
ns .

Note that, as g(n) is multiplicative,

F(s) =
∏

p

(
1 +

g(p)
ps +

g(p2)
p2s + · · ·

)
.

More specifically, from Lemma 2.1 it follows that

F(s) =

(
1 +

1
2s +

2
4s + 4

( 1
8s +

1
16s + · · ·

))
·
∏
p odd

(
1 +

2
ps +

2
p2s + · · ·

)
.

We now use the fact that

ζ2(s)
ζ(2s)

=
∏

p

1 − p−2s

(1 − p−s)2 =
∏

p

1 + p−s

1 − p−s =
∏

p

(
1 +

2
ps +

2
p2s + · · ·

)
,

where ζ(s) is the Riemann zeta-function (see [7] for more details). Thus

F(s) =

(
1 +

1
2s +

2
4s +

4
8s − 4s

)(1 − 2−s

1 + 2−s

)
ζ2(s)
ζ(2s)

.

By the properties of the Riemann zeta-function, F(s) satisfies the conditions of
Lemma 2.2 with α = −1, so ∑

d<N

g(d) ∼ cN log N,

where
c := lim

s→1
(s − 1)2F(s) =

1
ζ(2)

=
6
π2 .

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.1. Now, it follows by partial summation that∑
d<N

g(d)
d

=
6
π2

∫ N

1

log t
t

dt + o
(∫ N

1

log t
t

dt
)

=
3
π2 log2 N + o(log2 N).

Using the above estimate in (2.2) finishes the proof of Theorem 1.1. �
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3. Further notes

It would be interesting to see if one could extend this work so as to determine
asymptotic estimates for the sums∑

n≤N

d(n2 − r2) and
∑
d<N

gr(d),

where gr(d) denotes the number of solutions of the equation x2 ≡ r2 (mod d) such that
1 ≤ x ≤ d. If r is fixed, then note that if p is an odd prime and k ≥ 1, the equation
x2 ≡ r2 (mod pk) yields

pk|(x − r)(x + r).

For a sufficiently large prime p, there will be exactly two solutions to the above,
namely x = r and x = pk − r. Therefore, we have gr(pk) = 2 for all sufficiently large
primes p, and thus one will inevitably require the factor ζ2(s)/ζ(2s) in the construction
of an appropriate Dirichlet series. Thus, one can expect to obtain asymptotics of the
form ∑

n≤N

d(n2 − r2) ∼
A(r)
π2 N log2 N and

∑
d<N

gr(d) ∼
B(r)
π2 N log N,

where A(r) and B(r) are rational numbers dependent on r.
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