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Département de mathématiques, Université de Sherbrooke,
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Abstract. In this paper, we study the poset of basic tilting kQ-modules when Q
is a Dynkin quiver, and the poset of basic support τ -tilting kQ-modules when Q is a
connected acyclic quiver respectively. It is shown that the first poset is a distributive
lattice if and only if Q is of types �1, �2 or �3 with a non-linear orientation and the
second poset is a distributive lattice if and only if Q is of type �1.
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1. Introduction. Let Q be a finite connected acyclic quiver and kQ be the path
algebra of Q over an algebraically closed field k. Denote by mod-kQ the category
of finite dimensional right kQ-modules, by ind-kQ the category of indecomposable
modules in mod-kQ and by �(mod kQ) the Auslander–Reiten quiver of kQ. For M ∈
mod-kQ, we denote by add M (respectively, Fac M, Sub M) the category of all direct
summands (respectively, factor modules, submodules) of finite direct sums of copies
of M and by |M| the number of pairwise non-isomorphic indecomposable direct
summands of M. Let Q0 be the set of vertices of Q and Q1 be the set of arrows of
Q. Furthermore, let Pi (Ii, Si, respectively) be an indecomposable projective (injective,
simple, respectively) module in mod-kQ associated with vertex i ∈ Q0 and τ be the
Auslander–Reiten translation.

Tilting theory for kQ, or more generally for a finite dimensional basic k-algebra,
was first appeared in [4] and have been central in the representation theory of finite-
dimensional algebras since the early seventies. For the classical tilting modules and
their mutation theory, there is a naturally associated quiver named tilting quiver which
is defined in [16]. Happel and Unger defined a partial order on the set of basic tilting
modules and showed that the tilting quiver coincides with the Hasse quiver of this
poset [5]. A related partial order has been studied in the τ -tilting theory introduced in
[2] and the analog result also holds, that is, the support τ -tilting quiver also coincide
with the Hasse quiver of this related partial order.

Recently, the lattice structure of the poset of tilting modules and support τ -
tilting modules have been studied in [7, 9, 15]. More precisely, Kase showed that
for representation-infinite algebras kQ, the poset of its pre-projective tilting modules
possess a distributive lattice structure if and only if the degree of all vertices in Q is
greater than 1 [9]. Later Iyama, Reiten, Thomas and Todorov proved that for path
algebras kQ, the poset of its support τ -tilting modules possess a lattice structure if and
only if Q is a Dynkin quiver or has at most two vertices.

The aim of this paper is to study the following problem.
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PROBLEM 1.1. Let Q be a finite connected acyclic quiver.

(1) When does the poset of basic tilting kQ-modules possess a distributive lattice
structure?

(2) When does the poset of basic support τ -tilting kQ-modules possess a
distributive lattice structure?

Our main result is the following theorem.

THEOREM 1.2. Let Q be a Dynkin quiver. Then the following statements are
equivalent.

(1) All tilting modules are slice modules.
(2) The full subquiver generated by any tilting module form a section of �(mod

kQ).
(3) The tilting quiver �T (Q) is a distributive lattice.
(4) Any boundary orbit (see Definition 3.1) of �(mod kQ) contains at most two

modules.

For the representation-infinite case, see [6, 9, 10].
As a consequence, the answer to Problem 1.1(1) is given in the following theorem.

THEOREM 1.3. Let Q be a finite connected acyclic quiver.

(1) [9, Theorem 3.1] If Q is a non-Dynkin quiver, then the poset of basic pre-
projective tilting kQ-modules is a distributive lattice if and only if the degree
of all vertices in Q are greater than 1.

(2) If Q is a Dynkin quiver, then the poset of basic tilting kQ-modules is a
distributive lattice if and only if Q is of types �1, �2 or �3 with a non-linear
orientation.

On the other hand, we also show the following result which answers Problem
1.1(2).

THEOREM 1.4. Let Q be a finite connected acyclic quiver. Then, the poset of basic
support τ -tilting kQ-modules is a distributive lattice if and only if Q is of type �1.

The paper is organized as follows. In Section 2, we recall some preliminary
definitions and results of tilting theory, τ -tilting theory and lattice theory, especially
about the tilting quiver, support τ -tilting quiver and distributive lattice. In Section 3.1,
we first introduce the notions of boundary module and boundary orbit and then prove
Theorem 1.2. In Section 3.2 we give the proof of Theorems 1.3 and 1.4.

2. Preliminaries.

2.1. Tilting theory and τ -tilting theory. We start with the following definitions of
tilting modules and tilting quiver which was considered in [9], and was first introduced
in [5, 16].

DEFINITION 2.1. A module T ∈ mod-kQ is a tilting module if

(1) Ext1
kQ(T, T) = 0.

(2) |T | = |Q0|.
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We denote by T (Q) a complete set of representatives of the isomorphism classes
of the basic tilting modules in mod-kQ.

DEFINITION 2.2. The tilting quiver �T (Q) is defined as follows:

(1) �T (Q)0 := T (Q).
(2) T → T ′ in �T (Q) if T ∼= M ⊕ X , T ′ ∼= M ⊕ Y for some X, Y ∈ ind-kQ, M ∈

mod-kQ and there is a non-split exact sequence

0 �� X �� M′ �� Y �� 0

with M′ ∈ add M.

Now we recall some basic definitions of τ -tilting theory, which was first introduced
in [2], in order to “complete” the classical tilting theory from the viewpoint of mutation.

DEFINITION 2.3.

(1) We call M ∈ mod-kQ τ -rigid if HomkQ(M, τM) = 0.
(2) We call M ∈ mod-kQ τ -tilting if M is τ -rigid and |M| = |Q0|.
(3) We call M ∈ mod-kQ support τ -tilting if there exists an idempotent e of kQ

such that M is a τ -tilting (kQ/〈e〉)-module.

Indeed for a path algebra, a support τ -tilting module is just a support tilting
module introduced in [8].

We denote by ST (Q) a complete set of representatives of the isomorphism classes
of the basic support τ -tilting modules in mod-kQ.

Recall that the Hasse-quiver �P of a poset (P,≤) is defined as follows:

(1) �P0 := P.
(2) x → y in �P if x > y and there is no z ∈ P such that x > z > y.

The support τ -tilting quiver �ST (Q) is defined as follows.

PROPOSITION-DEFINITION 2.1. ([2, Theorem 2.7, Corollary 2.34])

(1) Let T, T ′ ∈ ST (Q). Then the following relation ≤ defines a partial order on
ST (Q),

T ≥ T ′ def⇔ FacT ⊇ FacT ′.

(2) The support τ -tilting quiver �ST (Q) is the Hasse quiver of the partially order
set (ST (Q),≤).

We remark that there is the following similar result in the classical tilting theory.

THEOREM 2.4. ([5, Theorem 2.1])

(1) Let T, T ′ ∈ T (Q). Then the following relation ≤ defines a partial order on
T (Q),

T ≥ T ′ def⇔ FacT ⊇ FacT ′.

(2) The tilting quiver �T (Q) is the Hasse quiver of the partially order set (T (Q),≤).
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Figure 1. Tilting quiver.

Figure 2. Support τ -tilting quiver.

We end this subsection with the following two examples.

EXAMPLE 2.1. Let Q1, Q2 be the following two different quivers, see Figure 1.
Although they share the same underlying graph; however, the corresponding tilting
quivers are different.

EXAMPLE 2.2. Let Q be of type �2. Then its support τ -tilting quiver �ST (Q) is
shown in Figure 2.

2.2. Lattices and distributive lattices. In this subsection, we will recall definitions
of lattices and distributive lattices.

DEFINITION 2.5. A poset (L,≤) is a lattice if for any x, y ∈ L there is a minimum
element of {z ∈ L|z ≥ x, y} and there is a maximum element of {z ∈ L|z ≤ x, y}.

In this case, we denote by x ∨ y the minimum element of {z ∈ L|z ≥ x, y} and call
it join of x and y. We also denote by x ∧ y the maximum element of {z ∈ L|z ≤ x, y}
and call it meet of x and y.

DEFINITION 2.6. A lattice L is a distributive lattice if (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
holds for any x, y, z ∈ L.

Immediately we have the following basic observation, which will be used frequently
in this paper.

LEMMA 2.7. For any n ≥ 2, the following Hasse quiver in FIGURE 3 is not a
distributive lattice.
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Figure 3. Hasse quiver not a distributive lattice.

Proof. Since n ≥ 2, it is easy to see that

(b ∨ 2) ∧ 1 = a ∧ 1 = 1 �= 2 = c ∨ 2 = (b ∧ 1) ∨ (2 ∧ 1),

therefore it is not a distributive lattice. �

In the above Examples 2.1 and 2.2, it is easy to see that the lattice (T (Q2),≤) is a
distributive lattice. On the other hand, it follows by Lemma 2.7 that both (T (Q1),≤)
and ( �ST (Q),≤) are not distributive lattice.

3. Main results.

3.1. Boundary module and boundary orbit. From now on, we will not distinguish
between an indecomposable kQ-module M and its corresponding vertex [M] in the
Auslander–Reiten quiver �(mod kQ). By Theorem 2.4 and Proposition-Definition 2.1,
it is easy to see that our problem reduces to the study of lattice structure of the tilting
quiver �T (Q) and the support τ -tiling quiver �ST (Q).

Before proceeding further, let (�, τ ) be a connected translation quiver, recall from
[1] that a connected full subquiver � of � is called a presection (is also called a cut in
[12]) in � if it satisfies the following two conditions:

(1) If x ∈ �0 and x → y is an arrow, then either y ∈ �0 or τy ∈ �0.
(2) If y ∈ �0 and x → y is an arrow, then either x ∈ �0 or τ−1x ∈ �0.

Moreover, in [11] a connected full subquiver � of � is a called section of � if the
following conditions are satisfied:

(1) � contains no oriented cycle.
(2) � meets each τ -orbit in � exactly once.
(3) � is convex in �, that is, every path in � with end-points belonging to � lies

entirely in �.

From [14] recall also that a module S is said to be a slice module if S is sincere and
add S satisfies the following conditions:

(1) If there is a path x0 → x1 → · · · → xt with x0, xt ∈ add S, then xi ∈ add S
(i = 0, 1, . . . , t).

(2) If M is indecomposable and not projective, then at most one of M, τM
belongs to add S.

(3) If there is an arrow M → X with X ∈ add S in the Auslander–Reiten quiver,
then either M ∈ add S or M is not injective and τ−1M ∈ add S.

Now we introduce the notions of boundary module and boundary orbit.
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DEFINITION 3.1.

(1) We call a module M ∈ �(mod kQ) boundary module if M has at most one
direct predecessor and at most one direct successor in Auslander–Reiten
quiver �(mod kQ).

(2) We call a τ -orbit � of �(mod kQ) boundary orbit if � contains a boundary
module.

The following two observations are useful.

LEMMA 3.2. Let Q be a tree. If Q is not of type �1, �2 or �3 with a non-
linear orientation, then the Auslander–Reiten quiver �(mod kQ) has a boundary orbit
containing at least three modules.

Proof. Assume that Q is not of type �1, �2 or �3 with linear orientation. If Q is
a linear quiver, then by our assumption we have |Q0| ≥ 3 and hence the result follows
at once. Otherwise since Q is a tree, there exists a ∈ Q0 such that the degree of a is
1. Without loss of generality we may assume that a is a source vertex, i.e., there is an
arrow a → b ∈ Q1. Then Ia = Sa is a simple non-projective module and by [3, Lemma
IV, 3.9] the only direct predecessor of Ia in �(mod kQ) is Ib.

If τ Ia is not projective, then the result follows since Ia is a boundary module.
Otherwise, there exists an almost split sequence 0 → Pc → Ib → Ia → 0 in �(mod
kQ) for some c ∈ Q0. In particular, HomkQ(Pc, Ib) �= 0, i.e., Q contains the following
subquiver: c → d → · · · → b ← a. Moreover since Q is not a linear quiver, there is no
projective–injective module in �(mod kQ) and thus Pc is also a boundary module, i.e.,
c has degree 1 in Q.

If τ Ic is not projective, then the result follows since Ic is also a boundary module.
Otherwise similarly we can show that Q contains the following subquiver: e → · · · →
f → d ← c. If f �= a, then 0 < (dim Ib)f = (dim Pc)f + (dim Ia)f = 0 + 0 = 0, which
is a contradiction. Here (dim M)i denotes the ith component of the dimension vector
of the module M. If f = a, then b = d and now Q is of type �3 with a non-linear
orientation, which is also a contradiction. It means that we can always construct an
injective boundary module M such that τM is not projective. The proof of the lemma
is completed. �

LEMMA 3.3. Let Q be a Dynkin quiver. If one of its boundary orbits contains at least
three modules, then the tilting quiver �T (Q) is not a distributive lattice.

Proof. Since Q is a Dynkin quiver, �(mod kQ) must be a full convex subquiver
of �Q. Without loss of generality, by our assumption �(mod kQ) will contain the
following shaded area T , see Figure 4.

Now we enlarge T for each type, for the type A, see the left-lower of Figure 4. For
simplicity, we may continue with the type A, for the remaining two types, the argument
is similar.

Let |Q0| = n, it is easy to see that we can construct a section � of the lower (n − 2)-
rows starting with M6 and denote the module corresponding to this section by M� .
Then we consider the following five modules

T1 = M� ⊕ M4 ⊕ M1, T2 = M� ⊕ M4 ⊕ M2, T3 = M� ⊕ M5 ⊕ M2,

T4 = M� ⊕ M5 ⊕ M3, T5 = M� ⊕ M1 ⊕ M3.
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Figure 4. (Colour online) Shaded area.

Since �(mod kQ) is a standard component, it is not hard to see that all of these five
modules are tilting modules and they forms the right-lower of Figure 4, which is a full
subquiver of the tilting quiver �T (Q), however, is not a distributive lattice by Lemma
2.7. Hence the tilting quiver �T (Q) is also not a distributive lattice, which completes the
proof. �

Now we are ready to prove Theorem 1.2.

(1) ⇔ (2): This is shown in [13] or [17].
(2) ⇒ (3): Let |Q0| = n, according to (2) it follows that any tilting module can

be written as

T ∼=
n⊕

i=1

τ−ri Pi

for ri ∈ �≥0, 1 ≤ i ≤ n and if T, T ′ be two tilting modules, T → T ′ in �T (Q)
if and only if there is an indecomposable direct summand X such that
T ∼= M ⊕ X and T ′ ∼= M ⊕ τ−1X . Thus, for any two tilting modules T ∼=⊕n

i=1 τ−ri Pi, T ′ ∼= ⊕n
i=1 τ−r′

i Pi, T ≥ T ′ if and only if ri ≤ r′
i, 1 ≤ i ≤ n.

From now on let �T be the full subquiver of �(mod kQ) generated by T .
Since �T , �T ′ form a section of �(mod kQ), it is not hard to check that
both �⊕n

i=1 τ−min{ri ,r′i }Pi
and �⊕n

i=1 τ−max{ri ,r′i }Pi
again form a section of �(mod kQ),

which implies that both
⊕n

i=1 τ−min{ri,r′
i}Pi and

⊕n
i=1 τ−max{ri,r′

i}Pi are tilting
modules. Therefore the join and meet of T and T ′ are

T ∨ T ′ ∼=
n⊕

i=1

τ−min{ri,r′
i}Pi, T ∧ T ′ ∼=

n⊕

i=1

τ−max{ri,r′
i}Pi

respectively, which makes the tilting quiver �T (Q) to be a distributive
lattice. Indeed, it follows by the fact that a ∨ b = (min(ri, r′

i))1≤i≤n and
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a ∧ b = (max(ri, r′
i))1≤i≤n makes (�n,≤op) to be a distributive lattice, where

a = (ri)1≤i≤n, b = (r′
i)1≤i≤n.

(3) ⇒ (4): It follows from Lemma 3.3 at once.
(4) ⇒ (2): Since Q is a Dynkin quiver and any boundary orbit of �(mod kQ)

contains at most two modules, by Lemma 3.2 we have that Q is of type �1,
�2 or �3 with a non-linear orientation. Then the result follows at once.

3.2. Proof of Theorem 1.3 and 1.4. First, we start with the proof of Theorem 1.3.
For the non-Dynkin case, see [9, Theorem 3.1]. If Q is a Dynkin quiver, it follows

from the equivalence between (2) and (4) in Theorem 1.2 and Lemma 3.2 at once. The
proof of the Theorem 1.3 is completed.

Now we are going to prove Theorem 1.4.
Indeed, by [7, Theorem 0.3], it suffices to consider the following two cases.

Case 1: Q is of Dynkin type.
If |Q0| = 1, then the support τ -tilting quiver is · → ·, it is clear.
If |Q0| = n ≥ 2, then Q contains �2 as its full subquiver. Without loss of generality

we assume that {e1, . . . , en} is a complete set of primitive orthogonal idempotents for
kQ and there is an arrow α between the vertices 1 and 2. Let e = e3 + e4 + · · · + en.
Then kQ/〈e〉 ∼= k�2.

By Example 2.2 the support τ -tilting quiver �ST (�2) is not a distributive lattice. On
the other hand, according to [2, Proposition 2.27(a)] it can easily be seen that �ST (�2)
is a full subquiver of �ST (Q), which implies that �ST (Q) is not a distributive lattice itself.

Case 2: Q has at most two vertices.
According to [7, Proposition 2.2], it follows that the support τ -tilting quiver �ST (Q)

is isomorphic to the Figure 3 in Lemma 2.7, where n tends to +∞. Now by Lemma
2.7 it is obvious that �ST (Q) is not a distributive lattice.

Finally, by combining the above two cases together, the proof of the Theorem 1.4
is completed.
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1. I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, J. Algebra 319(8)
(2008), 3464–3479.

2. T. Adachi, O. Iyama and I. Reiten, τ -tilting theory, Compos. Math. 150(3) (2014),
415–452.
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