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Carmichael Numbers with a Square Totient

W. D. Banks

Abstract. Let ϕ denote the Euler function. In this paper, we show that for all large x there are more

than x0.33 Carmichael numbers n 6 x with the property that ϕ(n) is a perfect square. We also obtain

similar results for higher powers.

1 Introduction

A longstanding conjecture in prime number theory asserts the existence of infinitely

many primes of the form m2 + 1. Although the problem appears to be intractable at

present, there have been a number of partial steps in the direction of this result, for

the most part as a consequence of sieve methods. One knows, thanks to Brun, that

the number of integers m2 + 1 6 x that are prime is O(x1/2/ log x). In the opposite

direction, Iwaniec [5] has shown that m2 + 1 is the product of at most two primes

infinitely often.

For any prime p we have p = m2 + 1 if and only if ϕ(p) = m2, where ϕ is the

Euler function; thus, the m2 + 1 conjecture can be reformulated as the assertion that

the set

S(2)
ϕ := {n > 1 : ϕ(n) is a perfect square}

contains infinitely many prime numbers. Motivated by this observation, the set of

integers with square totients was first studied by Banks, Friedlander, Pomerance, and

Shparlinski [3]; they proved that
∣
∣S(2)

ϕ ∩ [1, x]
∣
∣ > x0.7038 for all sufficiently large

values of x.

We cannot show that the set S(2)
ϕ contains infinitely many primes, however it is

interesting to ask whether other thin sets of integers enjoy an infinite intersection

with S(2)
ϕ . For example, denoting by P2 the set of integers with at most two prime

factors, it may be possible to show using sieve methods that |S(2)
ϕ ∩ P2| = ∞, a

natural analogue of Iwaniec’s result. This problem can be restated as follows:

Problem Prove that there exist infinitely many pairs (p, q) of primes such that

(p − 1)(q − 1) is a perfect square.

In this paper, we show that the set S(2)
ϕ contains infinitely many Carmichael num-

bers. Moreover, the same is true for all of the sets

S(N)
ϕ := {n > 1 : ϕ(n) = mN for some integer m} (N = 2, 3, 4, . . .).

We recall that an integer n > 1 is said to be a Carmichael number if n is composite

and n | (an − a) for all integers a.
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By the celebrated work of Alford, Granville, and Pomerance [1], it is known that

the set C of Carmichael numbers is infinite. In fact, the authors have shown that the

lower bound
∣
∣C ∩ [1, x]

∣
∣ > xβ holds for all large x with

β :=
5

12

(

1 − 1

2
√

e

)

= 0.290306 · · · > 2

7
.

Using a variant of the Alford–Granville–Pomerance construction, Harman [4] has

recently established the same result with the constant β := 0.33; see also the earlier

paper of Baker and Harman [2].

The main result of this paper is the following:

Theorem 1 For every fixed C < 1, there is a number x0(C) such that for all x > x0(C)

the inequality

∣
∣
∣

{
n 6 x : n is Carmichael and ϕ(n) = mN for some integer m

}
∣
∣
∣ > x0.33

holds for all positive integers N 6 exp
(

(log log x)C
)

.

As in [4], the constant 0.33 appearing in Theorem 1 can be replaced by any num-

ber β < 0.3322408.

Let π(x) be the number of primes p 6 x and π(x; d, a) the number of such primes

in the arithmetic progression a modulo d. The following conditional result (com-

pare [1, Theorem 4]) suggests that for every fixed integer N > 2 there are x1+o(1)

Carmichael numbers n 6 x such that ϕ(n) is a perfect N-th power:

Theorem 2 Let ε > 0, and suppose that there is a number x1(ε) such that for all

x > x1(ε), the inequality

π(x; d, 1) >
π(x)

2ϕ(d)

holds for all positive integers d 6 x1−ε. Then, for every fixed C < 1, there is a number

x2(ε,C) such that for all x > x2(ε,C) the inequality

∣
∣
∣

{
n 6 x : n is Carmichael and ϕ(n) = mN for some integer m

}
∣
∣
∣ > x1−3ε

holds for all positive integers N 6 exp
(

(log log x)C
)

.

Both results above follow immediately from Theorem 3 (see Section 2), whose

proof relies heavily on ideas from [1, 3, 4].

Throughout the paper, the letters p and q (with or without subscripts) always

denote prime numbers, and the letters n and m always represent positive integers.
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2 Construction

Fix ε > 0, and let E and B be numbers in the open interval (0, 1). Let y > 2 be a

parameter, and put

(1) θ := (1 − E)−1, δ :=
εθ

4B
, x := exp(y1+δ).

We shall say that the pair (E,B) is ε-good if for all sufficiently large y there exist

integers L and k with the following properties:

(i) L is a squarefree product of primes q from the interval (yθ/ log y, yθ], where

each shifted prime q − 1 is free of prime divisors greater than y;

(ii) k 6 x1−B and gcd(k, L) = 1;

(iii) the inequality |P| > xEB−ε/3 holds, where

P := {p 6 x : p = dk + 1 is prime and d | L}.

We shall say that the pair (E,B) is good if it is ε-good for every ε > 0.

Theorem 3 Let (E,B) be a good pair, C < 1, and ε > 0. Then, there is a number

X0 = X0(E,B,C, ε) such that for all X > X0 the inequality

∣
∣S(N)

ϕ ∩ C ∩ [1,X]
∣
∣ > XEB−ε

holds for all positive integers N 6 exp
(

(log log x)C
)

.

It follows from [4, Theorem 3] that (0.7039, 0.472) is a good pair. Since

0.7039 × 0.472 = 0.3322408 > 0.33,

Theorem 1 is an immediate consequence of Theorem 3.

Similarly, let E and B be the sets considered in [1]. Arguing as in the proof of [1,

Theorem 4.1], it is easy to see that (E,B) is a good pair for any E ∈ E, B ∈ B. The

hypothesis of Theorem 2 implies that 1 − ε ∈ B, hence by [1, Theorem 3] we have

1 − ε ′ ∈ E, where ε ′ = ε/(1 − ε); therefore, (1 − ε ′, 1 − ε) is a good pair. Since

(1 − ε ′)(1 − ε) − ε = 1 − 3ε, Theorem 2 follows immediately from Theorem 3.

Proof of Theorem 3 Let y > 2 be a parameter, and define θ, δ, x as in (1). Replacing

ε by a smaller number if necessary, we can assume that

(2) C(1 + δ/2) < 1 + δ/4.

If y is large enough, there are integers L and k satisfying (i)–(iii) above. Let

P := {p 6 x : p = dk + 1 is prime and d | L};

then the inequality

|P| > xEB−ε/3
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holds by property (iii).

With L and k fixed, consider the group

GN := (Z/LZ)∗ × (Z/NZ)+ × · · · × (Z/NZ)+

︸ ︷︷ ︸

κ copies

,

where κ := ω(kL) is the number of distinct prime divisors of kL. Note that, if y is

large enough, we have

κ 6 log(kL) 6 (1 − B) log x + log L.

As in [1], for any finite group G we denote by n(G) the length of the longest sequence

of (not necessarily distinct) elements of G such that the product of the elements in

any subsequence is different from the identity. Since the maximal order of an element

of GN is λ(L)N, where λ is the Carmichael function, and |GN | = ϕ(L)Nκ, we have

by [1, Theorem 1.2]:

n(GN) 6 λ(L)N
(

1 + log
ϕ(L)Nκ

λ(L)N

)
6 λ(L)N

(
1 + log L + κ log N

)

6 λ(L)N
(

1 + log L + ((1 − B) log x + log L) log N
)
.

Taking into account the bounds log L 6 2yθ and λ(L) 6 e2θy , which follow from

property (i) if y is sufficiently large (see, for example, the proof of [1, Theorem 4.1]),

and using the fact that log x = y1+δ together with the trivial inequality 2 log N > 1

for all N > 2, it follows that

n(GN) 6 e2θyN log N
(

2 + 6yθ + (1 − B)y1+δ
)

6 e3θyN log N

if y is large enough. In particular,

(3) N 6 exp(y1+δ/4) =⇒ n(GN) 6 exp(y1+δ/3)

if y is sufficiently large.

Now let Q denote the set of primes q ∈ (yθ/ log y, yθ], and put P ′ := P \Q. Since

|Q| 6 yθ , we have

|P ′| > xEB−ε/2

for all large y. Consider the multiplicative map ψ from the set of squarefree positive

integers coprime to L into the group GN , defined by

ψ(n) :=
(
ψ0(n), ψ1(n), . . . , ψκ(n)

)
,

where

ψ j(n) :=

{
n (mod L) if j = 0;

vq j
(ϕ(n)) (mod N) if 1 6 j 6 κ.
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Here, q1 < · · · < qκ are the distinct primes dividing kL, and vq is the standard q-adic

valuation for each prime q. It is easy to see that ψ is injective on P ′, hence ψ(P ′) is a

subset of GN with cardinality

(4)
∣
∣ψ(P ′)

∣
∣ = |P ′| > xEB−ε/2.

Now, if R is any subset of P ′ with more than one element, and

Πψ(R) :=
∏

p∈R

ψ(p)

is the identity element of GN , then

nR :=
∏

p∈R

p

is a Carmichael number, and ϕ(nR) = mN for some positive integer m.

Indeed, to see that nR is Carmichael we apply:

Korselt’s criterion. an ≡ a (mod n) for all integers a if and only if n is

squarefree and p − 1 divides n − 1 for every prime p dividing n.

Sinceψ(nR) = Πψ(R) is the identity of GN , it follows that nR ≡ 1 mod L. As p ≡ 1

(mod k) for every prime p dividing nR, and gcd(k, L) = 1, we further have nR ≡ 1

(mod kL). Thus, p − 1 | kL | nR − 1 for every prime p dividing nR, and therefore

nR is a Carmichael number by Korselt’s criterion.

To see that ϕ(nR) = mN for some positive integer m, we observe that the only

primes which can divide ϕ(nR) are those primes q1, . . . , qκ that divide kL. Since

ψ(nR) is the identity of GN , we have vq j
(ϕ(nR)) ≡ 0 (mod N) for 1 6 j 6 κ, and

the result follows.

Now let t := exp(y1+δ/2). By [1, Proposition 1.2], the number of subsets R ⊂ P ′

with |R| 6 t , and such that Πψ(R) is the identity of GN , is at least
(|P ′|
⌊t⌋

)/( |P ′|
n(GN)

)

>

( |P ′|
⌊t⌋

) ⌊t⌋

|P ′|−n(GN )
>

(
xEB−ε/2

) ⌊t⌋−n(GN ) ⌊t⌋−⌊t⌋ ,

where we have used (4) for the second inequality. Using (3), we see that the last

number exceeds xt(EB−ε) if N 6 exp(y1+δ/4) and y is sufficiently large. For any such

R we have nR 6 xt ; therefore, setting X := xt we see that there are more than XEB−ε

Carmichael numbers n 6 X with ϕ(n) = mN provided that N 6 exp(y1+δ/4). Since

X = exp(y1+δ exp(y1+δ/2)), we have by our assumption (2):

C log log log X = C(1 + δ/2 + o(1)) log y 6 (1 + δ/4) log y

if y is large enough, and thus

exp((log log X)C ) 6 exp(y1+δ/4).

Since y can be determined uniquely from X, this completes the proof.

Acknowledgments The author would like to thank Igor Shparlinski for useful con-

versations and for pointing out the relevance of [4] to the present work, and the

anonymous referee for the suggestion of Theorem 2. This paper was written dur-

ing a visit by the author to Macquarie University; the hospitality and support of this

institution are gratefully acknowledged.

https://doi.org/10.4153/CMB-2009-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-001-7


8 W. D. Banks

References

[1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers. Ann.
of Math. (2) 139(1994), no. 3, 703–722.

[2] R. Baker and G. Harman, Shifted primes without large prime factors. Acta Arith. 83(1998), no. 4,
331–361.

[3] W. Banks, J. B. Friedlander, C. Pomerance and I. E. Shparlinski, Multiplicative structure of values of
the Euler function. In: High primes and misdemeanours: lectures in honour of the 60th birthday of
Hugh Cowie Williams, Fields Inst. Commun. 41, American Mathematical Society, Providence, RI,
2004, pp. 29–47.

[4] G. Harman, On the number of Carmichael numbers up to x. Bull. London Math. Soc. 37(2005), no.
5, 641–650.

[5] H. Iwaniec, Almost-primes represented by quadratic polynomials. Invent. Math. 47(1978), no. 2,
171–188.

Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
e-mail: bbanks@math.missouri.edu

https://doi.org/10.4153/CMB-2009-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-001-7

