Carmichael Numbers with a Square Totient

W. D. Banks

Abstract. Let φ denote the Euler function. In this paper, we show that for all large x there are more than $x^{0.33}$ Carmichael numbers $n \leqslant x$ with the property that $\varphi(n)$ is a perfect square. We also obtain similar results for higher powers.

1 Introduction

A longstanding conjecture in prime number theory asserts the existence of infinitely many primes of the form $m^{2}+1$. Although the problem appears to be intractable at present, there have been a number of partial steps in the direction of this result, for the most part as a consequence of sieve methods. One knows, thanks to Brun, that the number of integers $m^{2}+1 \leqslant x$ that are prime is $O\left(x^{1 / 2} / \log x\right)$. In the opposite direction, Iwaniec [5] has shown that $m^{2}+1$ is the product of at most two primes infinitely often.

For any prime p we have $p=m^{2}+1$ if and only if $\varphi(p)=m^{2}$, where φ is the Euler function; thus, the $m^{2}+1$ conjecture can be reformulated as the assertion that the set

$$
\mathcal{S}_{\varphi}^{(2)}:=\{n \geqslant 1: \varphi(n) \text { is a perfect square }\}
$$

contains infinitely many prime numbers. Motivated by this observation, the set of integers with square totients was first studied by Banks, Friedlander, Pomerance, and Shparlinski [3]; they proved that $\left|\mathcal{S}_{\varphi}^{(2)} \cap[1, x]\right| \geqslant x^{0.7038}$ for all sufficiently large values of x.

We cannot show that the set $\mathcal{S}_{\varphi}^{(2)}$ contains infinitely many primes, however it is interesting to ask whether other thin sets of integers enjoy an infinite intersection with $\mathcal{S}_{\varphi}^{(2)}$. For example, denoting by \mathcal{P}_{2} the set of integers with at most two prime factors, it may be possible to show using sieve methods that $\left|\mathcal{S}_{\varphi}^{(2)} \cap \mathcal{P}_{2}\right|=\infty$, a natural analogue of Iwaniec's result. This problem can be restated as follows:

Problem Prove that there exist infinitely many pairs (p, q) of primes such that $(p-1)(q-1)$ is a perfect square.

In this paper, we show that the set $\delta_{\varphi}^{(2)}$ contains infinitely many Carmichael numbers. Moreover, the same is true for all of the sets

$$
\mathcal{S}_{\varphi}^{(N)}:=\left\{n \geqslant 1: \varphi(n)=m^{N} \text { for some integer } m\right\} \quad(N=2,3,4, \ldots)
$$

We recall that an integer $n \geqslant 1$ is said to be a Carmichael number if n is composite and $n \mid\left(a^{n}-a\right)$ for all integers a.

[^0]By the celebrated work of Alford, Granville, and Pomerance [1], it is known that the set \mathcal{C} of Carmichael numbers is infinite. In fact, the authors have shown that the lower bound $|\mathcal{C} \cap[1, x]| \geqslant x^{\beta}$ holds for all large x with

$$
\beta:=\frac{5}{12}\left(1-\frac{1}{2 \sqrt{e}}\right)=0.290306 \cdots>\frac{2}{7}
$$

Using a variant of the Alford-Granville-Pomerance construction, Harman [4] has recently established the same result with the constant $\beta:=0.33$; see also the earlier paper of Baker and Harman [2].

The main result of this paper is the following:
Theorem 1 For every fixed $C<1$, there is a number $x_{0}(C)$ such that for all $x \geqslant x_{0}(C)$ the inequality

$$
\mid\left\{n \leqslant x: n \text { is Carmichael and } \varphi(n)=m^{N} \text { for some integer } m\right\} \mid \geqslant x^{0.33}
$$

holds for all positive integers $N \leqslant \exp \left((\log \log x)^{C}\right)$.
As in [4], the constant 0.33 appearing in Theorem 1 can be replaced by any number $\beta<0.3322408$.

Let $\pi(x)$ be the number of primes $p \leqslant x$ and $\pi(x ; d, a)$ the number of such primes in the arithmetic progression a modulo d. The following conditional result (compare [1, Theorem 4]) suggests that for every fixed integer $N \geqslant 2$ there are $x^{1+o(1)}$ Carmichael numbers $n \leqslant x$ such that $\varphi(n)$ is a perfect N-th power:

Theorem 2 Let $\varepsilon>0$, and suppose that there is a number $x_{1}(\varepsilon)$ such that for all $x \geqslant x_{1}(\varepsilon)$, the inequality

$$
\pi(x ; d, 1) \geqslant \frac{\pi(x)}{2 \varphi(d)}
$$

holds for all positive integers $d \leqslant x^{1-\varepsilon}$. Then, for every fixed $C<1$, there is a number $x_{2}(\varepsilon, C)$ such that for all $x \geqslant x_{2}(\varepsilon, C)$ the inequality

$$
\mid\left\{n \leqslant x: n \text { is Carmichael and } \varphi(n)=m^{N} \text { for some integer } m\right\} \mid \geqslant x^{1-3 \varepsilon}
$$

holds for all positive integers $N \leqslant \exp \left((\log \log x)^{C}\right)$.
Both results above follow immediately from Theorem 3 (see Section 2), whose proof relies heavily on ideas from [1,3,4].

Throughout the paper, the letters p and q (with or without subscripts) always denote prime numbers, and the letters n and m always represent positive integers.

2 Construction

Fix $\varepsilon>0$, and let E and B be numbers in the open interval $(0,1)$. Let $y \geqslant 2$ be a parameter, and put

$$
\begin{equation*}
\theta:=(1-E)^{-1}, \quad \delta:=\frac{\varepsilon \theta}{4 B}, \quad x:=\exp \left(y^{1+\delta}\right) \tag{1}
\end{equation*}
$$

We shall say that the pair (E, B) is ε-good if for all sufficiently large y there exist integers L and k with the following properties:
(i) L is a squarefree product of primes q from the interval $\left(y^{\theta} / \log y, y^{\theta}\right]$, where each shifted prime $q-1$ is free of prime divisors greater than y;
(ii) $k \leqslant x^{1-B}$ and $\operatorname{gcd}(k, L)=1$;
(iii) the inequality $|\mathcal{P}| \geqslant x^{E B-\varepsilon / 3}$ holds, where

$$
\mathcal{P}:=\{p \leqslant x: p=d k+1 \text { is prime and } d \mid L\} .
$$

We shall say that the pair (E, B) is good if it is ε-good for every $\varepsilon>0$.
Theorem 3 Let (E, B) be a good pair, $C<1$, and $\varepsilon>0$. Then, there is a number $X_{0}=X_{0}(E, B, C, \varepsilon)$ such that for all $X \geqslant X_{0}$ the inequality

$$
\left|\mathcal{S}_{\varphi}^{(N)} \cap \mathcal{C} \cap[1, X]\right| \geqslant X^{E B-\varepsilon}
$$

holds for all positive integers $N \leqslant \exp \left((\log \log x)^{C}\right)$.
It follows from [4, Theorem 3] that $(0.7039,0.472)$ is a good pair. Since

$$
0.7039 \times 0.472=0.3322408>0.33
$$

Theorem 1 is an immediate consequence of Theorem 3.
Similarly, let \mathcal{E} and \mathcal{B} be the sets considered in [1]. Arguing as in the proof of [1, Theorem 4.1], it is easy to see that (E, B) is a good pair for any $E \in \mathcal{E}, B \in \mathcal{B}$. The hypothesis of Theorem 2 implies that $1-\varepsilon \in \mathcal{B}$, hence by [1, Theorem 3] we have $1-\varepsilon^{\prime} \in \mathcal{E}$, where $\varepsilon^{\prime}=\varepsilon /(1-\varepsilon)$; therefore, $\left(1-\varepsilon^{\prime}, 1-\varepsilon\right)$ is a good pair. Since $\left(1-\varepsilon^{\prime}\right)(1-\varepsilon)-\varepsilon=1-3 \varepsilon$, Theorem 2 follows immediately from Theorem 3.

Proof of Theorem 3 Let $y \geqslant 2$ be a parameter, and define θ, δ, x as in (1). Replacing ε by a smaller number if necessary, we can assume that

$$
\begin{equation*}
C(1+\delta / 2)<1+\delta / 4 \tag{2}
\end{equation*}
$$

If y is large enough, there are integers L and k satisfying (i)-(iii) above. Let

$$
\mathcal{P}:=\{p \leqslant x: p=d k+1 \text { is prime and } d \mid L\} ;
$$

then the inequality

$$
|\mathcal{P}| \geqslant x^{E B-\varepsilon / 3}
$$

holds by property (iii).
With L and k fixed, consider the group

$$
\mathcal{G}_{N}:=(\mathbb{Z} / L \mathbb{Z})^{*} \times \underbrace{(\mathbb{Z} / N Z \mathbb{Z})^{+} \times \cdots \times(\mathbb{Z} / N Z)^{+}}_{\kappa \text { copies }}
$$

where $\kappa:=\omega(k L)$ is the number of distinct prime divisors of $k L$. Note that, if y is large enough, we have

$$
\kappa \leqslant \log (k L) \leqslant(1-B) \log x+\log L
$$

As in [1], for any finite group G we denote by $n(G)$ the length of the longest sequence of (not necessarily distinct) elements of G such that the product of the elements in any subsequence is different from the identity. Since the maximal order of an element of \mathcal{G}_{N} is $\lambda(L) N$, where λ is the Carmichael function, and $\left|\mathcal{G}_{N}\right|=\varphi(L) N^{k}$, we have by [1, Theorem 1.2]:

$$
\begin{aligned}
n\left(\mathcal{G}_{N}\right) & \leqslant \lambda(L) N\left(1+\log \frac{\varphi(L) N^{\kappa}}{\lambda(L) N}\right) \leqslant \lambda(L) N(1+\log L+\kappa \log N) \\
& \leqslant \lambda(L) N(1+\log L+((1-B) \log x+\log L) \log N)
\end{aligned}
$$

Taking into account the bounds $\log L \leqslant 2 y^{\theta}$ and $\lambda(L) \leqslant e^{2 \theta y}$, which follow from property (i) if y is sufficiently large (see, for example, the proof of [1, Theorem 4.1]), and using the fact that $\log x=y^{1+\delta}$ together with the trivial inequality $2 \log N \geqslant 1$ for all $N \geqslant 2$, it follows that

$$
n\left(\mathcal{G}_{N}\right) \leqslant e^{2 \theta y} N \log N\left(2+6 y^{\theta}+(1-B) y^{1+\delta}\right) \leqslant e^{3 \theta y} N \log N
$$

if y is large enough. In particular,

$$
\begin{equation*}
N \leqslant \exp \left(y^{1+\delta / 4}\right) \quad \Longrightarrow \quad n\left(\mathcal{G}_{N}\right) \leqslant \exp \left(y^{1+\delta / 3}\right) \tag{3}
\end{equation*}
$$

if y is sufficiently large.
Now let \mathcal{Q} denote the set of primes $q \in\left(y^{\theta} / \log y, y^{\theta}\right]$, and put $\mathcal{P}^{\prime}:=\mathcal{P} \backslash \mathcal{Q}$. Since $|\mathcal{Q}| \leqslant y^{\theta}$, we have

$$
\left|\mathcal{P}^{\prime}\right| \geqslant x^{E B-\varepsilon / 2}
$$

for all large y. Consider the multiplicative map ψ from the set of squarefree positive integers coprime to L into the group \mathcal{G}_{N}, defined by

$$
\psi(n):=\left(\psi_{0}(n), \psi_{1}(n), \ldots, \psi_{\kappa}(n)\right)
$$

where

$$
\psi_{j}(n):= \begin{cases}n(\bmod L) & \text { if } j=0 \\ v_{q_{j}}(\varphi(n))(\bmod N) & \text { if } 1 \leqslant j \leqslant \kappa\end{cases}
$$

Here, $q_{1}<\cdots<q_{k}$ are the distinct primes dividing $k L$, and v_{q} is the standard q-adic valuation for each prime q. It is easy to see that ψ is injective on \mathcal{P}^{\prime}, hence $\psi\left(\mathcal{P}^{\prime}\right)$ is a subset of \mathcal{G}_{N} with cardinality

$$
\begin{equation*}
\left|\psi\left(\mathcal{P}^{\prime}\right)\right|=\left|\mathcal{P}^{\prime}\right| \geqslant x^{E B-\varepsilon / 2} \tag{4}
\end{equation*}
$$

Now, if \mathcal{R} is any subset of \mathcal{P}^{\prime} with more than one element, and

$$
\Pi_{\psi}(\mathcal{R}):=\prod_{p \in \mathcal{R}} \psi(p)
$$

is the identity element of \mathcal{G}_{N}, then

$$
n_{\mathcal{R}}:=\prod_{p \in \mathcal{R}} p
$$

is a Carmichael number, and $\varphi\left(n_{\mathcal{R}}\right)=m^{N}$ for some positive integer m.
Indeed, to see that $n_{\mathcal{R}}$ is Carmichael we apply:
Korselt's criterion. $\quad a^{n} \equiv a(\bmod n)$ for all integers a if and only if n is squarefree and $p-1$ divides $n-1$ for every prime p dividing n.
Since $\psi\left(n_{\mathcal{R}}\right)=\Pi_{\psi}(\mathcal{R})$ is the identity of \mathcal{G}_{N}, it follows that $n_{\mathcal{R}} \equiv 1 \bmod L$. As $p \equiv 1$ $(\bmod k)$ for every prime p dividing $n_{\mathcal{R}}$, and $\operatorname{gcd}(k, L)=1$, we further have $n_{\mathcal{R}} \equiv 1$ $(\bmod k L)$. Thus, $p-1|k L| n_{\mathcal{R}}-1$ for every prime p dividing $n_{\mathcal{R}}$, and therefore $n_{\mathcal{R}}$ is a Carmichael number by Korselt's criterion.

To see that $\varphi\left(n_{\mathcal{R}}\right)=m^{N}$ for some positive integer m, we observe that the only primes which can divide $\varphi\left(n_{\mathcal{R}}\right)$ are those primes $q_{1}, \ldots, q_{\kappa}$ that divide $k L$. Since $\psi\left(n_{\mathcal{R}}\right)$ is the identity of \mathcal{G}_{N}, we have $v_{q_{j}}\left(\varphi\left(n_{\mathcal{R}}\right)\right) \equiv 0(\bmod N)$ for $1 \leqslant j \leqslant \kappa$, and the result follows.

Now let $t:=\exp \left(y^{1+\delta / 2}\right)$. By [1, Proposition 1.2], the number of subsets $\mathcal{R} \subset \mathcal{P}^{\prime}$ with $|\mathcal{R}| \leqslant t$, and such that $\Pi_{\psi}(\mathcal{R})$ is the identity of \mathcal{G}_{N}, is at least

$$
\binom{\left|\mathcal{P}^{\prime}\right|}{\lfloor t\rfloor} /\binom{\left|\mathcal{P}^{\prime}\right|}{n\left(\mathcal{G}_{N}\right)} \geqslant\left(\frac{\left|\mathcal{P}^{\prime}\right|}{\lfloor t\rfloor}\right)^{\lfloor t\rfloor}\left|\mathcal{P}^{\prime}\right|^{-n\left(\mathcal{G}_{N}\right)} \geqslant\left(x^{E B-\varepsilon / 2}\right)^{\lfloor t\rfloor-n\left(\mathcal{G}_{N}\right)}\lfloor t\rfloor^{-\lfloor t\rfloor}
$$

where we have used (4) for the second inequality. Using (3), we see that the last number exceeds $x^{t(E B-\varepsilon)}$ if $N \leqslant \exp \left(y^{1+\delta / 4}\right)$ and y is sufficiently large. For any such \mathcal{R} we have $n_{\mathcal{R}} \leqslant x^{t}$; therefore, setting $X:=x^{t}$ we see that there are more than $X^{E B-\varepsilon}$ Carmichael numbers $n \leqslant X$ with $\varphi(n)=m^{N}$ provided that $N \leqslant \exp \left(y^{1+\delta / 4}\right)$. Since $X=\exp \left(y^{1+\delta} \exp \left(y^{1+\delta / 2}\right)\right)$, we have by our assumption (2):

$$
C \log \log \log X=C(1+\delta / 2+o(1)) \log y \leqslant(1+\delta / 4) \log y
$$

if y is large enough, and thus

$$
\exp \left((\log \log X)^{C}\right) \leqslant \exp \left(y^{1+\delta / 4}\right)
$$

Since y can be determined uniquely from X, this completes the proof.
Acknowledgments The author would like to thank Igor Shparlinski for useful conversations and for pointing out the relevance of [4] to the present work, and the anonymous referee for the suggestion of Theorem 2. This paper was written during a visit by the author to Macquarie University; the hospitality and support of this institution are gratefully acknowledged.

References

[1] W. R. Alford, A. Granville, and C. Pomerance, There are infinitely many Carmichael numbers. Ann. of Math. (2) 139(1994), no. 3, 703-722.
[2] R. Baker and G. Harman, Shifted primes without large prime factors. Acta Arith. 83(1998), no. 4, 331-361.
[3] W. Banks, J. B. Friedlander, C. Pomerance and I. E. Shparlinski, Multiplicative structure of values of the Euler function. In: High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun. 41, American Mathematical Society, Providence, RI, 2004, pp. 29-47.
[4] G. Harman, On the number of Carmichael numbers up to x. Bull. London Math. Soc. 37(2005), no. 5, 641-650.
[5] H. Iwaniec, Almost-primes represented by quadratic polynomials. Invent. Math. 47(1978), no. 2, 171-188.

Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
e-mail: bbanks@math.missouri.edu

[^0]: Received by the editors July 24, 2006; revised October 20, 2006.
 AMS subject classification: Primary: 11N25; secondary: 11A25.
 (C)Canadian Mathematical Society 2009.

