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From biological tissues to microactuators and absorption of solvents into layers of paint,
macroscopically non-porous materials with the capacity to swell when in contact with a
solvent are ubiquitous. In these systems, owing to strong solid–fluid interactions, chemically
driven flows can yield large geometric changes. We study experimentally and theoretically
the canonical problem of the swelling of a thin hydrogel layer by a single water drop. Using
a bespoke experimental set-up, we observe fast absorption leading to a radially spreading
axisymmetric blister. We use a fully three-dimensional linear poroelastic framework with
nonlinear kinematic equations to obtain governing equations, which we then reduce with
thin-layer scalings to a one-dimensional nonlinear diffusion equation for the evolution
of the blister geometry. In the limits of large and small deformations, the evolution
of the blister characteristic height and radius are self-similar, following power laws in
time. Our experimental measurements show that the evolution of the blister is broadly
within the theoretical predictions in the large and small deformation regimes. In the
general intermediate deformation regime, the measurements are well captured by our
reduced one-dimensional diffusion model, which does not require the sophisticated and
computationallyexpensivenumericalapproachesnecessaryfortheoriginal two-dimensional
nonlinear coupled transport problem. By adapting modelling techniques from the fluid
dynamics of thin porous elastic layers to a polymer swelling problem, our modelling
framework extends the range of polymer swelling problems that can be treated with
semi-analytical methods. Moreover, our detailed experimental data can serve as a test case
for future nonlinear poroelastic frameworks of swelling polymer materials.
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1. Introduction

High-swelling polymer systems, such as hydrogels (a class of hydrophilic cross-linked
polymers that form three-dimensional networks of macroscopic extent in water), have
received considerable attention recently (Vervoort 2006; Laftah, Hashim & Ibrahim
2011). Large volumetric stresses and strains, induced by swelling in response to changing
environmental conditions, lead to a fascinating class of problems, where chemically driven
transport within the polymer induces large changes in the geometry of the hydrogel (e.g.
Guvendiren, Burdick & Yang 2010; Etzold, Linden & Worster 2021). These systems
largely behave as hyper-elastic incompressible solids on short time scales (Yoon et al.
2010). On longer time scales, hydrogels can respond to changing external conditions
(stress, temperature, humidity) by reversible swelling, shrinking or deforming. Since the
mechanical properties of hydrogels can be adjusted over a broad range by changing the
polymer chemistry and cross-linker density (Ozcelik 2016; Tortorella et al. 2021), they
have found widespread applications.

The ability of external stimuli to trigger swelling that drives large deformations has
been harnessed to drive microfluidic pumps (Richter et al. 2009; Kwon et al. 2011) and
has led to their use as micro-actuators for optical, flow control, sensor and microrobotics
applications (Porter et al. 2007; Ionov 2014). Understanding the interaction between the
swelling dynamics and the microscopic driving forces is crucial for the design of these
systems.

Hydrogels can absorb large volumes of water (up to thousands of times their dry
weight). This, and the fact that hydrogels have similar physico-chemical characteristics
to many tissues (Drury & Mooney 2003; Hoffman 2012), makes hydrogels an excellent
substitute for tissues in the laboratory (e.g. when studying decompression sickness; Walsh
et al. 2017; Zhang, Etzold & Lefauve 2021). Indeed, for over sixty years, since the
pioneering work of Wichterle & Lim (1960) who developed the first contact lens using a
polyhydroxyethylmethacrylate bio-compatible hydrogel, hydrogels have been extensively
used across many medical applications (Hoffman 2012). In tissue engineering, they
are used as a matrix framework for the repair and regeneration of a wide range of
tissues and organs. Lee & Mooney (2001) give a general review of all the applications,
while Tang et al. (2020) and Madhusudanan, Raju & Shankarappa (2020) present
applications in the spinal column and brain, respectively. Furthermore, for wound dressing,
hydrogels maintain a moist healing environment whilst allowing gaseous exchange,
thereby promoting wound healing (Stubbe et al. 2021; Tortorella et al. 2021; Deng et al.
2022).

These medical systems, characterised by complex interactions between biological
substances and man-made hydrogels, require a thorough understanding of hydrogel
swelling behaviour. An example of this interplay lies in the work of Cont et al. (2020),
who explore experimentally how Vibrio cholerae biofilms deform both thin hydrogel layers
and epithelial cell mono-layers attached to the surface of a soft extracellular matrix. The
interactions between swelling and mechanical stresses cause the layers to buckle into the
biofilm and often break up, thus allowing the biofilm to compromise the physiology of its
host.

A range of fully three-dimensional poroelastic theories for hydrogel swelling have
been proposed. These theories derive a constitutive equation for the stress tensor from
assumptions about the strain energy density function. While linear theories assume this
density function to be quadratic in the strain (Yoon et al. 2010), nonlinear theories (e.g.
Hong et al. 2008; Doi 2009; Chester & Anand 2010) construct it from thermodynamic
models describing polymer deformation and polymer–solvent mixing (Cai & Suo 2012).
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Droplet absorption and spreading into thin hydrogel layers

These models are equivalent in the limit of small deformation (Bouklas & Huang
2012). Nevertheless, most experimental and modelling studies have only considered
one-dimensional or quasi-one-dimensional geometries such as the swelling of fibres (Van
de Velde, Protière & Duprat 2021; Van de Velde et al. 2022), spheres (Tanaka & Fillmore
1979; Engelsberg & Barros 2013; Bertrand et al. 2016; Butler & Montenegro-Johnson
2022) or flat sheets bound to surfaces (Tanaka & Fillmore 1979). In other cases,
finite-element methods are used to simulate more complicated problems such as the
swelling caused by a succession of falling droplets (Phadnis et al. 2018). However,
considerable challenges remain, especially for high-swelling systems producing large
swelling gradients (Yu, Malakpoor & Huyghe 2020).

In this article, inspired by the flat geometries found in cell layers (Cont et al. 2020),
wound dressings (Tortorella et al. 2021), hydrogel water harvesters (Li et al. 2018) and
layers of paint (Varady et al. 2016), we investigate in detail the temporal dynamics of
the absorption into and subsequent spreading of a water drop within a thin absorbent
polymer layer of hydrogel. In particular, an axisymmetric bulge forms at the hydrogel
surface, which we will henceforth denote as a blister.

In § 2 we describe experiments tracking the absorption of a single droplet of water by
a thin layer of hydrogel. Particular care is taken to define the characteristic properties of
the blister that emerges on the surface of the hydrogel, such as the characteristic radius
of the blister (see § 2.4). Error bars are computed through a careful uncertainty analysis
(see Appendix A for further details). The results of these experiments are described in
§ 2.5. The water first absorbs into the hydrogel, forming a blister. A reversible transient
buckling/crumpling instability then forms on the surface of the blister. The blister slowly
spreads outwards, eventually approaching what appears qualitatively to be a self-similar
shape for this nonlinear diffusion process.

The requisite next step is to develop a theoretical model to probe the underlying
physical processes. In § 3, we analyse this problem using a poroelastic framework that
combines nonlinear conservation of volume, Darcy’s law with a permeability dependent
on polymer volume fraction and Biot’s linearised equation for the stress tensor. Motivated
by the apparent self-similar profile observed in the last phase of the experiments, we
develop a mathematical model for the swelling hydrogel layer. A poroelastic framework
is used to obtain a nonlinear diffusion equation that describes the resulting spreading
dynamics of the system. Regarding the physical processes at the heart of our model, we
consider a system in which the dynamics is governed by the interplay between the motion
of both polymer and water and the balance of elastic stresses through the permeable
polymer. Classical shallow-layer scalings reduce this axisymmetric three-dimensional
problem to a one-dimensional nonlinear diffusion model. This model, which admits
analytic similarity solutions in both the small (§ 4.1) and large deformation limits (§ 4.2),
is studied numerically in § 4.3, using the finite-element software package FEniCS (Logg,
Mardal & Wells 2012; Alnæs et al. 2015). The regimes of the parameter space in
which the analytic solutions agree well with the numerical solutions are explored and
discussed.

We demonstrate the effectiveness of our two-parameter one-dimensional nonlinear
diffusion model by fitting numerical solutions of the model to the experimental results.
The numerical predictions agree very well with the experimental data over the entire
range of parameters considered. Our model can quantitatively predict the evolution of
all observable quantities over hours of observation time. Finally, conclusions and possible
next steps are detailed in § 6.
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2. Experimental

Here, we describe a series of experiments that considered the absorption of single droplets
of water with volumes between 5 and 100 μl by a thin layer of hydrogel, leading to
the formation and then subsequent outward spreading of a blister. This configuration
is analogous to the injection of a finite volume of fluid into a thin poroelastic layer, a
well-studied canonical fluid dynamics problem (e.g. Hewitt, Neufeld & Balmforth 2015).

2.1. Materials and methods
Illustrated by two photographs (figure 1a,b) and a schematic (figure 1c), our experiments
utilised commercially available medical-grade hydrogel pads (Hydrogel Nipple Pads,
Medela, Switzerland), which were manufactured as approximately 8 × 8 cm2 sheets.
Unfortunately, their proprietary nature precluded us from obtaining details on the
synthesis, in particular the polymer/monomer fraction at synthesis. Upon delivery, the
hydrogel pads appear as a rubbery sheet with a slightly tacky surface. After prolonged
exposure to the atmosphere (ca. 25 %–40 % relative humidity, ca. 22 ◦C), their initial
thickness a was determined with a micrometer as a = 1.13 mm ± 0.01 mm. One side of a
sheet was affixed to a thin plastic sheet (impermeable to water) of approximate thickness
0.04 mm. The other side was initially protected by an easily removable plastic film. The
hydrogel sheets incorporated a thin non-woven gauze during their manufacture. We assume
that these do not affect swelling due to the lateral constraint provided by the bottom plastic
sheet, which leads to predominantly upwards swelling. In our experiments, these larger
sheets were cut into coupons approximately 25 × 25 mm2. The coupons were then glued
via the thin impermeable plastic sheet onto 76 × 26 mm2 microscope slides (Menzel,
Germany) with UV-cured Norland Optical Adhesive NOA 68 optical glue (Thorlabs,
USA). The gluing of the coupon to the microscope slide ensured that the gauze did not
affect the swelling of the sheets.

Utilising Karl-Fischer titration, a standard volumetric titration method to determine
trace amounts of water in a sample, the water content of a typical hydrogel pad that
had equilibrated with the laboratory air was measured to be 22 %. Polymer swelling is
driven by entropic and pairwise interactions between solvent and polymer molecules and
charged groups if these are present (Flory 1953). We tested for the presence of ionic
groups by swelling tests in solvents that are less able to support the dissociation of the
counter-ion. We found that isopropanol and ethanol did not swell the hydrogel perceptibly
and, when placed in saturated aqueous sodium chloride solutions, the swelling was
drastically reduced. We take these observations as evidence for the presence of charged
groups within the hydrogel.

2.2. Suppression of vapour transport
In preliminary experiments, water droplets were placed onto mounted hydrogel that was
otherwise exposed to air but enclosed into a sealed cell to prevent evaporation of the
droplet into the broader atmosphere (see figure 1a). The edges of the hydrogel sheet
were observed to swell perceptibly with this swelling beginning immediately after droplet
placement. This was attributed to evaporation from the regions in the vicinity of the
droplet, namely the most strongly swollen regions, leading to higher humidity and lateral
transport of humidity in the sealed cell and thus reabsorption by the drier regions of the
hydrogel at the edge of the sheet. This was confirmed by experiments in which water
droplets were placed next to the hydrogel on separate microscope slides within the sealed
cell. Swelling was observed that could only have come from vapour-phase transport.
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Figure 1. Laboratory experiments investigating the absorption and subsequent spreading of water into a
hydrogel sheet. (a) Photograph of the preliminary experimental set-up without oil in a cell sealed from the
atmosphere with an evaporation barrier. (b) Photograph of the full experimental set-up with an oil bath. In
both cases, the side view camera is positioned outside the region of the apparatus captured by the photograph,
pointing in the direction given by the red arrow with label camera. (c) Schematic of the experimental apparatus.

As shown in figure 1(b,c), to eliminate vapour transport experimentally, the hydrogel
was immersed in a water-immiscible oil. We chose HySpin AWS 32 (CASTROL) for its
low solubility with water. We remark that the presence of the oil can modify the interfacial
energies of the system compared with a droplet in ambient air, and thus wetting and contact
angle properties. However, this should only influence the early stages of the experiments,
when the water drop is in the process of being absorbed in the hydrogel. Since our study
focuses on the later stages of the experiment, once the water has been fully absorbed into
the hydrogel, the impact of using oil instead of air on the late-time transport dynamics in
the hydrogel should be small.

It is important to recognise that even apparently immiscible liquids are sparingly soluble
into each other. For the hydraulic oil, the water content was found utilising Karl-Fisher
titration to be 6700 ppm after equilibration with the laboratory air. We also conducted a
titration with oil that had been equilibrated with a small amount of liquid water, indicating
an estimate for the saturated water content of the oil to be up to 1.1 %. The later value
is likely to be an overestimate due to the possibility of an emulsion forming during the
shipping of the oil–water mixture to the place of analysis.

To ensure that the oil and the hydrogel were in equilibrium during an experiment, they
were both exposed to the same atmosphere before the experiment for at least two days. The
oil was not changed between experiments and thus was always exposed to the atmosphere.
Furthermore, the hydrogel sheets were allowed to equilibrate for at least 1–3 h within
the oil before droplet placement. The oil was not stirred and disturbances were kept to
a minimum to avoid introducing air bubbles in the system. Equilibration of the hydrogel
with the oil was verified through careful tracking of the interface. The interface was stable,
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Figure 2. Sequence of photographs showing the absorption of a 100 μl droplet into the hydrogel sheet.
(a–d) States with liquid water remaining. (e, f ) A surface instability forms. ( f –h) Transition towards the
long-time spreading regime which is shown in (h–l). The visible hydrogel sheet is marked blue in (a). From (c)
onward a red line marks the hydrogel–oil interface.

namely the oil did not noticeably absorb into the hydrogel. In particular, the swelling of
the edges observed when the oil was not present did not occur any more.

2.3. Imaging system and data analysis
A monochrome camera (SP-5000M-CXP2, Jai, Denmark), with a variable magnification
telecentric lens (TEV0305, VS Technology Corporation, Japan, set at 0.4× magnification)
aligned with the plane of the hydrogel sheet, recorded the evolution of our samples.
Background lighting was provided by a white LED light sheet (MiniSun Light Pad 17031),
masked with black tape and placed approximately 4 m away from the hydrogel to ensure
approximately collimated illumination.

DigiFlow was used for camera control (Dalziel 2017). Typical images are shown in
figure 2 and were analysed using a Canny edge detector from the Python library Scikit
Image Library (van der Walt et al. 2014). Suitable parameters for the edge detector (radius
of Gaussian filter, upper and lower gradient thresholds for edge detection) were manually
set for each dataset using an interactive interface. To mitigate edge effects arising from
the finite size of the hydrogel sheet, we truncated each time series when the swelling from
the blister approached the edges. For each dataset, we extracted the position of the upper
edge of the unswollen hydrogel before the droplet was placed (see figure 2a) and the upper
edge of hydrogel and droplet once the droplet was placed (see figure 2c–i). For analysis,
the blister height (vertical displacement) was defined as

ha = h(x, t) − a, (2.1)

recalling that h is the height of the hydrogel sheet, a is the initial undeformed hydrogel
sheet thickness and 0 ≤ x < xmax, where xmax is the right-hand boundary of the cropped
image and the origin is the centre of the blister. This was then computed for each column of
pixels. SciPy’s Savitzky–Golay filter (window length 100 pixel (corresponds to 1.26 mm),
polynomial order 1) was used to smooth the raw ha data (Virtanen et al. 2020). The total
height of the hydrogel h(x, t) was thus determined by adding the initial thickness of the
hydrogel sheet (determined by a micrometer). This procedure was adopted since the lower
edge of the hydrogel was not visible in the images.
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2.4. Derived quantities
For each experimentally obtained profile h(x, t), we found the centre position of the blister
x = r0 by fitting a Gaussian curve and taking r0 to be the maximum of this curve. A
Gaussian curve was selected instead of, e.g. a quadratic profile, since this is the expected
form in the limit of linear diffusion. We define the corresponding characteristic radius of
this blister profile R(t) as the radius at which the blister height ha(r + r0, t) has decreased
from the maximum height of the blister max(ha(r + r0, t)) to half of this value, thus,

R = {r : ha(r + r0) = 1
2(max

x
(ha(x, t)))}. (2.2)

Due to the symmetry of the experimental profile about r = r0, this leads to two values, R+
and R−, with R− ≤ 0 ≤ R+, which we chose to average (i.e. R = (R+ + |R−|)/2). Note
that this approach implicitly assumes axisymmetry of the blister since we calculate R from
a single cross-section. We also compute the volume of the absorbed water using

V = π

∫ xmax

0
(x − r0)ha(x) dx, (2.3)

where the integral is evaluated over the full horizontal region of interest of the image (from
x = 0 to x = xmax). As detailed in Appendix A, the uncertainty is dominated by the degree
of alignment between the optical axis of the camera and the surface of the hydrogel sheet.
This impacts most significantly our estimate of the radius R where the error is

δR ≈ δha(
∂ha

∂x

)∣∣∣∣∣∣
x=r0+R

. (2.4)

Here, δha = (+22.7, −12.5)μm is the uncertainty in ha due to the pixel resolution and
misalignment, respectively.

This also gives rise to an uncertainty in the volume, estimated as

δV ≈ π

∫ xmx

xmn

(x − r0)δha(x) dx, (2.5)

where the integration bounds [xmn, xmx] are defined such that

{xmn ≤ x ≤ xmx : ha(x − r0) > δz} . (2.6)

2.5. Observations
A montage of typical experimental images for a 100 μl droplet is shown in figure 2.
Refraction at the hydrogel–oil interface causes the swollen region to appear dark since
the telecentric lens only collects the nearly collimated light directly from the light sheet.
When released, the water droplet descended through the hydraulic oil to reach the
hydrogel surface within a few seconds. Upon impact, the droplet retained its sphericity
for approximately 30 s before relaxing to a sessile drop state (figure 2a). The subsequent
hydrogel swelling dynamics had three distinct phases.

In the first phase, which lasted approximately 10 min once the water had reached a sessile
drop state on the hydrogel surface, the surface water and swollen hydrogel coexisted as the
sessile droplet transformed into a swollen blister (see figure 2a–c). This transition was
particularly apparent at the droplet edge, which became progressively steeper (figure 2c)
before decreasing again.
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Figure 3. Raw data with corresponding error bars showing for a range of experiments how the swollen region
radius varies as a function of time. Darker blue curves denote experiments with larger water droplets (see
text for drop volumes). Error bars are generated through an uncertainty analysis that is described in § 2.4 and
Appendix A.

In the second phase, once all the surface water had been absorbed, a surface instability
appeared, forming a blister with a crinkled surface (figure 2e–g). This buckling/crumpling
instability arises in hydrogels that have strong swelling gradients or are laterally confined
(Onuki 1988; Bouklas, Landis & Huang 2015) where the buckling relieves stress caused
by mechanical connection with less swollen layers. Supplementary experiments in air
(not shown here), where the water was removed at various times during the first phase,
indicated that this instability with wavelength increasing with time was present once a thin
swollen layer had been formed after droplet placement. Experimental images illustrating
this instability are presented in Appendix B. We therefore conclude that the visible
silhouette given in figure 2(a–d) consists of a swollen layer with buckling instability
covered by water.

In the third phase, which lasted until the experiments were terminated once the
blister front had reached the edge of the hydrogel or the resolution limit of the camera,
the buckling/crumpling instability vanished. During this period, the blister assumed an
apparent self-similar shape that resembled a nonlinear diffusion process.

Under the assumption that the blister spreads axisymmetrically, figure 3 plots raw data
for the temporal evolution of the blister radius R for droplet volumes 5, 10, 25, 30, 50 and
100 μl (darker colours denote larger droplets). The data contain a full experiment from
the moment that the droplet makes contact with the hydrogel surface until the point that
meaningful observations were no longer possible. Initially, R sharply increases as the water
droplet, having made contact, spreads over the surface of the hydrogel (see figure 2a). Then
R decreases slightly, as the morphology of the blister changes from being relatively flat
capped (caused by the horizontal redistribution of water above the droplet as it is absorbed
at a rate that is nearly constant over the entire droplet radius) towards a smoother more
self-similar shape (see the transition from figure 2b–h). Finally, we reach the self-similar
regime where the radius of the swollen region increases monotonically (see figure 2i–l).
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z = 0R(t)

h(r, t)

a

z

r up, uf

wp, wf

φp
φf

Figure 4. Schematic of a hydrogel sheet. An axisymmetric blister of thickness h(r, t) and characteristic radius
R(t) spreads out on the surface of a hydrogel sheet of undeformed thickness a, fixed to a rigid horizontal
boundary at z = 0. The red dashed line highlights how R(t) is calculated from experimental or numerical
profile data using (2.2) or (4.33), respectively. Inset: the hydrogel is a solution of polymer (volume fraction
φp) and water (volume fraction φf = 1 − φp). The pore-averaged velocities of the solid and fluid phases are
denoted by up = (up, wp) and uf = (uf , wf ) respectively.

Since conservation of water volume is assumed in § 3, we probed the experimental
profile data for conservation of volume, as detailed in Appendix C.1. Overall the
experimental uncertainties (Appendix A) were too large to reach definite conclusions.
Furthermore, particularly for larger droplets, an error in the apparent volume could have
arisen from the fact that the initial blister profile was not completely axisymmetric,
resulting in spreading that was not quite radial. However, the main physical process which
probably led to water loss was diffusion into the oil layer. Water loss from diffusion into
the oil layer was estimated in Appendix C.2, enabling us to conclude that no significant
water loss occurred during our experiments.

3. Poroelastic model

We now develop a mathematical model for the swelling hydrogel layer. A poroelastic
framework is used to obtain a nonlinear diffusion equation that describes the resulting
spreading dynamics of the system. We consider a system in which the dynamics is
governed by the interplay between the motion of both polymer and water and the balance
of elastic stresses through the polymer network.

3.1. Problem description
Figure 4 sketches the surface of a hydrogel layer of undeformed thickness a that is fixed to a
rigid horizontal boundary at z = 0. The gel is perturbed through the addition of a spherical
water drop of diameter d, forming an axisymmetric blister of radius R(t) and height profile
h(r, t) with 0 ≤ r < ∞ and 0 ≤ t < ∞. For an arbitrary function f = f (z), we define
the vertically averaging operator 〈·〉 where 〈f 〉 = (

∫ h
0 f dz)/h. We examine an idealised

hydrogel composition, namely a solution of polymer (volume fraction φp, where φp = φ0p
(cf. § 2.1 for experimental estimate of φ0p) at the start of the experiment before the water
drop is added) and water (modelled as a Newtonian fluid with dynamic viscosity μf and
volume fraction 1 − φp). We denote the pore-averaged velocity and Cauchy stress tensor
of the solid and liquid phases by {up = (up, wp), σp} and {uf = (uf , wf ), σf ≈ −pI},
respectively, where p is the pore pressure and I the identity tensor.
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3.2. Governing equations
Conserving mass in both the solid and fluid phases gives

∂φp

∂t
+ ∇ · (φpup) = 0, (3.1a)

−∂φp

∂t
+ ∇ · ((1 − φp)uf ) = 0. (3.1b)

Defining the Terzaghi effective stress tensor as σ = φp(σp − σf ) (Wang 2001), a
momentum balance yields

∇ · (φσ p + (1 − φ)σ f ) = ∇ · (φσ p − (1 − φ)pI) = 0 =⇒ ∇ · σ = ∇p. (3.2)

In general, σ obeys an elastic constitutive law of the form

σ = σ (∇ξ) , (3.3)

where ξ = (ξ, ζ ) is the two-dimensional deformation vector of the medium away from a
reference state. The reference state that we chose was the hydrogel just before the droplet
has been placed. The deformation vector is related to the velocity of the polymer phase
through the material derivative

up =
(

∂

∂t
+ up · ∇

)
ξ . (3.4)

This is a common approach for many problems in biological physics (from lubrication of
joints, Jensen et al. 1994, to cell cytoplasm, Charrras, Mitchison & Mahadevan 2009) and
geophysics (from hydrology subsidence and pumping problems, Gibson, Schiffman & Pu
1970; Hewitt et al. 2015, to industrial filtration, Barry, Mercer & Zoppou 1997). Here, we
consider the simplest case, namely that σ obeys a linear elastic constitutive equation of the
form

σ (∇ξ) =
(

K − 2G
3

)
(∇ · ξ)I + G(∇ξ + ∇ξT), (3.5)

where K and G are the osmotic and shear moduli, respectively (Doi 2009; Etzold et al.
2021).

As shown by both Doi (2009) and Bouklas & Huang (2012), the linear elastic equation
(3.5) can be obtained by linearisation of nonlinear constitutive equations similar to
those used by Engelsberg & Barros (2013), Bertrand et al. (2016) and others. It is
of the same functional form as the constitutive equation of linear elasticity, and thus
contains the same terms. However, it represents different microscopic physics that give
rise to the same macroscopic behaviour of poroelasticity. Therefore, we refer to K, in
line with Doi (2009) and Etzold et al. (2021), as the osmotic modulus of the hydrogel
with dimensions of pressure, and G as the shear modulus of the hydrogel. Similar to
conventional poroelasticity, it is important to realise that K is not the bulk modulus of the
solid. Instead, it describes the (elastic) resistance of the porous matrix against volumetric
changes (Biot 1941). In a hydrogel, K represents the combination of osmotic (solution)
effects and a contribution from the elasticity of the polymer matrix (Doi 2009). It is
therefore appropriate to see (3.5) as a simplified version of physically more encompassing
nonlinear elastic models. Note that the form of (3.5) implies that, when the system is in its
reference state, σ = 0. While this is not always physically appropriate, it is immaterial for
the current analysis in this paper; we will return to this point in § 6.
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Droplet absorption and spreading into thin hydrogel layers

We close the system of equations (3.1a)–(3.5) by invoking Darcy’s law for flow within
the gel

(1 − φp)(up − uf ) = κ

μf
∇p, (3.6)

where κ = κ(φp) is the effective hydrogel permeability with characteristic permeability
scale κ0.

To make progress, we make a further simplifying assumption by defining κ∗ = κ/κ0
as an explicit dimensionless function of the polymer volume fraction φp. Since the true
structure of these materials at the pore scale (microscale) is complex, this can only be an
approximation. In the literature on porous media, many different models for the saturation
dependence of κ∗ have been used. In a geophysical context, for mathematical simplicity,
Hewitt et al. (2015) took the permeability of a shallow deformable porous layer as κ∗ = 1.
Modelling bacterial biofilms, Seminara et al. (2012) set the permeability of a growing
biofilm as κ∗ = (1 − φp)

2 while Fortune, Oliveira & Goldstein (2022) constructed the
system in such a way to not have to explicitly define κ∗. When considering a spherical
hydrogel, Bertrand et al. (2016) proposed κ∗ = (1 − φp)/φ

β
p . For the present study, in

the interest of generality, we follow Tokita & Tanaka (1991) and Etzold et al. (2021) by
defining

κ∗ =
(

φ0p

φp

)β

, (3.7)

where β is an empirical parameter chosen by matching to experimental data, recalling that
φ0p is defined as the polymer volume fraction at the start of an experiment before the water
drop has been added, i.e. at ambient laboratory conditions. For a purely cuboidal network
swelled isotropically, previous researchers have proposed β = 2/3 (Etzold et al. 2021).
Al-Amodi & Hill (2022) argued that β = 2/3 could also be obtained for a polyelectrolyte
network by considering an affine transformation, a less restrictive condition than that
imposed by Etzold et al. (2021). In contrast, experiments have measured values ranging
between β = 1.5 (Tokita & Tanaka 1991) and 1.85 (Grattoni et al. 2001).

3.3. Dimensionless shallow-layer scalings
We scale radial and vertical lengths with the initial radius R0 = R(t = 0) and height
H0 = h(r = 0, t = 0) of the blister, respectively (i.e. {r, R} ∼ R0 and {z, h} ∼ H0). Since
the characteristic time scale for the system is the poroelastic time scale for pressure-driven
fluid flow in the horizontal direction t0, we scale t ∼ t0 where

t0 = μf R2
0

(K + 4G/3)κ0
, (3.8)

and the denominator has been chosen for algebraic convenience in what follows. From
(3.1), we have uf ∼ U0 = R0/t0 and {wf , wp} ∼ H0/t0. Since horizontal and vertical
elastic stresses in the hydrogel are of the same magnitude, up ∼ wp ∼ H0/t0. Since up
is defined as the material derivative of ξ , we have {ζ, ξ} ∼ H0. By definition, κ ∼ κ0
while (3.6) implies that {p, p̃} ∼ P0 = K + 4G/3. Finally, from volume conservation,
d ∼ (12R2

0H0)
1/3.

3.4. Non-dimensional governing equations
We now exploit a lubrication approximation, noting that we have chosen a suitable starting
time t = 0 so that the characteristic radial length scale R0 is much greater than the
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characteristic vertical length scale H0. We non-dimensionalise the governing equations
anisotropically using the scalings given above, denoting the dimensionless form of a
dimensional variable f by f ∗ and setting

A = a
H0

, V = d3

12R2
0H0

. (3.9a,b)

Note that, since the blister has positive curvature, H0 > a and thus 0 < A < 1. Keeping
only leading-order terms in the aspect ratio ε (where ε = H0/R0 � 1), the system of
(3.1a)–(3.6) becomes

∂φp

∂t∗
+ ∂

∂z∗ (φpw∗
p) = O (ε) , (3.10a)

−∂φp

∂t∗
+ ∂

∂z∗ ((1 − φp)w∗
f ) + 1

r∗
∂

∂r∗ (r∗(1 − φp)u∗
f ) = 0, (3.10b)

w∗
f − w∗

p = − κ∗

ε2(1 − φp)

∂P∗

∂z∗ , (3.10c)

u∗
f = − κ∗

(1 − φp)

∂P∗

∂r∗ + O (ε) , (3.10d)

∂P∗

∂r∗ = 1
ε

(
G

K + 4G/3

)
∂2ξ∗

∂z∗2 +
(

K + G/3
K + 4G/3

)
∂2ζ ∗

∂r∗∂z∗ + O (ε) , (3.10e)

∂P∗

∂z∗ = ∂2ζ ∗

∂z∗2 + ε

(
K + G/3
K + 4G/3

)
1
r∗

∂

∂r∗

(
r∗ ∂ξ∗

∂z∗

)
+ O(ε2), (3.10f )

where

u∗
p = ∂ξ∗

∂t∗
+ w∗

p
∂ξ∗

∂z∗ + O (ε) , (3.10g)

w∗
p =

(
1 − ∂ζ ∗

∂z∗

)−1
∂ζ ∗

∂t∗
+ O (ε) . (3.10h)

3.5. Boundary conditions
The bottom of the hydrogel layer was affixed to a thin rigid plastic sheet which was in turn
glued to a microscope slide. We model this by the boundary conditions

w∗
f = 0 and ξ∗ = ζ ∗ = 0 =⇒ u∗

p = w∗
p = 0 at z∗ = 0. (3.11a)

The kinematic boundary conditions for the free surface at z∗ = h∗ are

w∗
p

∣∣∣
h∗ = ∂h∗

∂t∗
+ εu∗

p

∣∣∣
h∗

∂h∗

∂r∗ , (3.11b)

w∗
f

∣∣∣
h∗ = ∂h∗

∂t∗
+ u∗

f

∣∣∣
h∗

∂h∗

∂r∗ . (3.11c)

Vertically integrating (3.10a) and then applying (3.11b) gives the polymer volume
conservation condition

∂

∂t∗

(∫ h∗

0
φp dz∗

)
= O(ε). (3.11d)
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Droplet absorption and spreading into thin hydrogel layers

The stress-free boundary at z∗ = h∗ requires

(σ ∗)r∗z∗
∣∣
h∗ = 0 =⇒ ∂ξ∗

∂z∗

∣∣∣∣
h∗

= 0 + O(ε), (3.11e)

(P∗ − (σ ∗)z∗z∗)
∣∣
(h∗)− = P∗∣∣

(h∗)− − ∂ζ ∗

∂z∗

∣∣∣∣
(h∗)−

+ O (ε) = P∗∣∣
(h∗)+ = P∗

0, (3.11f )

where P∗|(h∗)+ = P∗
0 is the external fluid pressure, which we assume to be uniform and

constant. Global water conservation requires∫ ∞

0
r∗(h∗ − A) dr∗ = V . (3.11g)

Note that this condition is independent of the initial polymer volume fraction φ0p. Finally,
at large radial distance in the hydrogel, the polymer is undeformed and in mechanical
equilibrium such that

h∗ → A, φp → φ0p, ξ → 0, ζ → 0 as r∗ → ∞. (3.11h)

4. Perturbation expansion in the aspect ratio

Considering the terms at O(1/ε), (3.10e) simplifies to give

∂2ξ∗

∂z∗2 = 0 + O (ε) , (4.1)

with boundary conditions

ξ∗∣∣
0 = ∂ξ∗

∂z∗

∣∣∣∣
h∗

= 0 =⇒ ξ∗ = 0 + O (ε) , (4.2)

(i.e. ξ∗ and thus u∗
p are not leading-order terms). Similarly, to find P∗ we expand out (3.10c)

and then apply (3.11f ), yielding

∂P∗

∂z∗ = 0 + O(ε) =⇒ P∗ = P∗
0 + ∂ζ ∗

∂z∗

∣∣∣∣
h∗

+ O(ε). (4.3)

At O(ε0) and using (4.3), we find (3.10 f ) simplifies to give

∂2ζ ∗

∂z∗2 = 0 + O (ε) . (4.4)

Using both (3.10h) and (4.2), the solid-phase kinematic boundary condition given in
(3.11b) simplifies to

∂h∗

∂t∗

(
1 − ∂ζ ∗

∂z∗

∣∣∣∣
h∗

)
= ∂ζ ∗

∂t∗

∣∣∣∣
h∗

+ O(ε). (4.5)

Hence, integrating (4.4) twice with respect to z∗ and applying (3.11a) gives

ζ ∗ = Cζ z∗ + O(ε), (4.6)

where the constant of integration Cζ = Cζ (t∗) is independent of z∗. Substituting this into
(4.5), integrating with respect to t∗ and applying (3.11h) gives

ζ ∗ = z∗
(

1 − A
h∗

)
+ O (ε) . (4.7)
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Furthermore, substituting this into (3.10h) and (4.3) yields, respectively,

w∗
p = z∗

h∗
∂h∗

∂t∗
+ O (ε) , (4.8)

P∗ = P∗
0 + 1 − A

h∗ + O(ε). (4.9)

As a sanity check, note that from (4.7) we recover ζ ∗|z∗=h∗ = h∗ − A.
Using (4.8), the polymer volume fraction mass conservation equation (3.10a) simplifies

to give
∂

∂t∗
(h∗φp) + z∗ ∂h∗

∂t∗
∂φp

∂z∗ = 0 + O(ε). (4.10)

Using the method of separation of variables, we find that this equation admits solutions
of the form φp = f (r∗)[h∗]−v−1z∗ν for any constant v and function f . Therefore, a general
separable solution is of the form

φp = φ0p

∫ [(A
h∗

)1+ν

z∗ν

]
Φ dν + O(ε), (4.11)

where Φ = Φ(r∗, ν) is independent of t∗ and z∗ and ν is the eigenvalue spectrum
associated with the separable solution. For mathematical simplicity, we will assume that
when t∗ = 0, φ0p is independent of z∗. Hence, the dominant mode in (4.11) is the ν = 0
mode giving

φp = Aφ0p

h∗ + O (ε) . (4.12)

Finally, integrating (3.10b) in the z∗ direction, using both (3.10d) and the boundary
conditions given in (3.11b) and (3.11c), yields the continuity equation for the deformation
of the sheet h∗ = h∗ − A, expressible as

∂h∗

∂t∗
= 1

r∗
∂

∂r∗

(
r∗
∫ h∗+A

0
κ∗ ∂P∗

∂r∗ dz∗
)

= A
r∗

∂

∂r∗

(
r∗κ∗

h∗ + A
∂h∗

∂r∗

)
, (4.13)

with A ≤ h∗ ≤ 1 for 0 ≤ r∗ < ∞, where we have used (4.12) to write κ∗(φ) in terms of
h∗ as κ∗ = (1 + h∗/A)β .

Motivated by the apparent self-similar profile of the experimental data (figure 2), we
explore the existence of self-similar solutions to (4.13).

4.1. Self-similar solutions: small deformation limit
In the small deformation limit when max(h∗) � 1, the deformation height profile h∗ = h∗s
satisfies

∂h∗s

∂t∗
= ∇2h∗s, (4.14a)

with volume conservation condition∫ ∞

0
r∗h∗s dr∗ = V . (4.14b)

974 A7-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

65
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.655


Droplet absorption and spreading into thin hydrogel layers

Trying a self-similar solution of the form fs(η)/(R∗
s )

2, where η = r∗/R∗
s and R∗

s = R∗
s (t

∗),
(4.14a) simplifies to

− R∗
s
∂R∗

s

∂t∗
∂

∂η
(η2fs) = ∂

∂η

(
η
∂fs
∂η

)
. (4.15)

Using separation of variables and the initial condition R∗
s (t = 0) = 1, the t∗-dependent

terms become
∂

∂t∗
((R∗

s )
2) = λ =⇒ R∗

s = (1 + λt∗)1/2, (4.16)

where λ is a constant. Similarly, using regularity of h∗s at η = 0 and the initial condition
h∗s(r∗ = 0, t∗ = 0) = 1 − A, the η-dependent terms become

−λ
2

∂

∂η
(η2fs) = ∂

∂η

(
η
∂fs
∂η

)
=⇒ ∂fs

∂η
= −λη

2
fs

=⇒ fs = (1 − A) exp
(

−λη
2

4

)
. (4.17)

Applying the volume conservation condition in (4.14b) sets λ = 2(1 − A)/V , and thus we
recover the self-similar solution

h∗
s − A = 1(

R∗
s
)2 exp

(
−(1 − A)

2V
(

r∗

R∗
s

)2
)

, (4.18)

where

R∗
s =

(
1 + 2(1 − A)t∗

V
)1/2

. (4.19)

Note that this is independent of the permeability exponent β.

4.2. Self-similar solutions: large deformation limit
We also consider the case of large deformation, for which we pose

h∗ � A. (4.20)

Physically, it is clear that this cannot be true everywhere, since, as expressed in (3.11h), the
height profile must approach the undeformed value A for large r∗. However, if max(h∗) �
A, it is reasonable to assume that (4.20) is valid for most of the domain. Combining (4.20)
with (4.13) yields

∂h∗
l

∂t∗
= A1−β 1

r∗
∂

∂r∗

(
r∗(h∗

l )
β−1 ∂h∗

l
∂r∗

)
, (4.21a)

with volume conservation condition∫ ∞

0
r∗h∗

l dr∗ = V, (4.21b)

whose solutions are expected to describe the behaviour of the solutions to (4.13) well
enough for strongly swollen systems.
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Trying a self-similar solution of the form fl(η)/(R∗
l )

2, where η = r∗/R∗
l and R∗

l =
R∗

l (t
∗), (4.21a) simplifies to

− (R∗
l )

2β−1 ∂R∗
l

∂t∗
∂

∂η
(η2fl) = A1−β ∂

∂η

(
ηf β−1

l
∂fl
∂η

)
. (4.22)

Using separation of variables and the initial condition R∗
l (t = 0) = 1, the t∗-dependent

terms become
∂

∂t∗
((R∗

l )
2β) = λ =⇒ R∗

l = (1 + λt∗)1/2β, (4.23)

where λ is a constant. Similarly, using regularity of h∗
l at η = 0 and the initial condition

h∗
l (r

∗ = 0, t∗ = 0) = 1 − A, the η-dependent terms become

−λA
β−1

2β

∂

∂η
(η2fl) = ∂

∂η

(
ηf β−1

l
∂fl
∂η

)
=⇒ ∂

∂η
( f β−1

l ) = −λη(β − 1)Aβ−1

2β
,

=⇒ fl = (1 − A)(1 − Cη2)1/(β−1), (4.24)

where C satisfies

C = λ(β − 1)Aβ−1

4β(1 − A)β−1 . (4.25)

The value of λ is now determined from conservation of volume (4.21b). If β > 1, solutions
are only physically meaningful between 0 < r∗ < R∗

0l, where R∗
0l = R∗

l /
√

C denotes the
first root of (4.24), since (4.24) is either complex (for non-integer 1/(β − 1)) or diverges
(for integer 1/(β − 1)) for r∗ > R∗

0l.
Thus, the volume conservation condition (4.21b) becomes∫ R∗

0l

0
r∗h∗

l dr∗ = V, (4.26)

and we find

λβ>1 = 2(1 − A)β

VAβ−1 . (4.27)

If β < 1 and C < 0, (4.26) is integrable for 0 < r∗ < ∞, whilst the integral diverges if
C > 0. Thus we integrate from 0 < r∗ < ∞ and find that λ similarly satisfies

λβ<1 = 2(1 − A)β

VAβ−1 . (4.28)

Note that the expressions for λβ>1 and λβ<1 are functionally identical, despite the
different algebra required in the two cases. Thus, regardless of the value of β, the large
deformation solution is

h∗
l − A = (1 − A)(

R∗
l
)2

(
1 − (1 − A)(β − 1)

2βV
(

r∗

R∗
l

)2
)1/(β−1)

, (4.29)

with 0 ≤ r∗ ≤ ∞ if β < 1 and 0 ≤ r∗ ≤ R∗
l if β > 1 and

R∗
l =

(
1 + 2t∗(1 − A)βA1−β

V
)1/(2β)

. (4.30)
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Note that, as for λ, h∗ and R∗
l are also functionally identical in the two cases (β > 1 and

0 < β < 1) but have different support. These large deformation solutions are, unlike the
small deformation case (4.18), functions of β. In the limit when β = 1, h∗

l collapses to the
small deformation similarity solution h∗

s from § 4.1.
The fact that the assumption (4.20) used to obtain (4.21a) becomes unphysical for large

r∗ manifests in the fact that for β > 1 no real solutions exist for r∗ > R∗
l and that the

asymptotic decay of (4.29) towards zero as r∗ → ∞ contradicts (4.20). In both cases
the dynamics in the outer regions of the swollen region cannot be captured correctly. As
stated above, as long as max(h∗) � A (4.20) is valid for most of the blister we expect
(4.29) to describe the dynamics reasonably well. This is numerically confirmed below
in § 4.3.

4.3. Numerical exploration
The similarity solutions are only valid in asymptotic limits. Furthermore, any solution in
the large deformation regime will eventually move as time progresses towards the small
deformation regime. Hence, we explore cases with large, intermediate and small A. For
general A, the nonlinear diffusion equation given in (4.13) does not admit an analytic
solution. Therefore, it is solved numerically using the finite-element software package
FEniCS (Logg et al. 2012; Alnæs et al. 2015) on a domain Q : 0 < r∗ < 100, bounded by
no-flux boundary conditions. The time derivative is discretised using the backward Euler
scheme

∂h∗

∂t∗
≈ (h∗ − h∗

−1)

δt∗
, (4.31)

where h∗
−1 is the value of h∗ at the previous time step. This leads to the weak form of (4.13)∫

r∗Qh∗
−1 dr∗ = A1−βδt∗

∫
r∗(h∗)β−1 ∂h∗

∂r∗
∂Q
∂r∗ dr∗ +

∫
r∗h∗Q dr∗, (4.32)

where Q is a test function.
The solutions were calculated with timestep δt∗ = 10−3 and constant grid spacing

δr∗ = 10−2.
For a given blister height profile h∗ = h∗(r∗, t∗), to be consistent with the experiments,

the effective radius R∗ = R∗(A, t∗) is defined as the point where the deformation height
of the sheet is half the maximum deformation height of the sheet, e.g.

R∗ = {r∗ : h∗(r∗) − A = 1
2(max

r̃∗
(h∗(r̃∗)) − A)}. (4.33)

Note that this is the non-dimensional version of (2.2). Figure 5 illustrates the time evolution
of numerical solutions of (4.13) for R∗ for cases with β = 3/2 > 1 (shown in figure 5a)
and β = 2/3 < 1 (shown in figure 5b), both showing a range of values of A (darker
blue curves denote larger A). Dotted lines with circles denote numerical solutions of
(4.13) evolved from an initial condition of the form given in (4.29). Solid lines denote
the corresponding large deformation similarity solutions (given in (4.30)). If the initial
deformation is large (small A) and t∗ is small, the large deformation similarity solution
agrees well with the numerics in both cases, where R∗ ∼ (t∗)1/3 for β = 3/2 and R∗ ∼
(t∗)3/4 for β = 2/3. Since the maximum height of the blister max(h∗) decreases as time
passes, the system eventually reaches the small deformation region with corresponding
similarity solution for R∗ given in (4.18), with R∗ ∼ (t∗)1/2. Consequently, the similarity
solutions (4.29) and (4.30) are useful to describe the behaviour of the system if
max(h∗) � A.
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Figure 5. Swelling dynamics of thin hydrogel sheets according to the proposed poroelastic model for
(a) β = 3/2 > 1 and (b) β = 2/3 < 1; for both figures V = 1 − A and A ∈ [0.001, 0.01, 0.1, 0.5, 0.9] (light
blue to dark blue), namely darker shades of blue denote larger A. Dotted lines with circles plot the scaled
blister radius R∗ = R(t)/R(0) of numerical solutions of (4.13) as a function of time, starting from a self-similar
initial height profile of the form given in (4.29). For comparison, solid lines show the radius predicted by the
self-similar solution in the large deformation limit (see (4.30)).

5. Comparison between theory and experiment

5.1. Fitting procedure
The experiments reported here have 0.43 ≤ A ≤ 0.68 and so lie in the intermediate
deformation regime. This, together with the need to determine virtual origins in both
time and space for the experimental data, precludes a direct quantitative test of the
similarity solutions for the small and large deformation regimes (which is expected to
describe the late-time behaviour of the blister after an initial adjustment period) against our
experimental data. Instead, we solve (4.13) numerically, using an experimentally observed
initial condition. The initial conditions were taken to be the experimental height profile at
t = ts. We chose ts separately for each experiment to ensure that the model assumptions
were justified, namely that the uneven surface caused by the buckling/crumpling instability
had decayed sufficiently so that the assumption that the profile was axisymmetric was
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valid. We also took this as an indication that the vertical gradients in polymer volume
fraction had decreased (see (4.12)). This also ensured that all water had been absorbed and
a no-flux boundary condition would be present at the surface of the hydrogel.

Note that this means that, in the subsequent figures, t∗ = 0 corresponds to the
experimental time ts. Table 1 in Appendix D gives the associated experimental times ts, the
corresponding frame number and the derived values for each dataset for {R0, H0,A, t0}.

Since numerical solutions predict the evolution of the blister as a function of
dimensionless time t∗ with a single fitted parameter β, the poroelastic time scale t0 =
μf R2

0/κ0(K + 4G/3) for the propagation of the swollen layer through the hydrogel during
the initial absorption of the droplet has to be determined through fitting. Note that t0
can be split into a part that is experiment dependent and a part that is experiment
independent, namely t0 = Ω R2

0, where the experiment-dependent part R2
0 is found through

image analysis while the experiment-independent part Ω = μf /κ0(K + 4G/3) is the same
unknown constant fitted across all the experimental data. Furthermore, note that we do not
need to fit the effective elastic moduli K and G individually, decreasing the number of free
parameters we need to fit from the experimental data and hence increasing the value of the
fit. In particular, for a given value for β, we determined Ω through a simultaneous fit to all
the experimental datasets, minimising the normalised mean square error for the maximum
observed height, as expressed by the objective function

∑
i

⎧⎨⎩avg
j

([
max(he(tj)) − max

(
hβ

(
tj

ΩR2
0

))]/
max(he(tj))

)2
⎫⎬⎭

i

. (5.1)

Here, i corresponds to different experimental datasets, namely different initial droplet
volumes. The index j corresponds to different points in time tj with corresponding hydrogel
height profile he(tj) for a given experiment. Finally, hβ1(t

∗
1) denotes a height profile

generated numerically at time t∗ = t∗1 for β = β1. Note that we are minimising across
all experimental datasets at once.

Both this minimisation and the subsequent linear interpolation to calculate h∗
β at the

experimental time steps were performed using standard NumPy and SciPy methods in
Python (Harris et al. 2020; Virtanen et al. 2020). This fit was constructed with the aim to
replicate the maximum (centre) height of the blister.

Figure 6 explores graphically how varying β affects the temporal evolution of the
numerical solutions for max (h∗) and R∗. As a first sweep, we calculated the evolution
of each profile for 2/3 ≤ β < 3 in increments of 1/3. From this, we could bound β to the
range β ∈ [4/3, 7/3] until we investigated β = [25/12, 26/12, 27/12]. The final values
adopted were those obtained for the β with the lowest value of the objective function
in (5.1), namely β = 2.25 ± 0.083 and Ω = 6.72 × 109 s m−2, which corresponds to
poroelastic time scales t0 = ΩR2

0 = 4.14 − 36.79 h, as shown in table 1. This large
variation in time scales arises since the initial radii vary by approximately a factor of
three between datasets.

Whilst β = 2.25 is considerably larger than the suggestion of 2/3 made by Etzold
et al. (2021), it is more comparable to many previous experimental studies which found
1.5 ≤ β ≤ 1.85 (Tokita & Tanaka 1991; Grattoni et al. 2001; Bertrand et al. 2016).
This may be because the fit is not particularly sensitive to β with the temporal evolution
of R∗ and h∗ qualitatively maintaining the same key features. Quantitatively, when β

increases, h∗ decays faster while R∗ increases faster. For example, if we had chosen
β = 1.83, (approximately the highest value reported in the literature, Grattoni et al. 2001),
Ω would have decreased slightly to 5.82 × 109 s m−2 (a change of around 15 %). This
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Figure 6. The experimental temporal evolution of (a) the scaled maximum blister height max(h∗) and (b) the
characteristic blister radius R∗ formed by a 50 μl droplet (dots) superimposed onto a set of blue lines computed
using the theoretical model (4.13), using the initial experimental height profile as the initial condition, where
β ∈ {2/3, 1, 4/3, 11/6, 25/12, 9/4, 5/2, 3}. Curves in a darker shade of blue correspond to larger values of β.
The dimensionless time scale t∗ was matched to real time t using the relation Ω = 6.72 × 109 s m−2 obtained
as best fit for β = 2.25 (thicker blue line). Error bars are generated through an uncertainty analysis that is
described in § 2.4 and Appendix A.

small change does not influence the characteristic trends that are observed as the system
evolves over time. This insensitivity of the fit might be due to only modest changes of the
observables over the observation period (factor 2). While we have not tried expressions
for κ∗ in terms of φp other than (3.7), at small φp the leading-order term in the Taylor
expansion will be of the polynomial form we have chosen in our model (3.7).

5.2. Profile comparison
Figures 7 and 8 compare experimental data (dots) with numerical predictions (lines)
generated using the model (4.13) and the fitted parameters (β = 2.25 and Ω = 6.72 ×
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Figure 7. The temporal evolution of the maximum scaled height max(h∗). Inset: comparison of experimental
profiles (dots), at the times indicated by the red stars, with numerical profiles (solid lines). Error bars represent
uncertainties. Curves in lighter shades of blue correspond to larger initial droplet volumes. Numerical solutions
are generated using initial conditions taken directly from the experimental data that they are fitted against. Error
bars are generated through an uncertainty analysis that is described in § 2.4 and Appendix A.
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Figure 8. The temporal evolution of the scaled radius R∗ of the swelling region for a range of different initial
droplet volumes, plotting experimental data with dots and numerical solutions with lines. Error bars represent
uncertainties in the experimental data. Curves in lighter shades of blue correspond to larger initial droplet
volumes, with the same volume/colour combinations as in figure 7. Numerical solutions are generated using
initial conditions taken directly from the experimental data that they are fitted against once the crumpling
instability has decayed. Red dots indicate the strongest deviations between numerics and experiment at late
times. Error bars are generated through an uncertainty analysis that is described in § 2.4 and Appendix A.
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109 s m−2), taking initial conditions directly from the experimental data that they are fitted
against (darker blue curves indicate smaller initial droplets). Figure 7 explores how the
maximum scaled blister height max(h∗) evolves temporally with t∗ for different droplet
volumes. Agreement within the estimated uncertainty is found for all datasets for the full
range of experimental data. The inset compares experimental height profiles of h∗(r∗)
at a late time towards the end of each dataset. The red stars on the main plot indicate the
corresponding points in time. Within the estimated uncertainty, the model and experiments
agree well.

Figure 8 compares the half-height radius R∗ of the blister obtained from experimental
and numerical data. We find agreement, generally comfortably within the uncertainty
range of the experiment for all observation times, noting that the experimental uncertainty
associated with R∗ is much greater than the corresponding uncertainty associated with
max (h∗) (see Appendix A for further details). However, both the 5 μl drop (the darkest
blue curve) and the 30 μl drop (the third curve from the bottom) seem to indicate
some systematic deviations at later times. Although these deviations could arise from a
breakdown of our assumptions, given the agreement shown in figure 7, it is more likely
that these arise from limitations in the experimental set-up. For example, the accurate
determination of R∗ becomes more difficult with decreasing slope of the blister.

Through log–log plots (not shown here), we have explored how well the experimental
data shown in figures 7 and 8 approach the small and large deformation regimes (4.18) and
(4.29), respectively, which have distinct power law evolution at large time. It was found that
little quantitative information could be gained since the experimental data mostly lie in an
intermediate deformation region, and the duration of the experiments was not long enough
to clearly observe any asymptotic power law dependence. Hence, the blister evolution in
our experiments was still influenced by virtual origins in time, arising from the initial
conditions.

Expanding on the inset of figure 7, figure 9 compares the spatial dependence of the
experimental profiles (dots) with the numerical predictions (lines) for the 50 μl dataset.
The lightest blue curve corresponds to a time of 2 min after the first frame. Each
subsequent darker blue line corresponds to twice the previous time. There is generally
agreement between experiment and theoretical predictions. However, as time increases, the
numerical solution appears to over-predict the position of the leading edge of the swollen
region, although still remaining within experimental error.

Discussed in more detail below in Appendix A, the imaging system cannot detect very
small swelling (estimated to be less than 45 μm) due both to surface roughness and
imperfect alignment between the hydrogel sheet and the camera. At later stages of the
experiment, this could hide the tip of the swollen region from observation. This would
also affect the computation of R∗ due to the shallow gradients but have less impact on
max(h∗), hence providing an explanation for why we see better agreement in figure 7 than
in figure 8.

In our model, we have assumed that the elastic deformation gradients in the
z direction are negligible. This assumption is reasonable since the characteristic
poroelastic time scale t0 is much greater than the time scale on which these gradients
decay. Indeed, using experimental observations, we can relate these gradients to the
buckling/crumpling instability, which vanishes within approximately 30 min. Since we
have found t0 = 4.14 − 36.79 h, this confirms empirically our assumption that the elastic
deformation gradients in the z direction are only important for the early-time swelling
dynamics, not captured by our model.
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Figure 9. Comparison between experimentally observed swelling and numerical solutions of the poroelastic
model, plotting the spatial dependence of the scaled height h∗ for a blister formed by a 50 μl droplet at different
times during the experiment. Here, experimental data are denoted by circles while numerical solutions are
denoted by lines. The lightest blue curve corresponds to t − ts = 2 min with each subsequent darker blue curve
twice the previous time. Curves in darker shades of blue denote later times. Numerical solutions are generated
using initial conditions taken directly from the experimental data that they are fitted against. Error bars are
generated through an uncertainty analysis that is described in § 2.4 and Appendix A.

6. Discussion and conclusions

In this paper, we have reported experimental results for the absorption and subsequent
transport of a water droplet into a thin hydrogel sheet. Our experimental results are
compared with predictions from a two-parameter model, which show good agreement.
Our results fill multiple important gaps in the literature on hydrogel swelling. We present
results on a previously unstudied canonical geometry, applying both experimental and
theoretical methods to study it.

Our experimental data constitute a valuable test for the hydrogel models introduced in
§ 1 for simpler geometries (e.g. Hong et al. 2008; Chester & Anand 2010; Engelsberg
& Barros 2013; Bertrand et al. 2016). We introduce an experimental method to set a
near-stress-free (von-Neumann) boundary condition on the hydrogel surface for the fluid
flow in the hydrogel using a water-immiscible oil. We then see a temporary shift towards
a no-slip (Dirichlet) boundary condition after placing the drop, returning to a stress-free
condition once there is no longer liquid water at the surface of the hydrogel. Hence, this
enables the study of swelling problems with spatially and temporally varying boundary
conditions.

From a modelling perspective, we chose a linear poroelastic framework with nonlinear
kinematics (a common choice in the study of poroelasticity, e.g. MacMinn, Dufresne &
Wettlaufer 2015) to model our observations. Furthermore, we showed how a thin-layer
(lubrication) approximation can reduce the full axisymmetric three-dimensional swelling
model to a single one-dimensional nonlinear diffusion equation for the evolution of the
non-dimensional height of the layer h∗. This approach extends the geometries potentially
amenable to analytical treatment beyond strictly one-dimensional geometries (Yoon et al.
2010; Engelsberg & Barros 2013; Bertrand et al. 2016). We hope this will inspire future
work to be more ambitious than one-dimensional studies.
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Our work demonstrated that a simple poroelastic modelling framework can, after fitting
to the experimental data for the maximum blister height, predict the shape of the swollen
blister over the observation time. This model therefore captures the key dynamics of the
hydrogel system, as already demonstrated by Yoon et al. (2010) for a one-dimensional
system.

Our model admits self-similar solutions of the one-dimensional time-dependent
nonlinear diffusion transport equation. In the large deformation limit, the blister extent
was captured by a t1/(2β) power law, with an exponent-dependent relationship between the
permeability and polymer volume fraction via the parameter β. In the small deformation
limit, the blister profile recovered the canonical diffusive Gaussian profile with the blister
extent obeying a t1/2 power law.

Our numerical exploration of the one-dimensional nonlinear diffusion equation showed
that the blister evolution was broadly captured between the large and small deformation
regimes. However, our experimental data showed the impact of virtual origins in time,
which meant that self-similar large and small deformation regimes could only be reached
in the limit of large time or large domain size. Hence, domain size constraints in our
experimental set-up prevented us from capturing fully these two regimes. Therefore, we
anticipate that for most finite-size domains, the blister lies in an intermediate deformation
regime that is captured by our one-dimensional nonlinear diffusion equation, and whose
solution does not require as sophisticated and computationally expensive numerical
approaches as solving the full original transport problem.

Recent models for hydrogel swelling (e.g. Hong et al. 2008; Doi 2009; Chester & Anand
2010; Bertrand et al. 2016) use fully nonlinear kinematics. Such models require additional
information to derive the constitutive equation for the stress tensor. For example, the
Flory–Rehner and Flory–Huggins models (Treloar 1975; Cai & Suo 2012) are based on
statistical thermodynamics. As demonstrated by Doi (2009) and Bouklas & Huang (2012),
the linear poroelastic equation for the stress tensor that we have used can be obtained
by linearisation of the above models. Therefore, the linearised model describes the same
physics, albeit potentially with reduced accuracy over a larger range of strains.

Our choice of the linearised constitutive equation for the stress tensor was motivated
by simplicity. The nonlinear models have their own caveats (see for example Chester &
Anand 2010 on the limitations of the Gaussian-chain model for polymer chains used in
many nonlinear hydrogel models). Furthermore, they introduce additional parameters. In
our experimental system, independent determination of all these parameters is difficult.
This is because we rely on a commercially available hydrogel that we cannot manufacture
to the shapes necessary to conduct other measurements (e.g. with the device described
in Li et al. 2012). Hence, these would become additional fit parameters which we felt
prudent to avoid. More importantly, the linearised equations are mathematically simpler.
This is desirable to make analytical progress and facilitate insight into the key macroscopic
dynamics. Our choice is justified a posteriori by the agreement between experiment and
model.

We recognise that our simplification has a potential price. Formally, we use a linear
elastic constitutive equation for the stress tensor beyond the strict validity range of the
linearisation of the kinematics, since our deformation gradients are of order one (Spencer
2004; Doi 2009). It is therefore possible that limitations of our model have been absorbed
into fitted parameters, in particular the permeability exponent β. This could explain
the difference we find here (β ≈ 2.25), compared with the value of β = 2/3 proposed
by Etzold et al. (2021) and Al-Amodi & Hill (2022) based on theoretical geometric
arguments. This difference warrants further investigation although it should be noted that
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our value is similar to other hydrogel experimental studies (e.g. 1.5 from Tokita & Tanaka
1991 and 1.85 from Grattoni et al. 2001).

A compelling idea, which could explain the range of β found in our experiments
and reported in the literature emerged during the review process for this article through
communication with one of the anonymous reviewers. In our experiment, we consider a
hydrogel that in its reference state has a relatively high polymer volume fraction. Therefore,
in such a state, the polymer chains exist as collapsed coils. These will fill a considerable
amount of the pore space with fluid flow being governed by the much smaller pores within
the coil. As the polymer swells the chains stretch and the coils unravel. Fluid flow will
become dominated by the larger pores between the polymer chains, whose subsequent size
change (about the now swollen state) could be described by an affine transformation. Thus,
β = 2/3 might be a limiting case for lower polymer volume fractions, whilst drier gels see
a larger change in permeability with swelling, leading to larger β. While its exploration
is beyond the scope of this paper, we hope this will inspire future computer modelling
studies.

Despite the simplifications discussed above, the agreement between the observed blister
shapes and the predictions by the model shows that, at least from a mathematical point of
view, our model includes all the key features needed to reproduce the data.

Another limitation of the current framework arises from the construction of the
linearisation that leads to (3.2) and (3.5). We chose the unswollen hydrogel as the reference
state, namely implying from (3.5) and (3.2) that the pressure p is zero in this state. Since
our model only has von-Neumann boundary conditions for p, its absolute value is not
important. This is not appropriate when modelling situations with a Dirichlet boundary
condition on the surface such as during the early stages of swelling, where this boundary
condition for p would model the water hydrogel boundary (e.g. Bertrand et al. 2016). In
this case, the absolute value of p becomes important since, for consistency, the pressure p
for pure water must be equal to ambient pressure. This is not captured by the forms of (3.2)
and (3.5) used in this paper, but can likely be included by careful linearisation around an
appropriate reference state (e.g. the fully swollen state such as in Etzold et al. 2021).

One of the key questions that arise from the above discussion is the need to understand
under which circumstances the additional features of a nonlinear framework would be
required to describe experimental data.

For example within the presented problem, the surface instability visible during the
early stages of swelling indicates the presence of thin, highly swollen layers which might
no longer be described by a linearised framework. A version of our model employing a
nonlinear constitutive equation for the stress tensor would certainly contribute to answer
these questions, with our dataset providing an experimental base to compare such a
nonlinear model against. This would also pave the way towards studying the early stages
of swelling. One should note, however, that the thin-layer approximation we have used is
not valid for the finite amplitude manifestation of the instability nor when the length scale
of the instability is comparable to or smaller than the thickness of the hydrogel.

An experimental challenge when exploring the above and related hydrogel swelling
problems more generally is the material itself. Whilst hydrogel synthesis is in principle not
too difficult, the reproducible synthesis of geometries similar to sheets adds considerable
up-front technical challenges. Our choice to rely on commercially available material
avoided these but introduces other limitations such as the gauze layer (§ 2.1). We therefore
believe that the study of high-swelling hydrogels would benefit from a collection of
‘standard’ recipes leading to well-characterised materials accessible to a broad range of
researchers. This would enable further studies, with a reduced need to determine material
parameters by fitting.
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In summary, our approach establishes experimental and theoretical connections between
the polymer swelling literature and a large body of work considering spreading in thin
porous layers (e.g. Nordbotten & Celia 2006; Phillips 2009; Rutqvist 2012; Hewitt et al.
2015). This will accelerate further progress for complex swelling problems in slender
geometries, where the polymer interacts with its environment in a complex fashion.
Examples are the absorption of droplets on polymer materials (Phadnis et al. 2018), mass
transfer between a shear flow and swelling polymer surfaces (see Landel et al. 2016;
Delavoipière et al. 2018, for non-swelling examples) and biofilm growth on tissue (Fortune
et al. 2022).

Supplementary material. Experimental blister shape profiles are available at https://doi.org/10.17863/CAM.
99950.
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Appendix A. Uncertainty analysis

We assume our imaging system to be accurate within one pixel. Hence, at a pixel pitch of
5 μm and a magnification of 0.4, this leads to imaging uncertainties δr = δz = 12.5 μm.
The particular configuration of the side view imaging leads to further uncertainties on the
determination of ha due both to surface roughness (imperfections in the manufacturing
process) and alignment errors between the camera and the sample (illustrated in
figure 10a). Figure 10(b) shows how a small misalignment of angle δα causes some of the
swelling to be hidden below the edge of the sample. This introduces an uncertainty in the
position of the upper edge of the hydrogel δa. Assuming that the alignment between the
camera and the sample is accurate within 0.05◦, we find that, for 26 mm wide samples,
the edge position of the unswollen hydrogel appears to be located δa+ = +22.7 μm
too high. We thus estimate the uncertainty of the blister profile as δha = (+δa, −δz)
= (+22.7, −12.5)μm.
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Figure 10. Illustration of the uncertainties inherent in the imaging. (a) Side view of the experimental
configuration, showing how a misalignment (exaggerated for clarity) causes part of the droplet to be hidden
from the camera by the edge of the hydrogel sheet. (b) Image (linear projection) of the droplet on the hydrogel
sheet as seen by the camera. Dashed lines are not visible for the camera and give rise to an uncertainty in
the position of the hydrogel surface δa, that creates a corresponding uncertainty δR in the determination of
R. The uncertainty due to finite pixel resolution in the radial and vertical directions are defined as δr and δz,
respectively.

Furthermore, figure 10(b) illustrates the potentially significant effect that δha may have
on the uncertainty in R. We estimate this from the slope of ha at R as

δR ≈ (δh)(
∂ha

∂x

)∣∣∣∣∣∣
x=r0+R

, (A1)

where the derivative is approximated for each frame using a fourth-order central difference
scheme. Utilising (A1), we see that if the slope of the blister surface decreases over time,
the uncertainties grow over time. This makes the experimental determination of R difficult
at late stages when the blister becomes flat.

The uncertainty of the determination of δha also effects the computation of V ,
(illustrated by the hatched region in figure 10b). We estimate the uncertainty δV on the
determination of the blister volume as

δV ≈ π

∫ xmx

xmn

(x − r0)δha(x) dx, (A2)

where the integration bounds [xmn, xmx] are defined so that

{xm ≤ x ≤ xmx : ha(x − r0) > δz} . (A3)

This approximates the hatched region given in figure 10(b). We did not attempt to
extrapolate the exact edge position based on the slope since the slope of h(x, t) becomes
very small at the leading edge (indicated by both our theory and experimental data; see
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(a) (b) (c)

(d) (e) ( f )

Figure 11. Absorption of a dyed (0.01 % by weight methylene blue) droplet (100–200 μl) observed in plan
view against a bright background. (a) Immediately after droplet placement the only visible structure is a pattern
arising from gauze that was embedded within the hydrogel during the manufacturing process. (b–e) As the
water droplet is absorbed into the hydrogel, a surface instability emerges, growing coarser as time progresses.
( f ) The instability has fully decayed as the droplet and hydrogel have dried out. Panels show (a) 0 s, (b) 13 s,
(c) 87 s, (d) 493 s, (e) 1037 s, ( f ) 2083 s.

figure 2 at late times). Similar to the error analysis for R, the above analysis shows that
accurately determining V becomes progressively harder as the blister spreads, since ha
decreases over time whilst the area covered by the blister, defined in (2.6), increases with
time. We also note that the accurate determination of the volume relies on the assumption
of cylindrical symmetry of the blister; we comment on this in Appendix C.

Appendix B. Surface instability

Here, we briefly report additional footage to illustrate the development of the crumpling
instability over time. We found that the instability becomes visible if a droplet of methylene
blue solution (0.01 % by weight) is used rather than pure water. Figure 11 shows typical
observations for the absorption of a single droplet with volume between 100 and 200 μl
imaged in plan view against a diffusive white illumination using the same grey-scale
camera and telecentric lens as the main experiment (cf. § 2.3).

Figure 11(a) shows the droplet just after making contact. The droplet appears dark
against the overexposed background due to the presence of the dye. Within the droplet,
the gauze layer embedded into the hydrogel is visible as random fibre pattern. Within
seconds after droplet placement, shown in figure 11(b), a second regular pattern (dark
lines) becomes visible. This pattern then coarsens over time (figure 11c,d). In figure 11(e),
the edge of the droplet has become dry due to evaporation and absorption, while the pattern
in the centre has coarsened even further.
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Figure 12. Raw data with corresponding error bars showing for a range of experiments how the apparent
volume of the blister (found by direct integration) varies as a function of time. Darker blue curves denote
experiments with larger water droplets and black dotted lines indicate the nominal droplet volume. Error bars
are generated through an uncertainty analysis that is described in § 2.4 and Appendix A.

From the supplementary video, it can be deduced that the black lines at this point in the
experiment are caused by solid dye that has precipitated in the creases of the instability.
This movement of dye particulates in the creases indicates a complex flow pattern in the
supernatant fluid at this stage as the instability vanishes (figure 11e, f ).

Qualitatively, the pattern observed during this process corresponds to that observed
in experiments using pure water (cf. § 2.5). We therefore propose that this sequence
qualitatively represents the evolution of the instability during droplet absorption. At the
same time, these experiment highlights the role specific chemical interactions play in
hydrogel swelling, an area which certainly warrants further exploration.

Appendix C. Conservation of water volume

C.1. Experimental test of conservation of volume
Conservation of volume is an important assumption for our theoretical modelling. In this
section we briefly investigate whether the experimental measurements are consistent with
this assumption. In figure 12, we report the blister volume as a function of time, found by
integrating the experimental height profile (2.3). Here, the nominal volume of the dataset
is shown as a horizontal dotted line. Full lines map how the volume of the swollen region
evolves for the different experiments. Corresponding error bars represent our uncertainty
estimates (see (2.5) and Appendix A for further details).

Note that the integration (2.3) of the experimental measurement of ha at the start of all
experiments overestimates the volume of the blister. As ha is effectively the silhouette of a
projection of the blister, the localised surface depressions associated with the creasing of
the surface hydrogel are hidden from the side-view camera and thus not fully accounted
for.

For the smallest three droplets (namely those with volume 5, 10 and 25 μl), volume
is largely conserved throughout the experiment. For the remaining larger droplets, we
observe a continuous decrease in volume over the observed period. Our uncertainty
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estimates capture the trend of this behaviour well. However, it does not accurately predict
the magnitude of this decrease in volume for the two largest droplets.

However, as noted in the discussion of the error analysis given above in Appendix A,
accurately determining the blister volume becomes progressively more difficult with
increasing blister radius. Its accuracy relies strongly on the assumption of cylindrical
symmetry. Given the instrumentation available at the time, the cylindrical symmetry of
the droplet settling on the hydrogel could only be verified by eye and thus might not
have been perfect in some cases. We also observed that the bounds of the leading edge
of the droplet (see (2.6)) sometimes varied by up to 10 %, indicating imperfect spherical
symmetry. Hence, a plausible explanation to explain why smaller blisters seem to conserve
their volume better than larger blisters is that smaller droplets experience stronger capillary
forces and thus would settle more symmetrically on a surface compared with a big droplet.

In summary, conservation of volume for the smaller droplets and the success of our error
analysis to explain the trends seen in figure 12 for larger droplets suggests that volume
is nearly conserved. In particular, although we measure a significant volume loss, the
majority of this loss can be attributed to measurement error rather than actual volume
loss. However, for completeness, in Appendix C.2, we also estimated potential losses of
water through the covering oil. From this analysis, we can conclude that it is unlikely that
the swollen hydrogel lost a significant amount of water into the oil during the duration of
an experiment.

C.2. Analysis of water transport into or through the oil
Since there is a sparing solubility of water in the hydraulic oil, we investigated the possible
water loss due to transport into the oil phase by making an order of magnitude estimation
for this transport by considering the effect from diffusive mass flux in the z-direction. We
assume that mass flux is due to diffusion only (no advective component) and that the oil
is saturated with water at the interface to the swollen region of the hydrogel. We take the
solubility limit as 1.1 % water content (cf. § 2.2), which we believe to be an overestimation
since the chemical potential of water in unsaturated hydrogel is less than of pure water
(Etzold et al. 2021) and the oil is in equilibrium with the laboratory atmosphere far away
from the hydrogel (estimated to be 0.67 % water content by titration, see § 2.2). Hence, we
model the difference in water volume concentration �c that drives water diffusion through
the oil as

�c ≈ �ωρo, (C1)

where the difference in water mass fraction that drives diffusion �ω = 0.43 %, the density
of mineral oil is estimated as ρo = 833 kg m−3 and we have assumed both isochoric
mixing and that the water concentration in the oil is small. At a fixed radial distance r = r′
and in the absence of buoyancy-driven motion (we expect the water content to increase
the density of the oil), the concentration field c = c(r′, z, t, t′) for water in the oil can be
described using the similarity solution for one-dimensional diffusion in the z-direction
(neglecting in-plane diffusion within the (r, θ) plane) to give

c = �c erfc(z/
√

4D(t − t′)), (C2a)

with corresponding diffusive water mass flux at z = 0

j = �c
√

D√
π(t − t′)

, (C2b)
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where erfc(·) is the complementary error function, D is the diffusion coefficient for water
in the oil and t′ is the time at which the swelling front reaches the point r = r′ i.e. r′ =
R(t′)). The total water volume lost for a swollen blister thus becomes

�V = 1
ρw

∫ t

0

[
A0j(t′) + ∂A

∂t
(t′) � j(t′)

]
dt′, (C3)

where we have assumed that the blister has a circular base and surface area A(t) with
A(0) = A0. The convolution integral denoted by � accounts for the fact that diffusion
starts only when the hydrogel starts to swell. For simplicity, if we assume the radius grows
linearly with a growth rate χ , then (C3) predicts

�V = 2ρo

ρw

√
πD�ω

[
R2

0
√

t +
∫ t

0

∫ t

0
χ

(R0 + χ t′′)√
t′ − t′′

dt′′ dt′
]

= 2ρo

ρw

√
πD�ω

[
R2

0
√

t + 4
15

χ t3/2(5R0 + 2χ t)
]

. (C4)

Utilising the experimental data for the largest blister (see figure 2 and table 1) with initial
radius R0 = 5 mm, approximating the radius of the hydrogel area covered by the blister
as growing linearly with time yields an effective χ = 0.5 mm h−1. This estimation was
calculated based on imaging data (e.g. compare figures 2c and 2k) rather than using
R evaluated from experimental measurements using (2.2) since for flat blisters our R
underestimates the edge position. We found no data for the diffusion of water in HySpin
AWS 32 and established that such data are not widely available for mineral oils. However,
given its relatively high viscosity of μo = 32 cSt at 40 ◦C, the water diffusion coefficient
in oil is likely to be an order of magnitude less than the self-diffusion coefficient of bulk
water, D = 3 × 10−9 m2 s−1. Furthermore, Hilder & van den Tempe (1971) reported water
diffusion coefficients in groundnut oil (50 times more viscous than water) and in kerosene
(twice as viscous as water) as 2.5 × 10−10 m2 s−1 and 8.5 × 10−10 m2 s−1 respectively.
Hence, taking the diffusion constants in groundnut oil and in kerosene as lower and upper
bounds respectively for the diffusion constant of water in our hydraulic oil, (C4) predicts
diffusive volume losses of {0.3 − 0.6}, {1.2 − 2.2} and {2.7 − 5.0} μl after one, five and
ten hours, respectively. As this is almost an order of magnitude too small to account for
the apparent volume loss found in figure 12.

For completeness, a supplementary experiment was conducted where a 2 μl droplet of
water was placed directly onto a microscope slide that was immersed into an oil bath with
no hydrogel present. This droplet reached a sessile state after 25 h. Whilst the accuracy
of our image analysis of this experiment was impacted from resolution issues in locating
the diffuse edges of the droplet, we found that the water loss of the droplet was less than
0.1 μl over a time period of approximately 120 h. The surface area of the droplet remained
approximately constant and was estimated to be 4.6 mm2. Assuming a steady state mass
loss from the droplet into the atmosphere through a 1 cm deep layer of oil, this analysis
yields a diffusion coefficient of 1–2 × 10−10 m2 s−1. By approximating this axisymmetric
three-dimensional diffusion problem using the equations above, assuming mass transport
into an infinite oil bath yields an even lower diffusion coefficient of 7 × 10−11 m2 s−1.
We note that these droplets remained in the oil bath for approximately one month without
vanishing.

In summary, it appears unlikely that, based on the water diffusion coefficient from the
literature, the swollen hydrogel lost a significant amount of water into the oil during
the duration of an experiment (corroborated by a supplementary experiment testing
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V (μl) Frame ts (min) H0 (mm) R0 (mm) A t0 (h)

100 180 82.0 2.61 4.44 0.43 36.79
50 220 39.5 2.44 3.27 0.46 19.96
30 782 21.0 2.28 2.78 0.49 14.42
25 235 26.0 2.18 2.61 0.51 12.71
10 109 20.0 1.82 1.94 0.62 7.02
5 358 9.5 1.66 1.49 0.68 4.14

Table 1. Experimental ts from which the initial condition for the numerical solution was obtained with
corresponding values {H0, R0,A, t0}. The second column refers to the frame number in the corresponding
attached raw dataset.

the stability of a small water droplet in the same conditions). Also, the experimental
observation that volume appears to be conserved for smaller droplets suggests that the
extra volume loss apparent above in figure 12 for larger droplets beyond that attributed
to measurement error is likely due to the initial blister profile not being completely
axisymmetric, resulting in spreading that is not quite radial.

Appendix D. Additional experimental information

Table 1 gives for all six experiments the ts from which the initial condition for the
numerical solution was obtained with corresponding values {H0, R0,A, t0}. The second
column refers to the frame number in the corresponding attached raw dataset.
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