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Abstract. Inspired by a twist map theorem of Mather. we study recurrent invariant sets
that are ordered like rigid rotation under the action of the lift of a bimodal circle map
g to the k-fold cover. For each irrational in the rotation set’s interior, the collection
of the k-fold ordered semi-Denjoy minimal sets with that rotation number contains a
(k − 1)-dimensional ball with the weak topology on their unique invariant measures. We
also describe completely their periodic orbit analogs for rational rotation numbers. The
main tool used is a generalization of a construction of Hedlund and Morse that generates
symbolic analogs of these k-fold well-ordered invariant sets.
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1. Introduction
In a dynamical system a rotation number or vector measures the asymptotic speed and
direction of an orbit. The rotation set collects all these together into a single invariant of
the system. The natural question is how much this invariant tells you about the dynamics.
Perhaps the first issue is whether for each rotation number there is a nice invariant set in
which every point has that rotation number.

This question has been studied in a number of contexts, with the most complete answer
available for maps of the circle, annulus, and two-dimensional torus. In these cases the
basic question is enhanced by requiring that the invariant set of a given rotation vector has
the same combinatorics as a rigid rotation. So, for example, for a continuous degree-one
map g of the circle and a number ω in its rotation set, is there an invariant set Zω on which
the action of g looks like the invariant set of rigid rotation of the circle by ω? This is made
clearer and more precise by lifting the dynamics to the universal cover R. The question then
translates to whether the action of the lift g̃ : R→ R on the lift Z̃ω is order-preserving.
For this class of maps the answer is yes; such invariant sets always exist [18].
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On the torus and annulus a general homeomorphism isotopic to the identity lacks the
structure to force the desired invariant sets to be order-preserving, therefore topological
analogs are used [11, 31, 41]. The monotone twist hypothesis provides the required
additional structure in the annulus case. The celebrated Aubry–Mather theorem states that
for each rational in the rotation set there is a periodic orbit and for each irrational a Denjoy
minimal set, and the action of the map on these invariant sets is ordered in the circle factor
like rigid rotation. These invariant sets are now called Aubry–Mather sets.

For an area-preserving monotone twist map the minimal set with a given irrational
rotation number could be an invariant circle. When a parameter is altered and this circle
breaks it is replaced by an invariant Denjoy minimal set. In [36] Mather investigated
what additional dynamics this forces. He showed that in the absence of an invariant
circle with a given irrational rotation number there are many other invariant minimal
Cantor sets with the same rotation number and the dynamics on these sets is nicely
ordered under the dynamics not in the base, but in finite covering spaces of the
annulus.

More specifically, these invariant minimal sets are Denjoy minimal sets which are
uniquely ergodic. Their collection is topologized using the weak topology on these
measures. Mather showed that for a given irrational rotation number in the rotation set the
collection of Denjoy minimal sets with that rotation number that are ordered in the k-fold
cover contains a topological disk of dimension k − 1. In this paper we prove the analog of
this result for a class G of bimodal degree-one maps of the circle. We also describe their
periodic orbits which have nicely ordered lifts in the k-fold cover.

Mather’s proof use variational methods. The main methods here come from symbolic
dynamics and use a construction that generalizes one due to Hedlund and Morse ([38] and
[24, p. 111]). Such generalizations are a common tool in topological dynamics ([35], [3,
pp. 234–241], and [12]). This Hedlund–Morse (HM) construction, used here for a rotation
number ω and number k, generates the itineraries under rigid rotation by ω with respect
to an address systems made from 2k intervals on the circle. The closure of this set of
itineraries yields the symbolic analog of an invariant set that is nicely ordered in the k-fold
cover. These sets are termed symbolic k-fold semi-monotone sets (symbolic kfsm sets).
Varying the address system parameterizes the symbolic kfsm sets in both the Hausdorff
and weak topologies.

A physical kfsm set (or just a kfsm set if the context is clear) is a g-invariant set Z that
has a lift Z′ to the k-fold cover on which the lift gk of g acts like rigid rotation. Physical
and symbolic kfsm sets are connected by a second tool.

The second tool uses addresses and itineraries, but this time to code orbits under the
bimodal map g. Restricting to all orbits that land in the positive-slope region, we get an
invariant set�(g)which is coded by an order interval in the one-sided 2-shift�+2 . Because
we study invariant sets ordered in the k-fold cover, we lift this coding to the orbits which
stay in the positive-slope region under gk in the k-fold cover Sk . This yields a gk-invariant
set �k(g) which is then coded by a subshift �̂k(g) ⊂ �+2k .

This result connects the physical kfsm sets in �k(g), the symbolic kfsm sets in �̂k(g),
and the symbolic sets generated by the HM construction. Part (c) will be explained
below.
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THEOREM 1.1. For g ∈ G the following assertions are equivalent.
(a) Z ⊂ �(g) is a recurrent kfsm set for g.
(b) The symbolic coding of Z via the itinerary map is constructable via the HM process.
(c) Z is a recurrent set of an interpolated semi-monotone map H�c in the k-fold cover.

Note that the result is restricted to recurrent kfsm sets. There are several reasons for
this: first, the recurrent points are where the interesting dynamics occurs; second, invariant
measures are always supported on recurrent sets; and finally, the HM construction produces
recurrent sets. As is well known in Aubry–Mather theory, there are also non-recurrent kfsm
sets which consist of a recurrent set and orbits homoclinic to that set. We also restrict to
orbits that stay in the positive-slope region of g. Considering kfsm sets that also have points
in the negative-slope region at most adds additional homoclinic orbits or shadow periodic
orbits. See §13.2.

For each k, the HM construction depends on two parameters, a rotation number ω and a
parameter �ν describing the address system on the circle. For a rational rotation number it
produces a finite cluster of periodic orbits, while for irrationals it produces a semi-Denjoy
minimal set. Since g is non-injective the analogs of Denjoy minimal sets have pairs of
points that collapse in forward time, hence the ‘semi’ in their name.

Another main result is that the HM construction parameters (ω, �ν) yield a homeomor-
phic parameterization of the space of invariant measures on the recurrent symbolic kfsm
sets with the weak topology. Via the itinerary map, this is pulled back to a parameterization
of the space of invariant measures on the physical recurrent kfsm sets with the weak
topology. It yields the following result in which ρ(g) is the rotation interval of g ∈ G.

THEOREM 1.2. Assume g ∈ G, α �∈ Q, α ∈ Int(ρ(g)), and k > 0.
(a) In the weak topology there is a (k − 1)-dimensional disk of kfsm semi-Denjoy

minimal sets with rotation number α.
(b) If pn/qn is a sequence of rationals in lowest terms with pn/qn→ α, then the number

of distinct kfsm periodic orbits of g with rotation number pn/qn grows like qk−1
n .

Informally, a kfsm semi-Denjoy minimal set wraps k times around the circle with orbits
moving at different average speeds in each loop. Lifting to the k-fold cover, these ‘speeds’
are given by the amount of the unique invariant measure present in a fundamental domain
of Sk: more measure means slower speed. The k-dimensional vector of these measures
is called the skewness of the minimal set. The sum of the skewness components is one,
and thus the collection of possible skewnesses contains a (k − 1)-dimensional ball. The
skewness turns out to be an injective parameterization of the kfsm sets for a given irrational
rotation number in the interior of the rotation set of a g ∈ G (see Remark 9.14).

The HM parametrization of kfsm sets with the Hausdorff topology is only lower
semi-continuous. The points of discontinuity are given in Theorem 9.5.

We will on occasion use results derived from those of Aubry–Mather theory. While the
context here is a bit different, the proofs are virtually identical and so are omitted. There
are excellent expositions of Aubry–Mather theory; see, for example, [33], [30, Ch. 13],
and [23, Ch. 2]. A version of Mather’s theorem on Denjoy minimal sets is given in [45] for
monotone recursion maps.
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FIGURE 1. The lift of a g ∈ G to the 3-fold cover and an interpolated semi-monotone map.

We restrict attention here to a particular class of bimodal circle maps defined in §4.1.
Using the Parry–Milnor–Thurston theorem for degree-one circle maps, the results can be
transferred (with appropriate alterations) to general bimodal circle maps (see Remark 4.2).

Note that the results here immediately apply to a class of annulus homeomorphisms.
This application can be done either via the Brown–Barge–Martin method using the inverse
limit of g ∈ G [5, 14] or via the symbolic dynamics in annulus maps with good coding like
a rotary horseshoe, for example, [12, 20, 25, 32].

Figure 1 illustrates the conceptual framework that inspired the results here. It shows the
graph of a map g ∈ G lifted to the 3-fold cover. At three heights (c1, c2, c3) = �c the graph
is cut off, yielding a semi-monotone circle map H�c. Such maps have a unique rotation
number and well-understood recurrent sets which are of necessity semi-monotone sets. As
�c is varied, the rotation number ρ(H�c) = ρ(�c) varies continuously. Thus one would expect
that the level sets ρ−1(ω) provide a parameterization of the kfsm sets with rotation number
ω. In particular, for irrational ω this level set should be a (k − 1)-dimensional disk as in
Theorem 1.2(a). This is true for g ∈ G. Figure 5 below shows some level sets. It is worth
noting that this figure is not a bifurcation diagram, but rather a detailed analysis of the
dynamics present in a single map.

While providing a valuable heuristic, this point of view is not as technically tractable as
the HM construction and we content ourselves with just a few comments on it in §13. One
of these adds item (c) to the list of equivalent conditions in Theorem 1.1.
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The literature on bimodal circle map dynamics is vast and we briefly mention only two
threads here. Symbolic dynamics for degree-one bimodal circle maps goes back at least
to [6, 26, 27]. The interpolated ‘flat spot’ map trick for finding 1-fold semi-monotone
sets was discovered and used by many people in the early 1980s; references include
[10, 18, 29, 37, 40, 42–44]. The author learned the trick from G.R. Hall in spring 1983
and the idea of applying it in finite covers emerged in conversations with him.

There are many questions raised by this work; here we mention three. As is well
known, the 1-fold symbolic semi-monotone sets generated by the HM construction
are the much-studied Sturmian sequences. The general symbolic kfsm sets are thus a
generalization of one property of the Sturmians to more symbols (there are many other
generalizations). The Sturmians have many marvelous properties such as their connection
to the Farey tree and substitutions: which properties are shared by symbolic kfsm sets?

The HM construction is an explicit parameterized way of getting well-controlled orbits
that do not preserve the cyclic order in the base and thus in most cases force positive
entropy as well as additional orbits. A second question is how the parameterization given
by the the HM construction interacts with the forcing orders on orbits in dimension one
and two (see, for example, [1, 13]).

A final question relates to the global parameterization of kfsm sets by the HM
construction. Each bimodal map ∈ G corresponds to a specific set of parameters, namely,
those that generate symbolic kfsm sets whose physical counterparts are present in g. What
is the shape of this set of parameters?

After this work was completed the author became aware of the considerable literature
on sets in the circle that are invariant and nicely ordered under the action of z �→ zd

[8, 9, 17, 21, 22, 34]. While the exact relationship of that theory and what is contained
in this paper is not clear, it is clear that the two areas share many basic ideas and methods.
These include families of interpolated semi-monotone circle maps with flat spots, tight
and loose gaps in invariant Cantor sets, parameterization of the sets using the position
of the flat spots, and parameterization of the sets with irrational rotation number by an
analog of skewness. Section 14 contains a few more comments on the relationship of the
problems.

2. Preliminaries
2.1. Dynamics. Throughout this section X is a metric space and g : X→ X is a
continuous, onto map. Since the maps g we will be considering will usually not be
injective, we will just be considering forward orbits, so o(x, g) = {x, g(x), g2(x), . . .}.

A point x is recurrent if there exists a sequence ni →∞with gni (x)→ x. A g-invariant
set Z is called recurrent if every point z ∈ Z is recurrent. Note that a recurrent subset is
usually different than the recurrent set, with the latter being the closure of all recurrent
points. A compact invariant set Z is called minimal if every point z ∈ Z has a forward
orbit that is dense in Z.

The one-sided shift space on n symbols is �+n = {0, . . . , n− 1}N and that on Z

symbols is �+
Z
= ZN. Occasionally we will write �+∞ for �+

Z
. For clarity we note that in

this paper 0 ∈ N. In every case we give one-sided shift spaces the lexicographic order and
the left shift map is denoted by σ , perhaps with a subscript to indicate the shift space upon
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which it acts. Maps between shifts and subshifts here will always be defined by their action
on individual symbols, so, for example, ϕ : �+n → �+n defined on symbols by s �→ ϕ(s)

means that ϕ(s0s1s2 . . .) = ϕ(s0)ϕ(s1)ϕ(s2) . . . . For a block B = b0 . . . bN−1 in �+n its
cylinder set is [B] = {s ∈ �+n : si = bi , i = 0, . . . , N − 1}. Note that all our cylinder sets
start with index 0.

The space–map pairs (X, f ) and (Y , g) are said to be topologically conjugate by h if h
is a homeomorphism from X onto Y and hf = gh.

We will frequently use the standard dynamical tool of addresses and itineraries. Assume
X = X0 
X1 
 · · · 
Xn−1, with 
 denoting disjoint union. Define the address map A
as A(x) = j when x ∈ Xj and the itinerary map ι : X→ �+n by ι(x)i = A(gi(x)). It
is immediate that σ ◦ ι = ι ◦ g. In many cases here, ι will be continuous and injective,
yielding a topological conjugacy from (X, g) to a subset of (�+n , σ).

We will also encounter the situation where the Xj are not disjoint, but intersect only in
their frontiers Fr(Xj ). In this case we define a ‘good set’G = {x : o(x, g) ∩ (∪ Fr(Xj )) =
∅}. In this case the itinerary map is defined as ι : G→ �+n .

For Z ⊂ X, its interior, closure and frontier are denoted by Int(Z), Cl(Z), and Fr(X),
respectively. The ε-ball about x is Nε(x). The Hausdorff distance between two sets is
denoted HD(X, Y ). For an interval I in R, |I | denotes it length, and for a finite set
Z, #Z is its cardinality. On an ordered k-tuple the map τ is the left cyclic shift, so
τ(a1, a2, . . . , ak) = (a2, a3, . . . , ak , a1). On the circle S1, θ1 < θ2 is defined as long as
|θ1 − θ2| < 1/2.

If g : X→ X and Y ⊂ X, then h : X→ X is said to interpolate g on Y if h(y) = g(y)
for all y ∈ Y , or in symbols, g|Y = h|Y .

2.2. The circle, finite covers and degree-one circle maps. While the only compact
manifold here will be a circle, it will clarify matters to use the language of covering spaces.

In general, if π : Ỹ → Y is a covering space, and Z ⊂ Y , a lift of Z is any set Z′ ⊂ Ỹ
with π(Z′) = Z. The full lift of Z is Z̃ = π−1(Z). If g : Y → Y lifts to g̃ : Ỹ → Ỹ and
Z ⊂ Y is g-invariant then the full lift Z̃ is g̃-invariant, a property that is usually not shared
by a lift Z′.

The universal cover of the circle is R, with T (x) = x + 1 generating the deck group.
Thus the covering space is π : R→ S1 = R/T = R/Z = [0, 1]/∼. We will only study
maps g : S1 → S1 whose lifts g̃ commute with the deck transformation, g̃T = T g̃, or
g̃(x + 1) = g̃(x)+ 1. These circle maps are commonly termed degree one. Our given g
will usually have a preferred lift g̃ and so all other lifts are obtained as T ng̃ or g̃ + n.

Central to our study are the finite k-fold covers of the circle for each k > 0, Sk =
R/T k = R/kZ = [0, k]/∼. A generator of the deck group is Tk : Sk → Sk induced by
T on R and the covering space is πk : Sk → S1. A preferred lift g̃ of g to R induces
a preferred lift g̃k : Sk → Sk that commutes with Tk . We also need the map from the
universal cover to the k-fold cover treating Sk as the base space pk : R→ Sk .

A g-periodic point x is said to have rotation type (p, q) with respect to the preferred lift
g̃ : R→ R if x has period q and for some lift x′ ∈ R, g̃q(x′) = T px′. Note that there is no
requirement here that p and q are relatively prime.

A central concern in this paper is how g-minimal sets in S1 lift to k-fold covers.
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THEOREM 2.1. Let g : S1 → S1 be degree one and fix 1 < k <∞.
(a) If Z ⊂ S1 is a minimal set, then there exists an m which divides k so that the full lift

of Z to Sk satisfies

Z̃ =
m⊔
j=1

Z′j (2.1)

with each Z′j minimal under g̃k , πk(Z̃′j ) = Z and Tk(Z
′
j ) = Z′j+1 with indices

mod k.
(b) If Z′, Z′′ ⊂ Sk are g̃k minimal sets, we have πk(Z

′) = πk(Z′′) if and only if
T
p
k (Z

′) = Z′′ for some p.
(c) If x ∈ S1 is a periodic point with rotation type (p, q), let m = gcd(k, p). There exist

x′j ∈ π−1
k (x) ⊂ Sk with 1 ≤ j ≤ m and

π−1
k (o(x, g)) =

m⊔
j=1

o(x′j , g̃k), (2.2)

the period of each x′j under g̃k equal to kq/m, and Tk(x′j ) = x′j+1 with indices
mod k.

Proof. To prove (a) we begin with two preliminary facts with similar proofs. First, we show
that for any z′ ∈ Z̃, πk(Cl(o(z′, g̃k))) = Z. Let z = πk(z′) and pick y ∈ Z. By minimality
there exists gni (z)→ y. Lifting and using the compactness of Sk , there are a subsequence
ni′ and a y′ ∈ Sk with g̃ni′k (z

′)→ y′. Thus gni′k (z) = πk(g̃ni′k (z′))→ πk(y
′) and so y =

πk(y
′).

Second, we show that for any z′, y′ ∈ Z̃, there exists a p with T p(y′) ∈ Cl(o(z′, g̃k)).
Let z = πk(z′) and y = πk(y′). By minimality again, we have gni (z)→ y. Lifting and
passing to a subsequence, there are a subsequence ni′ and a y′′ ∈ Sk with g̃ni′k (z

′)→ y′′.
Thus πk(y′′) = y also, so there is a p with y′′ = T pk (y′) and so T pk (y

′) ∈ Cl(o(z′, g̃k)).
Now for the main proof, pick z′ ∈ Z̃ and let Z′1 = Cl(o(z′, g̃k)), so by the first fact,

πk(Z
′
1) = Z. We now show Z′1 is minimal under g̃k . If not, there is a y′ ∈ Z′1 with

Cl(o(y′, g̃k))�Cl(o(z′, g̃k)). By the second preliminary fact, there is some p with

Cl(o(T pk (z
′), g̃k)) ⊂ Cl(o(y′, g̃k))�Cl(o(z′, g̃k)).

Acting by the homeomorphism T
p
k and iterating the strict inclusions, we have

Cl(o(z′, g̃k)) = Cl(o(T pkk (z′), g̃k))� Cl(o(T p(k−1)
k (z′), g̃k))� · · · � Cl(o(T pk (z

′), g̃k))
� Cl(o(z′, g̃k)),

a contradiction, so g̃k acting on Z′1 is minimal. Thus since g̃kTk = Tkg̃k , g̃k acting on each
Z′j := g̃jk (Z′1) is minimal. Now minimal sets either coincide or are disjoint, so there is a

least m with T m+1
k Z′1 = Z′1.

For the proof of (b), assume πk(Z′) = πk(Z′′). Now Z := πk(Z′) is minimal under g
and thus since Z′ ⊂ π−1

k (Z) and minimal sets are always disjoint or equal, using (2.1) we
have that Z′ = Z′j for some j. Similarly, Z′′ = Z′

j ′ for some j ′, and thus Z′ = T pZ′1 and

Z′′ = T p′Z′1, and so Z′′ = T p′−p(Z′) as required.
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Turning to (c), since the deck group of Sk is Zk there is a natural identification of π−1
k (x)

with Zk , with x′1 identified with zero. Since g̃qk (x̃) = T px̃ in R the induced action of g̃qk
on Zk is n �→ n+ p mod k. An easy elementary number theory argument yields that this
action has exactly gcd(p, k) distinct orbits. Thus g̃qk has exactly gcd(p, k) distinct orbits
when acting on π−1

k (x). But x′i , x′j ∈ π−1
k (x) are on the same g̃qk orbit if and only if they

are on the same g̃k orbit and each orbit in π−1
k (o(x, g)) contains at least one point from

π−1
k (x). Thus g̃k acting on π−1

k (o(x, g)) has exactly gcd(p, k) orbits. The rest of the form
of (2.2) follows from part (a).

While it is not used here, a similar result holds for Z-covers and their cyclic quotients
when the map on the base has a lift that commutes with the deck transformations.

Remark 2.2. Some special cases of (c) are worth noting. If gcd(p, k) = 1, then x lifts to a
single period-qk orbit in Sk . If p = k, then x lifts to k different period-q orbits in Sk . When
k = 2, there is a simple dichotomy. When p is odd, x lifts to one period-2q orbit; when p
is even, x lifts to a pair of period-q orbits.

2.3. Rotation number and interval. For g̃ : R→ R a fixed lift of a degree-one g :
S1 → S1, define the rotation number of x′ ∈ R as

ρ(x′, g̃) = lim
n→∞

g̃n(x′)− x′
n

(2.3)

when the limit exists. Note that this value depend in a simple way on the choice of lift g̃ of
g, namely, ρ(x′, g̃ +m) = ρ(x′, g̃)+m. In most cases below there will be a preferred lift
of a given g that will be used in (2.3) and we define ρ(x, g) = ρ(x′, g̃) where x′ is a lift
of x. When g is understood we will just write ρ(x). If x is a periodic point of rotation type
(p, q) then ρ(x) = p/q.

If Z is a g-invariant set, let

ρ(Z) = {ρ(x, g) : x ∈ Z}
and ρ(g) = ρ(S1, g). The latter set has been proved to be a closed interval [28, 39] and
thus it is called the rotation interval of the map. We shall also have occasion to use ρ(g̃)
with the obvious meaning.

There is a alternative way of computing the rotation interval using upper and lower maps
that is now standard ([10, 18, 29, 37] and elsewhere). Given a lift of a degree-one circle
map g̃ : R→ R, let g̃u(x) = sup{g̃(y) : y ≤ x} and g̃�(x) = inf{g̃(y) : y ≥ x}. If gu and
g� are their descents to S1 they are both semi-monotone maps and so each of their rotation
sets is a single point (see Lemma 3.1 below). The rotation interval of g is

ρ(g) = [ρ(g�), ρ(gu)]. (2.4)

To define the rotation number of a g-invariant Borel probability measure μ, start by
letting �g : S1 → R be �g(x) = g̃(x′)− x′ which is independent of the choice of lift x ′.
Then

ρ(μ) =
∫
�g dμ. (2.5)
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Note that when μ is ergodic by the pointwise ergodic theorem for μ-almost every x,
ρ(x, g) = ρ(μ).

For points, invariant sets and measures in the cyclic cover Sk under the preferred lift g̃k ,
there are two ways to consider the rotation number. The most common will be to project
to the base and define

ρk(x, g) = ρ(πk(x), g). (2.6)

For μ a g̃k-invariant measure, let

ρk(μ) = ρ((πk)∗μ). (2.7)

Remark 2.3. The other way to work with rotation numbers in Sk is to consider g̃k as a map
of the circle itself. To work on the standard circle we first rescale Sk via Dk : Sk → S1

via Dk(θ) = θ/k. Note that Dk is not a covering map but rather a coordinate rescaling
homeomorphism. For Z ⊂ Sk , then ρ(DkZ, Dk ◦ g̃k ◦D−1

k ) is the desired rotation num-
ber. These two methods are related simply by ρk(x, g) = kρ(DkZ, Dk ◦ g̃k ◦D−1

k ).

3. Semi-monotone degree-one maps
3.1. Definition and basic properties. In this section we describe the basics of a small but
crucial expansion of the class of circle homeomorphisms, namely, continuous maps whose
lifts are semi-monotone. They share many of the properties of circle homeomorphisms and
are a standard and important tool in circle dynamics.

Thus we consider continuous, degree-one h : S1 → S1 whose lifts h̃ to R satisfy that
x′1 < x′2 implies h̃(x′1) ≤ h̃(x′2). Note that this is independent of the choice of lift h̃ of h. We
shall also call such maps weakly order-preserving. Note that in topology a monotone map
is one with connected point inverses. In this sense a semi-monotone map is monotone.
On the other hand, considering the point of view of order relations, semi-monotone is
contrasted with monotone. We adapt the latter viewpoint. Let H be the collection of all
such maps with the C0-topology, and let H̃ denote all their lifts.

A flat spot for a h ∈ H is a non-trivial closed interval J where h(J ) is a constant and for
which there is no larger interval containing J on which h is constant. A given h can have
at most a countable number of flat spots Ji and we define the ‘positive-slope region’ of h
as P(h) = S1 \ (∪ Int Ji). The proof of the next result is standard. For the irrational case,
see [4].

LEMMA 3.1. Assume h ∈ H with preferred lift h̃.
(a) The rotation number ρ(x, h) exists and is the same for all x ∈ S1 and so ρ(h) is a

single number.
(b) The map ρ : H̃→ R is continuous.
(c) If h̃, h̃1 ∈ H̃ and h̃1 ≤ h̃ then ρ(h̃1) ≤ ρ(h̃).
(d) If ρ(h) = p/q in lowest terms then all periodic orbits have rotation type (p, q) and

the recurrent set of h consists of a union of such periodic orbits.
(e) If ρ(h) = α �∈ Q then h has exactly one recurrent set which is a minimal set Z and it

is wholly contained in P(h). Further, h is uniquely ergodic with the unique invariant
measure supported on Z.
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Definition 3.2. The minimal set in (e) above is called a semi-Denjoy minimal set. More
generally, an abstract minimal set is called semi-Denjoy if it is topologically conjugate to
the semi-Denjoy minimal set in a semi-monotone degree-one circle map.

Remark 3.3. A semi-Denjoy minimal set looks like a usual Denjoy minimal set, with the
added feature that endpoints of gaps can collapse to a point under forward iteration. It is
clear that any h ∈ H is a near-homeomorphism (the uniform limit of homeomorphisms).
Thus, following from a theorem of Brown [15], the inverse limit lim←−(h, S1) is a circle
and the natural extension is a circle homeomorphism. In particular, the inverse limit of a
semi-Denjoy minimal set is a Denjoy minimal set. For example, in case of a single flat
spot, the two endpoints of the flat spot form a gap in the minimal set and they have same
forward orbit. Taking the inverse limit splits open this orbit into a forward invariant gap.

3.2. Finitely many flat spots. We next introduce a subclass of H which includes the
semi-monotone maps considered in this paper. Let H� consist of those h ∈ H that have
exactly � flat spots. In P(h) we require that h is C1 and h′ > 1, where we have used a
one-sided derivative at the end points of the flat spots.

Definition 3.4. Assume h ∈ H� and ρ(h) �∈ Q. Thus h has a semi-Denjoy minimal set Z,
and since Z ⊂ P(h), for any flat spot J, Z ∩ Int(J ) = ∅. The flat spot J is called tight for
h if Fr(J ) ⊂ Z, and otherwise the flat spot is called loose.

LEMMA 3.5. Assume h ∈ H�.
(a) If ρ(h) = p/q in lowest terms then the number of (p, q)-periodic orbits wholly

contained in P(h) is at least one and at most �.
(b) If ρ(h) �∈ Q, a flat spot Ji is loose if and only if there are an n > 0 and an i′ with

hn(Ji) ∈ Ji′ . In particular, there is always at least one tight flat spot.
(c) If Z is the maximal recurrent set of h in P(h), then

Z = S1 \
∞⋃
n=0

�⋃
i=1

h−n(Int(Ji)), (3.1)

and so if o(x, h) ⊂ P(h) then hn(x) ∈ Z for some n ≥ 0.

Proof. For part (a), since ρ(h) = p/q in lowest terms, every periodic point has period q.
By the conditions on the derivatives of h ∈ H�, there are four classes of periodic points.
(1) x is unstable with Dhq(x) > 1 and o(x, h) ⊂ Int(P (h)).
(2) x is superstable withDhq(x) = 0 and o(x, h) ∩ (⋃�

i=1 Int(Ji)) �= ∅ while o(x, h) ∩
(
⋃�
i=1 Fr(Ji)) = ∅.

(3) x is superstable withDhq(x) = 0 and o(x, h) ∩ (⋃�
i=1 Int(Ji)) �= ∅ while o(x, h) ∩

(
⋃�
i=1 Fr(Ji)) �= ∅ and o(x, h) contains both left and right endpoints of flat spots.

(4) x is semi-stable with Dhq(x) = 0 from one side and Dhq(x) > 1 from the other
and o(x, h) ∩ (⋃�

i=1 Int(Ji)) = ∅ while o(x, h) ∩ (⋃�
i=1 Fr(Ji)) �= ∅ and o(x, h)

contains only left or only right endpoints of flat spots.
This implies that all periodic points are isolated so there are finitely many of them.
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For i = 1, . . . , 4 let ni be the number of periodic orbits of type (1). Using the fixed
point index on hq , n1 = n2 + n3. Each orbit of type (3) hits two flat spots and each of
type (2) and (4) at least one and a flat spot cannot contain multiple periodic orbits, and so
n1 + 2n3 + n4 ≤ �. Thus the total number of periodic orbits wholly contained on P(h) is
n1 + n3 + n4 = n2 + 2n3 + n4 ≤ �

For part (b) assume first that hn(Ji) ∩ Ji′ = ∅ for all n > 0 and i′. If Ji was loose,
there would exist z1, z2 ∈ Z with z1 ≤ Ji ≤ z2 with at least one inequality strict and Z ∩
(z1, z2) = ∅. Thus h((z1, z2)) is a non-trivial interval with hn((z1, z2)) ⊂ P(h) for all
n > 0. This is impossible since h is expanding in P(h) and so Ji must not be loose.

For the converse, say hn(Ji) ∈ Ji′ for some n > 0 and first note i = i′ is impossible
since that would imply h has a periodic point. Since hn(Ji) is a point there exists a
non-trivial interval [z1, z2] properly containing Ji with hn([z1, z2]) = Ji′ and so (z1, z2) ∩
Z = ∅, and so Ji is a loose flat spot.

Finally, since hn(Ji) ∩ Ji = ∅ and there are finitely many flat spots there is at least one
Ji with hn(Ji) ∩ Ji′ = ∅ for all n > 0 and i′.

For (c), assume y is such that o(y, h) ⊂ P(h) and o(y, h) ∩ Z = ∅. Let x, x ′ ∈ Z with
y ∈ (x, x′) and (x, x′) ∩ Z = ∅. Because of the uniform expansion in P(h) there are a
flat spot J and an n ≥ 0 so that J ⊂ hn([x, x′]). If ρ(h) �∈ Q, then by (c) for some n′,
hn+n′([x, x′]) is a tight flat spot and so hn+n′+1(y) ∈ Z, where Z is the semi-Denjoy
minimal set given in Lemma 3.1(c).

Now assume ρ(h) = p/q. In this case x and x ′ are periodic orbits and so J ⊂
hn+wq([x, x′]) for all w ≥ 0, and so hn+wq(y) ∈ hn+wq([x, x′]) \ Int(J ) using the
assumption that o(y, h) ⊂ P(h). But from (a), hn+wq(J ) ⊂ J . Thus by monotonicity,
hn+wq(y) is either always in the left component of [x, x ′] \ Int(J ) or in the right
component. This violates the expansion in P(h) and so, for some j > 0, hj (y) ∈ Z,
which yields (3.1).

4. A class of bimodal circle maps and their positive-slope orbits
4.1. The class G. We introduce the class of bimodal, degree-one maps of the circle that
will be the focus here. The class is defined using properties of their lifts. We say that a lift
g̃ : R→ R is piecewise smooth if it is continuous and there are 0 ≤ x0 ≤ · · · ≤ xn ≤ 1
so that g̃ is C2 in each interval (xi , xi+1) and the right- and left-hand derivatives exist at
each xi .

Definition 4.1. Let G̃ be the class of all g̃ : R→ R with the following properties.
(a) g̃ is piecewise smooth and g̃(x′ + 1) = g̃(x′)+ 1.
(b) There are a pair of points 0 = xmin < xmax < 1 so that g̃′ > 1 in [xmin, xmax] and g̃

is monotone decreasing in [xmax, xmin + 1].
(c) xmin ≤ g̃(xmin) < g̃(xmax) ≤ xmax + 1.

The class G consists of all g : S1 → S1 which have a lift in G̃.

Note that without loss of generality we have assumed that xmin = 0. Also by assumption,
xmin and xmax are a non-smooth local minimum and maximum, respectively. It follows
from (2.4) that g ∈ G implies ρ(g) ⊂ [0, 1].
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FIGURE 2. The model map fm in the 3-fold cover.

Standing assumption. From this point on g denotes a given element of G and its preferred
lift is the one with g̃ ∈ G̃.

Remark 4.2. Assume h is a general bimodal map with ρ(h) ⊂ (0, 1) and ρ(h) not equal
to a single point. The Parry–Milnor–Thurston theorem for degree-one circle maps yields
a semi-conjugacy to a map g ∈ G which is PL†. Point inverses of the semi-conjugacy
are either points or a closed interval. Thus, using standard results from one-dimensional
dynamics and under various hypotheses, most of the results of the paper can be transferred
with appropriate alterations to a general bimodal map.

4.2. The model map. We will use a model map fm as a specific example throughout the
paper. We shall see that, in a sense, it is the largest map in the class G and all other maps
g ∈ G may be considered subsystems.

Define f̃m : R→ R on [0, 1] as

f̃m(x) =
{

3x for 0 ≤ x ≤ 1/2,

−x + 2 for 1/2 ≤ x ≤ 1,

and extend it to R to satisfy f̃m(x + 1) = f̃m(x)+ 1. Let fm be the projection of f̃m to S1.
See Figure 2. Thus, xmin = 0, xmax = 1/2, and ρ(fm) = [0, 1].

† The result for circles does not seem to be stated and proved anywhere in the literature, but as noted in [16] the
proof in [1] works for the circle with minimal alteration
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4.3. Positive-slope orbits. Given g ∈ G with preferred lift g̃, let �∞(g) be the points
x′ ∈ R whose orbits under g̃ stay in the closed region where g̃ has positive slope, so

�∞(g) =
⎧⎨
⎩x′ ∈ R : o(x′, g̃) ⊂

∞⋃
j=−∞

[j , j + xmax]

⎫⎬
⎭.

We give�∞(g) the total order coming from its embedding in R. Note that it is both g̃- and
T-invariant.

Now we treat the k-fold cover as Sk = [0, k]/∼ and let �k(g) be the orbits that stay in
the positive-slope region of g̃k : Sk → Sk , so

�k(g) =
⎧⎨
⎩x′ ∈ Sk : o(x′, g̃k) ⊂

k−1⋃
j=0

[j , j + xmax]

⎫⎬
⎭.

Alternatively, �k(g) = pk(�∞(g)) or �k(g) = π−1
k (�1(g)).

We discuss the restriction to positive-slope orbits in §13.2.

Standing assumption. Unless otherwise specified, the terminology ‘physical kfsm set’ or
just ‘kfsm set’ carries the additional restriction that it is contained in the positive-slope
region of some g ∈ G.

5. Symbolic description of positive-slope orbits
For a map g ∈ G we develop in this section a symbolic coding for the orbits in �k for
k = 1, . . . ,∞.

5.1. The itinerary maps. We work first in the universal cover or k = ∞. Since g ∈ G, we
may find points zmax and zmin with 0 = xmin < zmax < zmin < xmax and g̃(zmax) = xmax

and g̃(zmin) = xmin + 1. For j ∈ Z define a collection of intervals {Ij } on R by

I2j = [j , zmax + j ],

I2j+1 = [zmin + j , xmax + j ].
(5.1)

See Figure 3. Note that since g̃([zmax, zmin]) = [xmax, xmax + 1] we have that

�∞(g) =
⎧⎨
⎩x′ ∈ R : o(x′, g̃) ⊂

∞⋃
j=−∞

Ij

⎫⎬
⎭.

Using {Ij } as an address system with the dynamics g̃, let the itinerary map be ι∞ :
�∞(g)→ �+

Z
. Note that �∞ is the good set and, using expansion and the disjointness

of the address intervals, ι∞ is a homeomorphism onto its image.
Now passing to the k-fold cover, to code the positive-slope orbits �k(g), treat Sk =

[0, k]/∼ and use the dynamics g̃k with the address system {I0, I1, . . . , I2k−2, I2k−1}. This
yields an itinerary map ιk : �k → �+2k which is also a homeomorphism onto its image.
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FIGURE 3. The address intervals in the 2-fold cover.

Example: The model map. For the model map fm we have zmax = 1/6 and zmin = 1/3 and
so I2j = [j , 1/6+ j ] and I2j+1 = [1/3+ j , 1/2+ j ]

5.2. Symbolic analogs of covering spaces. This section develops the necessary machin-
ery for the complete description of the image of the various itinerary maps. We will need
the symbolic analogs of the covering spaces and maps described in §2.2.

Definition 5.1. Define a subshift �∞ ⊂ �+Z by its allowable transitions

2j → 2j , 2j → 2j + 1, 2j + 1→ 2j + 2, 2j + 1→ 2j + 3. (5.2)

For k <∞ let �k be the subshift of �+2k with allowable transitions as in (5.2) for j =
0, . . . , 2k − 1 and indices reduced mod 2k.

Since for g ∈ G we have g̃(I2j ) ⊂ I2j ∪ I2j+1 and g̃(I2j+1) ⊂ I2j+2 ∪ I2j+3, we have
the following lemma.

LEMMA 5.2. For g ∈ G and k = 1, . . . ,∞, ιk(�k(g)) ⊂ �k .
Under the itinerary maps the spaces R, Sk , and S1 will correspond to the shift spaces

�∞, �k , and �1 = �+2 . The dynamics on the ‘physical spaces’ induced by g will
correspond to left shifts on the symbol spaces. The shift spaces will also have the analogs
of the covering projections and deck transformations. These maps will be indicated by a
hat and defined using the action on individual symbols as follows.

The analogs of the generator of the group of covering translations are T̂∞ : �∞ → �∞
given by s �→ s + 2 for all s ∈ Z and T̂k : �k → �k given by s �→ s + 2 mod 2k for all

https://doi.org/10.1017/etds.2023.46 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.46


Minimal sets in bimodal circle maps 1283

s ∈ Z, while the analogs of the covering maps are p̂k : �∞ → �k by s �→ s mod 2k and
π̂k : �k → �+2 by s �→ s mod 2. In the latter we allow k = ∞ under the convention that
2∞ = Z, yielding π̂∞ : �∞ → �+2 . Note then that π̂∞ = p̂1. A lift and the full lift are
defined as usual with, for example, a lift of Y ⊂ �1 = �+2 to�k being a set Y ′ ⊂ �k with
π̂k(Y

′) = Y . Note that T̂k , π̂k , and pk are all continuous.
The roles of the maps g, g̃k , and g̃ in §2.2 are played by the various shift maps on

the sequence spaces. For clarity we use a subscript to indicate which space the shift
is acting on: σk : �k → �k . We again allow k = ∞. All the various maps satisfy the
same commutativity relations as their unhatted analogs. So, for example, π̂kT̂k = πk ,
σkT̂k = T̂kσk , and π̂kσk = σ1π̂k . The itinerary maps ιk : �k(g)→ �k act naturally by
transforming the spaces and maps of §2.2 to their symbolic analogs as in part (b) of the
next lemma.

LEMMA 5.3. For k = 1, . . . ,∞, the following assertions hold.
(a) �k = p̂k(�∞).
(b) π̂kιk = ι1πk .
(c) If s, t ∈ �k and π̂k(s) = π̂k(t), then there exists an n with s = T̂ nk t .
Proof. Parts (a) and (b) are easy to verify. For (c) we prove the case k = ∞ which implies
the k <∞ cases. Assume π̂∞(s) = w. The transitions in (5.2) coupled with the structure
of w imply that once s0 is determined the parity structure of s determines all of w.
Similarly, once t0 is determined all of t is determined. Once again (5.2) implies that if
s0 − t0 = 2n then for all i, si = ti + 2n.

Remark 5.4. It would perhaps seem more natural that �+
Z

should act as the symbolic
universal cover of �+2 , but the crucial covering space property expressed by (c) would
not hold in this case. For example, if s = .131∞ and t = .151∞ then π̂∞(s) = π̂∞(t) but
T̂ n(s) �= t for all n.

5.3. Rotation numbers and sets. We give the analogs of the definitions in §2.3 for the
symbolic case. For s ∈ �+2 let

ρ̂(s) = lim
n→∞

1
n+ 1

n∑
i=0

si (5.3)

when the limit exists. For μ̂ a shift-invariant measure on �+2 , let ρ̂(μ̂) = μ̂([1]). When μ̂
is ergodic, by the pointwise ergodic theorem, for μ̂-almost every s, ρ̂(s) = ρ̂(μ̂)

For Ẑ ⊂ �k let ρ̂k(Ẑ) = ρ̂(π̂k(Ẑ)), and for μ̂ a σk-invariant measure on�k let ρ̂k(μ̂) =
ρ̂((π̂k)∗(μ̂)).

6. Topological conjugacies and the image of the itinerary maps
In this section we develop the analog of kneading invariants for the symbolic coding of the
positive-slope orbits for g ∈ G.

Recall that �+2 is given the lexicographic order. Assume κ0, κ1 ∈ �+2 satisfy

κ0 ≤ o(κi , σ) ≤ κ1 (6.1)
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for i = 0, 1. The corresponding dynamical order interval is

〈κ0, κ1〉 = {s : κ0 ≤ o(s, σ) ≤ κ1}.
Returning to g ∈ G, note that g̃(I0) ⊂ [xmin, xmax] and g̃(I1) ⊂ [xmin, xmax], while

g̃([zmax, zmin]) = [xmax, xmin + 1]. This implies that �1(g) ⊂ [xmin, xmax]. Since �1(g)

is compact we may define κ0 = κ0(g) = ι1(min(�1)) and κ1 = κ1(g) = ι1(max(�1)).
By construction these κs satisfy (6.1).

We showed above that ιk(�k(g)) ⊂ �k . The next theorem says that the image is
constrained by the dynamical order interval 〈κ0, κ1〉. Accordingly, for k = 1, . . . ,∞ we
define �̂k(g) = �k ∩ π̂−1

k (〈κ0, κ1〉) and note that this is a σk-invariant set.

THEOREM 6.1. Assume g ∈ G and construct κ0 and κ1 from g as above. Then for
k = 1, . . . ,∞ the itinerary map ιk is a topological conjugacy from (�k(g), (g̃k)|�k(g))
to (�̂k(g), σk). Further, ι∞ is order-preserving.

Proof. We first prove the first assertion for k = 1 or that ι1(�1(g)) = 〈κ0, κ1〉. Let ∗ be
an arbitrary symbol and define a map χ : [0, xmax] 
 {∗} → [0, xmax] 
 {∗} by

χ(x) =

⎧⎪⎪⎨
⎪⎪⎩
g̃(x) for x ∈ I0,

∗ for x ∈ (zmin, zmax) 
 {∗},
g̃(x)− 1 for x ∈ I1.

It easily follows that

�1(g) = {x ∈ [0, xmax] : χn(x) �= ∗ for all n > 0},
and if we use the dynamics of χ with the address system I0, I1 the resulting itinerary
map �1 → �+2 is exactly ι1. Now since g is expanding on I0 ∪ I1 and I0 ∩ I1 = ∅, ι1 is
an order-preserving conjugacy from (�1, g) to (ι1(�1), σ1). Finally, since min �1(g) ≤
o(x, g) ≤ max �1(g) for all x ∈ �1(g) we have that κ0 ≤ o(s, σ) ≤ κ1 for all s ∈ ι1(�1),
and further that for any such s there is an x ∈ �1(g) with ι1(x) = s. Thus ι1(�1(g)) =
〈κ0, κ1〉.

We now show that

ιk(�k(g)) = �k ∩ π̂−1
k (〈κ0, κ1〉). (6.2)

We already know from Lemma 5.2 that the left-hand side is in �k . Next, since
πk(�k(g)) = �1(g) using Lemma 5.3(b) and the first paragraph of the proof, we have

〈κ0, κ1〉 = ι1(�1(g)) = ι1(πk(�k(g))) = π̂kιk(�k(g)) (6.3)

so the left-hand side of (6.2) is also in π̂−1
k (〈κ0, κ1〉).

Now assume that s is in the right-hand side of (6.2). Certainly then π̂k(s) ∈ 〈κ0, κ1〉
and so there is an x ∈ �1(g) with ι1(x) = π̂k(s). Pick a lift x′ ∈ �k(g) with πk(x′) = x.
Again using Lemma 5.3(b),

π̂k(s) = ι1(x) = ι1πk(x′) = π̂kιk(x′). (6.4)
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Thus, using Lemma 5.3(c), there is an n with ιk(x′) = T̂ nk (s) and so

ιkT̂
−n
k x′ = T̂ −nk ιkx

′ = s
and T̂ −nk x′ ∈ �k . Thus s ∈ ιk(�k) as required.

For ι∞ as with ι1, since the Ij are disjoint and the g̃|Ij are expanding, we have that ι∞
is an order-preserving homeomorphism onto its image. The fact that it is a semi-conjugacy
follows because it is an itinerary map.

Example. (The model map). For the model map fm we have κ0 = .0∞ and κ1 = .1∞ and
so in this case �̂k(〈κ0, κ1〉) is the entire subshift �k .

Remark 6.2
(a) ρ̂ ◦ ιk = ρ (when defined) and ρ̂k ◦ ιk = ρk
(b) When μ a g-invariant measure supported in �1(g), we have ρ(μ) = μ(I1).

7. k-fold semi-monotone sets
While our eventual interest is in invariant sets in the circle, it is convenient to first give
definitions in the universal cover R and the cyclic covers Sk .

7.1. Definitions. The next definition makes sense for any degree-one map, but for
concreteness we restrict to g ∈ G.

Definition 7.1. Let g ∈ G have preferred lift g̃ : R→ R.
(a) A g̃-invariant set Z′ ⊂ R is kfsm if T k(Z′) = Z′ and g̃ restricted to Z′ is weakly

order-preserving, or for z′1, z′2 ∈ Z′,
z′1 < z′2 implies g̃(z′1) ≤ g̃(z′2)

(b) A g̃k-invariant set Z ⊂ Sk is kfsm if it has a g̃-invariant lift Z′ ⊂ R which is.

These definitions are independent of the choice of lift g̃. Note that the same terminology
is used for sets in the universal and cyclic covers and that implicit in being a kfsm set is
the fact that the set is invariant.

When k = 1 the lift Z′ in the definition must satisfy T (Z′) = Z′ and π(Z′) = Z and so
Z′ = π−1(Z), the full lift to R.

7.2. Interpolation. To say that Z ⊂ Sk is kfsm means roughly that it is semi-monotone,
treating Sk as the usual circle. To formalize this as in Remark 2.3 it will be useful to rescale
Sk to S1 using Dk : Sk → S1 and consider the map Dk ◦ g̃k ◦D−1

k .

LEMMA 7.2. The following assertions are equivalent.
(a) The g̃k-invariant set Z ⊂ Sk is kfsm.
(b) DkZ is 1-fold semi-monotone underDk ◦ g̃k ◦D−1

k and there exists a semi-monotone
circle map h defined on Sk which interpolates g̃k acting on Z.

(c) The lift Z′ ⊂ R of Z in Definition 7.1(b) has the property that there is a continuous
H : R→ R that interpolates g̃ acting on Z̃∗, is weakly order-preserving, and
satisfies H(x + k) = H(x)+ k.
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We now restrict to positive-slope orbits as in §4.3 and collect together kfsm invariant
sets in Sk and their invariant measures. We will comment on kfsm sets which intersect the
negative-slope region in §13.2. We also restrict attention to invariant sets that are recurrent.

Definition 7.3. Given g ∈ G, let Bk(g) be all compact, recurrent kfsm sets in �k(g) ⊂ Sk
with the Hausdorff topology and Nk(g) be all g̃k-invariant, Borel probability measures
whose support is a Z ∈ Bk(g) with the weak topology.

Remark 7.4. A standard argument from Aubry–Mather theory yields that the collection
of all kfsm sets is compact in the Hausdorff topology. Since �k(g) is compact, the
collection of positive-slope kfsm sets is also compact. However, since Bk(g) contains just
the recurrent kfsm sets, it is not compact (see §§9.1 and 13.2). We show shortly that Nk(g)

is compact.

7.3. Symbolic k-fold semi-monotone sets and the map g. As with kfsm sets in the
‘physical’ spaces Sk and R, we define their symbolic analogs in the symbol spaces �k
and �∞ where we give the symbol spaces the lexicographic order.

Definition 7.5
(1) A σ∞-invariant set Ẑ′ ⊂ �∞ is symbolic k-fold semi-monotone if T̂ k∞(Ẑ′) = Ẑ′ and

σ∞ restricted to Ẑ′ is weakly order-preserving, or for s, t ∈ Ẑ′,
s < t implies σ∞(s) ≤ σ∞(t).

(2) A σk-invariant set Ẑ ⊂ �k is symbolic k-fold semi-monotone if there is a
σ∞-invariant lift Ẑ′ to �∞ (that is, p̂k(Ẑ′) = Ẑ) which is kfsm.

Everything has been organized thus far to ensure that k-fold semi-monotone sets are
preserved under the itinerary maps.

THEOREM 7.6. Given g ∈ G, for k = 1, 2, . . . ,∞, a g̃k-invariant set Z ⊂ �k(g) is kfsm
if and only if ιk(Z) ⊂ �̂k(g) is.

Proof. We prove the k = ∞ case; the k <∞ case follows. Theorem 6.1 shows that ι∞
is an order-preserving bijection. Since ι∞T k∞ = T̂ k∞ι∞, we have that T k∞(Z) = Z if and
only if T̂ k∞ι∞(Z) = ι∞(Z). Using the additional fact that ι∞g̃ = σ∞ι∞ we have that g̃ is
weakly order-preserving on Z if and only if σ∞ is weakly order-preserving on ι∞(Z)

In analogy with Definition 7.3 we collect together the various symbolic kfsm sets and
their invariant measures.

Definition 7.7. For k <∞, given g ∈ G, let B̂k(g) be all compact, invariant, recurrent
symbolic kfsm sets in �̂k(g) with the Hausdorff topology and N̂k(g) be all g-invariant,
Borel probability measures with the weak topology whose support is a Ẑ ∈ B̂k(g).
LEMMA 7.8. For k <∞, the following assertions hold.
(a) The map ιk : �k(g)→ �̂k(g) induces homeomorphisms Bk(g)→ B̂k(g) and

Nk(g)→ N̂k(g).
(b) The spaces Nk(g) and N̂k(g) are compact.
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Proof. For part (a) we know that ιk is a conjugacy that takes kfsm sets to kfsm sets,
which yields that Nk(g)→ N̂k(g) is a homeomorphism. By hypothesis any g ∈ G is C2 in
P(g) and so there is some M > 1 with g′ < M on P(g) and thus on all address intervals
Ij . It is standard that this implies that ιk is Hölder with exponent ν = log 2k/ log M .
This then implies that ιk preserves Hausdorff convergence and so Bk(g)→ B̂k(g) is a
homeomorphism.

For part (b), since the space of all g̃k-invariant Borel probability measures is compact
metric, it suffices to show that Nk(g) is closed, and so assume μn ∈ Nk(g) and μn→ μ

weakly with Xn := supp(μn) a recurrent kfsm set.
As noted in Remark 7.4 the collection of all kfsm sets in�k is compact in the Hausdorff

topology and so there exist a kfsm set X and ni →∞withXni → X. A standard argument
which we give here shows that supp(μ) ⊂ X. If this inclusion does not hold, there exists
an x ∈ supp(μ) ∩Xc, then let ε = d(x, X). Since the atoms of μ are countable, we
may find an ε1 < ε/4 so that, letting U = Nε1(x), we have that μ(Fr(U)) = 0. Thus
U is a continuity set for μ. It then follows, using the fact that x ∈ supp(μ) and a
standard result (pp. 16–17 of [7]), that μni (U)→ μ(U) > 0. Thus for large enough i, with
m = ni we have Xm ⊂ Nε/4(X) and so ∅ = U ∩Xm = U ∩ supp(μm) with μm(U) > 0
a contradiction. Thus supp(μ) ⊂ X. Now any invariant measure supported on X must be
supported on its recurrent set and so μ ∈ Nk(g), as required. The compactness of N̂k(g)

follows from part(a).

Example: The model map. For the model map fm, �̂k(fm) = �k , and so the set B̂k(fm)
is the collection of all symbolic recurrent kfsm sets in �k . Thus while the definition of
symbolic kfsm set is abstract and general by Theorems 7.6 and 6.1, symbolic kfsm sets
share all the properties of ‘physical’ kfsm sets.

7.4. Rotation numbers and sets. For Z ∈ Bk(g) recall from §2.3 that ρk(Z) =
ρ(πk(Z), g).

LEMMA 7.9. Assume Z ∈ Bk(g). Then the following assertions hold.
(a) ρk(Z) exists and is a single number.
(b) If ρk(Z) = ω �∈ Q then Z is a semi-Denjoy minimal set.
(c) If ρk(Z) = p/q with gcd(p, q) = 1, then Z consists of at least one and at most k

periodic orbits all with the same rotation number and period equal to qk/ gcd(p, k).
(d) ρk : Bk(g)→ R and ρ̂k : B̂k(g)→ R are continuous

Proof. By Theorem 7.2 there exists a continuous, semi-monotone H : Sk → Sk which
interpolates the action of g̃k on Z. Rescaling to the standard circle, let Hk : S1 → S1 be
defined as Hk := Dk ◦H ◦D−1

k . By Lemma 3.1(a), ρ(Hk) = ω is a single number and,
since ρk(Z) = kρ(DZ, Hk), (a) follows. If ρk(Z) �∈ Q then ρ(DZ, Hk) �∈ Q and so, by
Lemma 3.1(e), DkZ and thus Z is a semi-Denjoy minimal set, yielding (b).

Now assume ρk(Z) = p/q in lowest terms and so ρ(DkZ, Hk) = p/(qk). Written in
lowest terms,

p

qk
= p/ gcd(p, k)
kq/ gcd(p, k)

.
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But since Hk is semi-monotone, its recurrent set is a collection of periodic orbits and
its rotation number in lowest terms has their period as its denominator which is thus
qk/ gcd(p, k). Since by assumption,Z⊂�k(g)we may choose H to have k flat spots. Thus,
using Lemma 3.5, Z consists of at least one and at most k periodic orbits, finishing (c).

It is standard from Aubry–Mather theory that ρ is continuous on the collection of all
kfsm sets and thus it is continuous restricted to the recurrent kfsm sets. As for measures,
since ρ(μ) = ∫

�g dμ using definition (2.5) with�g continuous, continuity of ρ̂k follows
from the definition of weak convergence.

Definition 7.10. If Z ∈ Bk and it consists of a finite collection of periodic orbits, then it is
called a cluster.

Remark 7.11
(a) For the case of general recurrent symbolic kfsm Ẑ, as we commented at the end of the

last subsection, we may consider Ẑ ∈ �̂k(fm) = �k with fm the model map. Using
the itinerary map ιk : �k(fm)→ �̂k(fm) we have from Theorem 7.6 that (ιk)−1(Ẑ)

is kfsm for fm and then all the conclusions of the previous theorem hold for it. Then
using Theorem 6.1, the conclusions of the previous theorem hold with the obvious
addition of hats in the appropriate places.

(b) We shall need this implication of the symbolic case below. If Ẑ ⊂ �k with
ρk(Ẑ) = α �∈ Q, then there exists a continuous, onto φ : Ẑ→ Sk which is weakly
order-preserving, φσk = Rαφ, and #φ−1(x) = 1 for all but a countable number of
Rα-orbits on which #φ−1(x) = 2.

(c) Using Lemma 3.1, a measure in Nk(g) is either the unique measure on a semi-Denjoy
minimal set or a convex combination of measures supported on the periodic orbits in
a cluster.

(d) AZ∈Bk(g) is minimal if and only if it is uniquely ergodic, and similarly forZ∈B̂k(g)

8. The HM construction
At this point for a given g ∈ G we have reduced the identification of its positive-slope kfsm
sets to a question in symbolic dynamics. In this section we answer this symbolic question
via a generalization of the HM procedure. The generalization constructs all symbolic kfsm
recurrent sets for each k.

Since a linear order is essential to the notion of semi-monotonicity we will again begin
working on the line and then project to cyclic covers.

8.1. Definition and basic properties. Fix an integer k > 0, a real number ω ∈ (0, 1), and
a vector �ν = (ν1, . . . , νk) with νi ≥ 0 and

∑
νi = k − kω. Such a pair (ω, �ν) is called

allowable. Start with the intervals defined for 0 ≤ j ≤ k − 1 by

X2j =
( j∑
i=1

νi + jω,
j+1∑
i=1

νi + jω
)

,

X2j+1 =
( j+1∑
i=1

νi + jω,
j+1∑
i=1

νi + (j + 1)ω
)

,

(8.1)
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and then extend for � ∈ Z and 0 ≤ m ≤ 2k − 1 as X�k+m = Xm + �k. Thus each X2j has
width νj+1 and each X2j+1 has width ω and the entire structure yields a T k-invariant
address system under the dynamics Rω(x) = x + ω on R

The good set G depends on k, ω, and �ν and is given by

G = {x′ ∈ R : o(x′, Rω) ∩ ∂Xi = ∅ for all i}.
Note that G is dense, Gδ and has full Lebesgue measure. The itinerary map with respect
to the given address system is denoted by ζ∞ : G→ �+

Z
.

Definition 8.1. Let Ak(ω, �ν) = Cl(ζ∞(G)).

Remark 8.2. By construction, Ak(ω, �ν) is σ∞- and T̂ k∞-invariant. In addition, since for all
j, Rω(X2j ) ⊂ X2j ∪X2j+1 and Rω(X2j+1) ⊂ X2j+2 ∪X2j+3, we have ζ∞(G∞) ⊂ �∞.

8.2. Cyclic covers. We now return to the compact quotients where the recurrent
dynamics takes place and introduce measures into the HM construction.

For fixed k > 0 and allowable (ω, �ν) treat {X0, . . . , X2k−1} ⊂ Sk = [0, k]/∼ as an
address system under the dynamics given by Rω(x) = x + ω mod k. Define the good set
Gkω�ν and on it the itinerary map ζkω�ν . We will often suppress the dependence of these
quantities on various of the subscripted variables when they are clear from the context.

Definition 8.3. Given k and an allowable (ω, �ν), define the itinerary map ζk : Gk → �+2k
as above. Let Bk(ω, �ν) = Cl(ζk(Gk)) ⊂ �+2k and λk(ω, �ν) = (ζk)∗(m)/k where m is the
measure on Sk induced by Lebesgue measure on R.

Remark 8.4
(1) By construction, p̂k(Ak(ω, �ν)) = Bk(ω, �ν) ⊂ �k , and so ρk(Bk(ω, �ν)) = ω.
(2) Let Wk = {(x, ω, �ν) : x ∈ Gkω�ν}. It is easy to check that the map (x, ω, �ν) �→

ζkω�ν(x) is continuous on Wk .

The next theorem describes the structure of the Bk(ω, �ν) and shows that all symbolic
kfsm sets are constructed by the HM procedure with ω equal to their rotation number.

THEOREM 8.5
(a) For α �∈ Q, Bk(α, �ν) is a semi-Denjoy minimal set with unique invariant probability

measure λk(ω, �ν).
(b) For p/q ∈ Q, Bk(p/q, �ν) is a finite collection of periodic orbits each with rotation

number p/q and period qk/ gcd(p, k), and λk(p/q, �ν) is a convex combination of
the measures supported on the periodic orbits.

(c) A Ẑ ⊂ �k is a recurrent symbolic kfsm set with ρk(Z) = ω if and only if Ẑ =
Bk(ω, �ν) for some allowable �ν. Thus the collection of invariant probability measures
supported on symbolic recurrent kfsm sets is exactly the collection of λk(ω, �ν) for all
allowable (ω, �ν).

Proof. We begin by proving portions of (a) and (b). For part (a) we first show thatBk(α, �ν)
is minimal using a characterization usually attributed to Birkhoff. If f : X→ X is a
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continuous function of a compact metric space and x ∈ X, then Cl(o(x, f )) is a minimal
set if and only if for all ε > 0 there exists an N so that for all n ∈ N there is a 0 < i ≤ N
with d(f n+i , x) < ε. Pick x in the good set G. Since (S1, Rα) is minimal, o(x, Rα)
has the given property. Since ζk restricted to G is a homeomorphism and ζkRα = σkζk ,
o(ζk(x), Rα) has the desired property and, further, o(ζk(x), Rα) is dense in ζk(G) and
thus in Bk(α, �ν) = Cl(ζk(G)). Thus Bk(α, �ν) is minimal under σk .

For part (b) note first that sinceRp/q is of finite order and there are finitely many address
intervals, Bk(p/q, �ν) must consist of finitely many periodic orbits. The other properties in
(a) and (b) will follow from (c) (proved using just these two partial results on (a) and (b))
and Theorem 7.9 using Remark 7.11(a).

For part (c), we first show that Bk(ω, �ν) is a recurrent symbolic kfsm set. By parts
(a) and (b) we know that Bk(ω, �ν) is recurrent, and by Remark 8.4 that Bk(ω, �ν) ⊂ �k
and ρk(Bk(ω, �ν) = ω. We show that Bk(ω, �ν) is a symbolic kfsm set by showing that
its full lift Ak(ω, �ν) to �∞ is as required by Definition 8.1. As noted in Remark 2.2,
T̂ k∞(Ak(ω, �ν)) = Ak(ω, �ν) so we need to show that σ̂∞ is semi-monotone on Ak(ω, �ν).

The first step is to show that ζ∞ is weakly order-preserving. Assume x′1, x′2 ∈ G
with x′1 < x′2. It could happen (when ω is rational) that ζ∞(x′1) = ζ∞(x′2), but if there
exists a least n with (ζ∞(x′1))n �= (ζ∞(x′2))n, then since Im < Im+1 for all m and Rω is
order-preserving, certainly (ζ∞(x′1))n < (ζ∞(x′2))n, and so ζ∞ is weakly order-preserving.

We now show that σ̂∞ is semi-monotone on Ak(ω, �ν). Let G be the good set for ζ∞
and assume s, t ∈ ζ∞(G) with s < t . Then there exist x′1, x′2 ∈ G with ζ∞(x′1) = s and
ζ∞(x′2) = t and, of necessity, x′1 < x′2 and so Rω(x′1) < Rω(x

′
2). Since ζ∞Rω = σ∞ζ∞,

we have

σ∞(s) = σ∞ζ∞(x′1) = ζ∞Rω(x1) ≤ ζ∞Rω(x2) = σ∞ζ∞(x′2) = σ∞(t).
Thus σ∞ is weakly order-preserving on ζ∞(G) and so on Ak(ω, �ν). We have that Ak(ω, �ν)
satisfies all the conditions of the lift in Definition 7.5 and thus Bk(ω, �ν) is symbolic kfsm.

Now for the converse assume that Ẑ ⊂ �k is symbolic recurrent kfsm with ρ̂(Ẑ) = ω.
Let Ẑ′ ⊂ �∞ be the lift that satisfies Definition 7.5. The proof splits into the two cases
when ω is rational and irrational.

First assume ω = p/q with gcd(p, q) = 1. We know from Lemma 7.9 and Remark
7.11 that Ẑ consists of at most k distinct periodic orbits each with period kq/d with d =
gcd(p, k). We assume for simplicity that Ẑ is a single periodic orbit. The case of multiple
periodic orbits is similar but with more elaborate indexing.

For i = 0, . . . , kq/d − 1 let Pi = (2i + 1)d/2q ⊂ Sk and P = {Pi}. Since Ẑ is a kfsm
periodic orbit with ρk-rotation number p/q we may find an order-preserving bijection
φ : Ẑ→ P with φσk = Rp/qφ on Ẑ. Thus φσkφ−1 acts on P as Pi �→ Pi+p/d reducing
indices mod kq/d.

For j = 0, . . . , k − 1, let X′j = φ(Ẑ ∩ [j ]) where recall that [j ] is the length-one
cylinder set in �+2k . Since φ is order-preserving, each X′j consists of a collection of adja-
cent points from P . If X′j = {Pn(j), . . . , Pm(j)} �= ∅, let Xj = [Pn(j) − d/(2q), Pm(j) +
d/(2q)] and when X′j = ∅ let Xj = ∅. We now claim that {Xj } is an address system as
used in the HM construction where �ν is defined by νj+1 = |X2j | and that |X2j+1| = p/q
for j = 0, . . . , k − 1, yielding Ẑ′ = Bk(p/q, �ν).
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Letting ζ be the itinerary map for the address system {Xj }, for s ∈ Ẑ we have by
construction that ζφ(s) = s. In addition, for all x ∈ [φ(s)− d/(2q), φ(s)+ d/(2q)] we
also have ζ(x) = ζφ(s) = s. Thus for any point x in the good set G, ζ(x) = s for some
s ∈ Ẑ. This shows that Ẑ = Cl(ζ(G)). The last step needed to show that Ẑ = Bk(p/q, �ν)
is to check that the address system is of the type used in the HM construction.

We need only check that |X2j+1| = p/q, and for this it suffices to show that #X2j+1 =
p/d. Assume first that #X2j+1 < p/d. Recalling that φσkφ−1 acts on the X′i like i �→
i + p/d, we see that there will be some Pm ∈ X′2j and Pm+p/d ∈ X′2j+2. Thus using φ−1

there is a s ∈ Ẑ with s0 = 2j and s1 = 2j + 2, a contradiction to the fact that Ẑ ⊂ �k and
thus its allowable transitions are given by (5.1). On the other hand, if #X2j+1 > p/d we
have some Pm ∈ X′2j+1 and Pm+p ∈ X′2j+1, again yielding a contradiction to Ẑ ⊂ �k .

The irrational case is basically a continuous version of the rational one. By Remark
7.11(b) we have a continuous, onto φ : Ẑ→ Sk which is weakly order-preserving, φσ∞ =
Rαφ, and #φ−1(x) = 1 for all but a countable number ofRα-orbits on which #φ−1(x) = 2.

For j = 0, . . . , k − 1, let Xj = φ([j ]). Thus Xj is a closed interval (perhaps empty)
with ∪Xj = R, Xj ≤ Xj+1 and adjacent intervals intersect only in their single common
boundary point. We use {Xj } as an address system with dynamics Rα , good set G,
and itinerary map ζ . By construction, if s ∈ Ẑ with φ(s) ∈ G, then s = ζφ(s) and
so φ−1(G) = ζφ(φ−1(G)) = ζ(G). Since Ẑ is a Cantor set and φ−1(G) is Ẑ minus
a countable set of σk-orbits we have that φ−1(G) is dense Ẑ. Thus, taking closures,
Ẑ = Cl(ζ(G)).

To finish we must show that {Xj } is the type of address system allowable in the HM
construction. We just need |X2j+1| = α for all j. The proof is similar to the rational case.
If |X2j+1| < α then Ẑ has a transition 2j → 2j + 2, and if |X2j+1| > α then Ẑ has a
transition 2j + 1→ 2j + 1. Either is a contradiction to Ẑ ⊂ �k . Thus letting νj+1 =
|X2j | for j = 0, . . . , k − 1, we have Ẑ = Cl(ζ(G)) = Bk(α, �ν).

The last sentence in (c) follows from the construction of λk(ω, �ν).
Remark 8.6. In §9.3 below we shall see that for the irrational case ρ(Ẑ) = ω �∈ Q there
is a unique �ν with Ẑ = Bk(ω, �ν) and for rational p/q there are, in general, many �ν with
Z = Bk(p/q, �ν). But note that if Ẑ is a single periodic orbit then the proof above produces
what we show is the unique �ν with Ẑ = Bk(p/q, �ν).

9. Parameterization of Bk(g) and Nk(g) by the HM construction
We know from Theorem 8.5(c) that the HM construction yields a correspondence between
sets Bk(ω, �ν) and symbolic kfsm sets in �k . In addition, for a map g ∈ G, using Theorem
7.6, we get a bijection from kfsm sets in �k(g) to those in �̂k(g) ⊂ �k . Thus the
HM construction provides a parameterization of Bk(g). In this section we examine this
parameterization in detail as well as that of Nk(g).

9.1. Resonance and holes. As remarked above, the collection of all kfsm sets is closed
in the compact metric space consisting of all compact g-invariant sets with the Hausdorff
topology. Thus the collection of all kfsm sets is complete. We have restricted attention here
to recurrent kfsm sets or Bk(g). This is because the recurrent ones are the most dynamically
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interesting and carry the invariant measures, but also, as shown in Theorem 8.5, they are
what is parameterized by the HM construction. As a consequence our primary space of
interest Bk(g) is not complete, but rather has holes at points to be specified. What happens
roughly is that as one takes the Hausdorff limit of recurrent kfsm sets the resulting kfsm
set can have homoclinic points that are not recurrent and so the limit is not recurrent
and thus not any Bk(ω, �ν). This is a phenomenon well known in Aubry–Mather theory.
Another point of view on these ‘holes’ is given in §13.2 using the family of interpolated
semi-monotone maps.

In the HM construction fix 0 < k <∞. For a given allowable (ω, �ν), recall that the
address intervals are Xj = Xj �ν for j = 0, . . . , 2k − 1. Define �j = �j �ν and rj = rj �ν by
[�j , rj ] := Xj . Note that rj+1 = �j with indices reduced mod 2k.

Definition 9.1. The pair (ω, �ν) is called resonant ifRnω(�j ) = �j ′ for some n > 1 and j , j ′.
A pair that is not resonant is called non-resonant.

Remark 9.2. Note that for a rational ω = p/q all (p/q, �ν) are resonant, as are all (ω, �ν)
when some νi = 0. Also, for all (ω, �ν) and j,

Rω(�2j−1) = �2j , (9.1)

which is the reason why n is restricted to n > 1 in the definition.

The next lemma locates the ‘holes’ in the space of all symbolic kfsm sets and thus in
any B̂(g).
LEMMA 9.3
(a) Assume parameters (α, �ν) with α �∈ Q resonant. There exist a sequence �ν(i)→ �ν

and a non-recurrent kfsm Z with Bk(α, �ν(i))→ Z in the Hausdorff topology on all
compact subsets of �+2k .

(b) Assume parameters (p/q, �ν) with p/q ∈ Q. There exists a sequence ω(i)→ p/q

and a non-recurrent kfsm Z with Bk(ω(i), �ν)→ Z in the Hausdorff topology on all
compact subsets of �+2k .

Proof. We suppress the dependence on k to simplify notation. For (a), the resonance
hypothesis implies that there are odd a and b with Rnα(Xa�ν) = Xb�ν for some n > 0 where
we may assume a < b. Since Rnα(ra�ν) = rb�ν , by shrinking some νj for a < j < b we
obtain a �ν ′ and x < ra�ν and arbitrarily close to it with x ∈ Gα�ν ′ and Rnα(x) ∈ Xb+1,�ν ′ . In
this way we can obtain sequences �ν(i)→ �ν and xi ↗ ra�ν with xi ∈ Gα,�ν(i) and Rnα(xi) ∈
Xb+1,�ν(i) . Thus

ζα,�ν(i) (xi) = .a . . . (b + 1)ζα,�ν(i) (Rn+1
α (xi).

To simplify matters, assume that Rα(rb�ν) ∈ Gα,�ν ; more complicated resonances are
similar. Since Rn+1

α (xi)→ Rn+1
α (ra�ν) = Rα(rb�ν) using Remark 8.4(b),

ζα,�ν(i) (xi)→ .a . . . (b + 1)ζα,�ν(Rα(rb�ν) := s.
Passing to a subsequence if necessary, by the compactness of the collection of symbolic
kfsm sets there is a kfsm Z with Bk(α, �ν(i))→ Z in the Hausdorff topology, and by its
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construction s ∈ Z. But s cannot be recurrent since by the resonance any length-(n+ 1)
block in ζα,�ν(Rα(rb�ν) must start with a and end in b.

The argument for (b) is similar, but now the perturbation must be in the parameter ω.
This is because if ω = p/q is fixed, then Rnω(Xa) = Xa with n = qk/ gcd(p, k) for all �ν.
Fix an a and so Rnp/q(ra) = ra . By increasing ω incrementally we may find sequences
ω(i) ↘ p/q and xi ↗ ra with xi ∈ Gω(i),�ν so that the initial length-(n+ 1) block of
ζω(i)�ν(xi) is a . . . a + 1. Thus if ζp/q�ν(ra + ε) = P∞ for small ε then

ζω(i),�ν(xi)→ .a . . . (a + 1)P2P3 . . . Pn−1P
∞ := t

where P = (a + 1)P2P3 . . . Pn−1. As in the proof of (a) passing to a subsequence if
necessary, there is a kfsm Z with Bk(ω(i), �ν)→ Z in the Hausdorff topology, and by its
construction t ∈ Z. But t cannot be recurrent since any length-(n+ 1) block in P∞ must
start and end with a.

9.2. Continuity and injectivity. In the HM construction the explicit dependence of Ak
and Bk on the pair (ω, �ν) was included. However, note that the elements of the pair have
the interdependence

∑
νi = k(1− ω). Thus when we treat Ak and Bk as functions it is

sometimes better to eliminate the interdependence and treat them as functions of �ν alone.
Nonetheless, the two variable version will also continue to be useful. Thus we sometimes
overload the function Ak and write

Ak(�ν) = Ak
(

1−
∑

νi/k, �ν
)

,

and similarly for Bk and the measure-valued map λk . The collection of allowable
parameters for each k is then

Dk =
{
�ν ∈ Rk : νi ≥ 0,

k∑
i=1

νi ≤ k
}

.

The set of HM parameters corresponding to symbolic kfsm sets for g ∈ G is defined as

HMk(g) = {�ν ∈ Dk : Bk(�ν) ⊂ B̂k(g)}.
Remark 9.4. By Theorem 8.5, Bk : HM(g)→ B̂k(g) is surjective and so ι−1

k Bk :
HM(g)→ Bk(g) provides a parameterization of the positive-slope kfsm recurrent sets
of g ∈ G and (ι−1

k )∗λk : HM(g)→ Nk(g) their invariant measures.

Example: The model map. For the model map fm, HMk(fm) = Dk since �̂k(f ) = �k .
The first issue in what the HM construction tells us about Bk(g) and Nk(g) is to

understand the nature of the maps Bk and λk . Lemma 9.3 showed that for Bk there is
an essential distinction between the resonance and non-resonance cases.

THEOREM 9.5. Assume g ∈ G, for each k > 0,
(a) The map (ιk)−1 ◦ Bk : HMk(g)→ Bk(g) is onto, and further it is continuous at

non-resonant values and discontinuous at resonant values.
(b) The map (ιk)−1∗ ◦ λk : HMk(g)→ Nk(g) is a homeomorphism and thus HMk(g) is

compact.
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Proof. Since we know from Lemma 7.8 that ιk and (ιk)∗ are homeomorphisms we only
consider Bk and λk . While these are functions of �ν alone, for the proof it is clearer to
resort to the two-variable versions with the proviso that ω = 1−∑

νi/k. Note that we
have already shown in Theorem 8.5 that λk and Bk are onto N̂k(g) and B̂k(g), respectively.
We will often need to include the explicit dependence of various objects on the variables,
for example, �j (ω, �ν), and we often suppress the dependence on k.

We prove (b) first. We first show that λk is continuous. For each j = 1, . . . , 2k − 1 and
i ∈ N, let �(i)j (ω, �ν) = R−iω (�j (ω, �ν)). The first observation from the HM construction is
that

|�(i)j (ω, �ν)− �(i)j (ω0, �ν0)| ≤ ‖(ω, �ν)− (ω0, �ν0)‖1. (9.2)

For a length-N block B = b0 . . . bN−1 in �k , let

YB(ω, �ν) =
N−1⋂
i=0

R−iω (Int(Xbi (�ν))),

and so x ∈ Gω,�ν ∩ YB(ω, �ν) implies that ζω�ν(x) begins with the block B. Also by the HM
construction, λk(ω, �ν)([B]) = m(YB(ω, �ν)), with m being Lebesgue measure on the circle.

Recall that the weak topology on �+2k is generated by the metric

d(μ, μ′) =
∞∑
i=1

|μ([Bi])− μ′([Bi])|
2i

where {Bi} is some enumeration of the blocks in �+2k . Since each YB(ω, �ν) is a (perhaps
empty) interval with endpoints some �(j)i (ω, �ν), inequality (9.2) implies that

|m(YB(ω, �ν))−m(YB(ω0, �ν0))| ≤ 2‖(ω, �ν)− (ω0, �ν0)‖1.

Thus, summing over blocks,

d(λk(ω, �ν), λk(ω0, �ν0)| ≤ 2‖(ω, �ν)− (ω0, �ν0)‖1,

so λk is continuous.
Since by definition in the HM construction, λk(ω, �ν)([2j ]) = νj+1, λk is injective.

Recall now that for the model map, HM(fm) = Dk which is compact. So λk : HM(fm)→
N̂k(fm) is a homeomorphism whose image is the set of all measures on recurrent symbolic
kfsm sets in �k . Thus, since HMk(g) ⊂ Dk we have that λk : HMk(g)→ N̂k(g) is also a
homeomorphism. The compactness of N̂k(g) was proved in Lemma 7.8.

The proof of (a) is based on the following claim: Bk is continuous at (ω0, �ν0) if and only
if for all N there exists δ > 0 so that ‖(ω, �ν)− (ω0, �ν0)‖ < δ implies that for all blocks B
of length up to N we have YB(ω0, �ν0) non-empty exactly when YB(ω, �ν) is non-empty.

To prove the claim, first note that continuity is equivalent to the following: given ε > 0,
there exists δ > 0 so that ‖(ω, �ν)− (ω0, ν0)‖ < δ implies that for each s ∈ ζω�ν(Gω�ν)
there is a t ∈ ζω0�ν0(Gω0�ν0) with d(s, t) < ε/2 and for each t ∈ ζω0�ν0(Gω0�ν0) there is an
s ∈ ζω�ν(Gω�ν) with d(s, t) < ε/2. This implies that HD(ζω�ν(Gω�ν), ζω0�ν0(Gω0�ν0)) < ε/2
and thus HD(Bk(ω, �ν), Bk(ω0, �ν0)) < ε. Since d(s, t) is small exactly when s and t agree
in a long prefix block B and YB(ω, �ν) = ζ−1

ω�ν ([B]), the claim follows.
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We show that Bk satisfies the condition in the claim when (ω, �ν) is non-resonant. Given
N for j = 1, . . . , 2k − 1 and i = 0, . . . , N , consider again �(i)j (ω, �ν) = R−iω (�j (ω, �ν).
By the HM construction we have �(n+1)

2m (ω, �ν) = �(n)2m−1(ω, �ν) for all n, m, and (ω, �ν).
By non-resonance at (ω0, �ν0), all the other �(i)j (ω0, �ν0) are disjoint. Since by (9.2) each

�
(i)
j (ω, �ν) depends continuously on (ω, �ν) and the endpoints of each YB(ω, �ν) are some

�
(i)
j (ω, �ν), we may find a δ so that ‖(ω, �ν)− (ω0, �ν0)‖ < δ implies that the �(i)j (ω, �ν)

are ordered around Sk in the same way and with the same gaps between them as the
�
(i)
j (ω0, �ν0). This implies that for each block B of length B ≤ N , YB(ω0, �ν0) is non-empty

exactly when YB(ω, �ν) is non-empty and so Bk is continuous.
For the discontinuity, since the sets Z in Lemma 9.3(ab) are not recurrent, they are not

equal to Bk(ω0, �ν0).

Remark 9.6
(a) The parameter space Dk is (k − 1)-dimensional. Assuming ω �∈ Q, for a fixed

n > 1 and j , j ′, the collection of all �ν ∈ Dk which yield Rnω(�j ) = �j ′ is a (k −
2)-dimensional affine subspace. Thus the set of resonance parameters is a countable
dense collection of codimension- one affine subspaces and so the non-resonance case
is a full measure and dense Gδ set.

(b) One can show that Bk is lower semi-continuous [12]; in particular, if (ω(i), �ν(i))→
(ω, �ν) and some subsequence of Bk(ω(i), �ν(i)) converges to Z in the Hausdorff
topology, then Bk(ω, �ν) ⊂ Z. The semi-continuity lemma (see p. 114 of [19]) yields
that a lower semi-continuous set-valued function is continuous on a dense Gδ set. In
the case of (ιk)−1 ◦ Bk the last theorem exactly identifies this continuity set as the
non-resonant (ω, �ν).

9.3. Slices and skewness. Recall that the rotation number functions ρ : Bk(g)→ R

and ρ̂ : Bk(g)→ R are continuous on the various spaces, as are their measure-theoretic
analogs. Thus we may define closed slices with a given rotation number as follows.

Definition 9.7. For g ∈ G let Bkω(g) = {Z ∈ Bk(g) : ρ(Z) = ω} and B̂kω(g) = {Z ∈
B̂k(g) : ρ̂(Z) = ω}; the restriction of ιk to Bkω(g) is denoted by ιkω. The slices of invariant
measures Nkω(g) and N̂kω(g) are defined similarly. The ω-slice of HM parameters is
HMkω(g) = B−1

k (Bkω(g)) = λ−1
k (Nkω(g)).

Definition 9.8. For p/q ∈ Q an allowable parameter �ν is called pure ifBk(p/q, �ν) consists
of a single periodic orbit. The collection of p/q pure parameters is denoted by Purek,p/q ⊂
Dk,p/q and it will be shown in Lemma 12.4 to be an affine lattice. For a g ∈ G its pure
parameters are Purek,p/q(g) = HMk,p/q(g) ∩ Purek,p/q .

Remark 9.9. For a given symbolic kfsm p/q-periodic orbit P, by Theorem 8.5(c) there is
some �ν with Bk(p/q, �ν) = P . Since a periodic orbit is uniquely ergodic and λk is injective
this �ν is unique. Thus there is a bijection between symbolic kfsm p/q-periodic orbits and
Purek,p/q .

LEMMA 9.10. Assume g ∈ G. Then the following assertions hold.
(a) For all ω, (ι−1

kω )∗ ◦ λkω : HMkω(g)→ Nkω(g) is a homeomorphism.
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(b) When α �∈ Q, ι−1
kα ◦ Bkα : HMkα(g)→ Bkα(g) is injective as well as continuous at

non-resonant (α, �ν) and discontinuous at resonant (α, �ν).
(c) When p/q ∈ Q, ι−1

kp/qBkp/q : HMkp/q(g)→ Bkp/q(g) is injective on Purek,p/q .

Proof. Since ιk restricts to a homeomorphism on slices we only consider Bkω and λkω.
Part (a) follows immediately from Theorem 9.5.

For (b), when α �∈ Q the assignment of a semi-Denjoy kfsm set with rotation number
α to its unique invariant measure yields a bijection Bkα(g)→ Nkα(g) and B̂kα(g)→
N̂kα(g). Since, by (a), λkα is injective, we have that Bkα is also. Continuity of Bkα at
non-resonant values on irrational slices follows directly from (a). Discontinuity at resonant
values on irrational slices follows from Lemma 9.3(a).

For (c), when p/q ∈ Q the assignment of the single periodic orbit Bk(p/q, �ν) to its
unique invariant measure yields the injectivity using (a) as in the proof of (b).

Remark 9.11. Since Bkp/q(g) is a finite set, the continuity of ι−1
kp/qBkp/q : HMkp/q(g)→

Bkp/q(g) is not particularly interesting, but we will remark on it in §12.4.

The skewness γ (μ) of a g̃k-invariant measure in Sk equals the amount of measure in
each fundamental domain. When its jth component is large, its g̃k-orbits are moving slowly
through [j − 1, j). When we project to the base S1 in the next section the skewness thus
indicates how quickly orbits are moving in the jth loop of the kfsm set.

Definition 9.12. Assume g ∈ G. Then the following assertions hold.
(a) For η ∈ Nk(g), γ (η) = (η([0, 1)), η([1, 2)), . . . , η([k − 1, k))).
(b) For η̂ ∈ N̂k(g), γ̂ (η) = (η̂([0] ∪ [1]), η̂([2] ∪ [3]) . . . , η̂([2k − 2] ∪ [2k − 1])).

Note that the skewness takes values in the unit simplex
∑
ai = 1, ai ≥ 0, and contains

no information about the rotation number.

LEMMA 9.13. Assume g ∈ G. Then the following assertions hold.
(a) γ̂ ◦ (ιk)∗ = γ .
(b) γ (λk(ω, �ν)) = (ω + ν1, ω + ν2, . . . , ω + νk)/k.
(c) For η ∈ Nkω, γ1(η) = kγ (η)− ω1 is inverse to (ιk)−1∗ ◦ λk and so it is a homeo-

morphism.
(d) γ is a homeomorphism from Nkω(g) onto its image. as is γ̂ from N̂kω(g) onto its

image.

Remark 9.14. The last lemma formalizes the description in the Introduction of the
parametrization of the weak disks of semi-Denjoy minimal sets by their speed in each
‘loop’ around the circle. For rational pure parameters the skewness counts the number of
elements in each fundamental domain and this thus yields a discrete parametrization of the
kfsm p/q-periodic orbits.

10. kfsm sets in S1 and �1

10.1. In S1. We now return to our central concern, g-invariant sets in S1 that have a lift
to Sk that is semi-monotone. Once again the definition makes sense for any degree-one
circle map, but we restrict to the class G.
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Definition 10.1. Given g ∈ G, a compact g-invariant set Z ⊂ S1 is kfsm if it has a
g̃-invariant lift Z′ ⊂ R which is kfsm, or equivalently, Z has a g̃k-invariant lift Z∗ ⊂ Sk
which is kfsm. Let Ck(g) be all compact, invariant, recurrent kfsm sets in �1(g) with the
Hausdorff topology and Ok(g) be all g-invariant, Borel probability measures supported on
Z ∈ Ck(g) with the weak topology

Thus when Z is kfsm, it has a lift to Sk which is semi-monotone under the action of g̃k
on its lift.

To make contact with the usual definitions in Aubry–Mather theory, assume that x ∈
S1 is such that o(x, f ) is kfsm. This happens exactly when there is a point x ′ ∈ R with
π∞(x′) = x and for all positive integers �, m, n,

g̃�(x′) < T kmg̃n(x′) implies g̃�+1(x′) ≤ T mg̃n+1(x′)

In Aubry–Mather theory one would write xj = g̃j (x′).

Remark 10.2
(a) πk : Sk → S1 induces continuous onto maps Bk(g)→ Ck(g) and Nk(g)→ Ok(g).
(b) Z∗ ⊂ Sk is kfsm if and only if πk(Z∗) ⊂ S1 is.
(c) If Z ⊂ S1 is k-fold semi-monotone then it is also �k-fold semi-monotone for any

� > 0.
(d) If P is a periodic orbit of g of type (p, q) (which are perhaps not relatively prime)

then P has a lift P ′ to R with T p(P ′) = P ′ and is monotone since g ∈ G implies
g̃(x′) ≥ x′ and so P is automatically p-fold semi-monotone.

(e) Using Lemma 7.6 a recurrent kfsm set in S1 is either a collection of periodic orbits
all with the same rotation number (a cluster) or else a semi-Denjoy minimal set. A
minimal kfsm set in S1 is either a single periodic orbit or else a semi-Denjoy minimal
set.

(f) A collection of periodic orbits all with the same rotation number that individually are
kfsm when considered as a set is not of necessity a kfsm set (that is, a cluster).

10.2. Symbolic kfsm sets in �1. We now consider symbolic kfsm sets in the symbolic
base �1 = �+2 .

Definition 10.3. A σ1-invariant set Ẑ ⊂ �1 = �2 is kfsm if there is a σ∞-invariant lift
Ẑ′ (that is, p̂∞(Ẑ′) = Ẑ) which is kfsm or equivalently, Ẑ has a σk-invariant lift Ẑ∗ ⊂
�k which is kfsm. Given g ∈ G, let Ĉk(g) be all recurrent kfsm sets in �̂1(g) with the
Hausdorff topology and Ôk(g) be all g-invariant, Borel probability measures supported on
Ẑ ∈ Ĉk(g) with the weak topology

Using Theorem 7.6, we connect kfsm sets in �1(g) to their symbolic analogs in �̂1(g)

and obtain the following corollary.

COROLLARY 10.4. A g-invariant set Z ⊂ �1(g) is kfsm if an only if ι1(Z) ⊂ �̂1(g) is.
Further, ι1 induces homeomorphisms Ck(g)→ Ĉk(g) and Ok(g)→ Ôk(g).
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Remark 10.5. All the comments in Remark 10.2 hold mutatis mutandis for symbolic kfsm
sets.

10.3. The HM construction and its symmetries. We bring the HM construction back into
play and take the projections from �k to �1.

Definition 10.6. Let Ck(ω, �ν) = π̂k(Bk(ω, �ν)) and μk(ω, �ν) = (π̂k)∗(λk(ω, �ν))
We know from Theorem 9.5 that the HM construction provides a parameterization of

Bk(g) and Nk(g). The goal now is to get a parameterization of the kfsm sets and their
invariant measures in S1, that is, of Ĉk(g) and Ôk(g). For this we need to understand the
symmetries inherent in the HM construction.

Recall that the left shift on the parameter ν is τ(ν1, . . . , νk) = (ν2, . . . , νk , ν1). There
are two types of symmetries to be considered. The first is when different �ν give rise to the
same Ck(ω, �ν). For minimal Ck(ω, �ν) this happens if and only if the �νs are shifts of each
other as is stated in parts (a) and (d) in the lemma below. The second sort of symmetry
happens when some Ck(ω, �ν) is also a Cj (ω, �ν ′) for some j < k, which is to say the map
π̂k : Bk(ω, �ν)→ Ck(ω, �ν) is not one-to-one. In the minimal case this happens if and only
if τ j (�ν) = �ν as is stated in parts (b) and (c) below.

LEMMA 10.7. Fix k > 0 and assume �ν is allowable for ω.
(a) For all j, Bk(ω, τ j (�ν)) = T̂ jk (Bk(ω, ν)) and so Ck(ω, τ j (�ν)) = Ck(ω, ν).
(b) If τ j (�ν) = �ν for some 0 < j < k then

Bk(ω, �ν) = T̂ jk (Bk(ω, �ν)) (10.1)

and Ck(ω, �ν) = Cj (ω, �ν ′) where �ν ′ = (ν1, . . . , νj ).
(c) If Bk(ω, �ν) is minimal and (10.1) holds then �ν = τ j (�ν). If �ν �= τ j (�ν) for all 0 < j <

k, then π̂k : Bk(ω, �ν)→ Ck(ω, �ν) is a homeomorphism.
(d) If Bk(ω, �ν) and Bk(ω, �ν ′) are minimal and Ck(ω, �ν) = Ck(ω, �ν ′), then for some j,

�ν ′ = τ j (�ν).
Proof. The fact that Bk(ω, τ j (�ν)) = T̂ jk (Bk(ω, ν)) is an easy consequence of the HM
construction, and since π̂kT̂ k = π̂k we have Ck(ω, τ j (�ν)) = Ck(ω, ν), proving (a) The
first part of (b) follows directly from (a), using the given fact that τ j (�ν) = �ν.

For the second part of (b), first note that if {Xi} is the address system for k and (ω, �ν)
then since τ j (�ν) = �ν, we have T jk (Xi) = Xi+2j . This implies that under the quotient
Sk → Sj , {Xi} descends to an allowable HM address system on Sj using (ω, �ν ′). Thus
using the dynamics Rω on both address systems, the corresponding entries of Bk(ω, �ν)
and Bj (ω, �ν ′) are equal mod 2 and so Ck(ω, �ν) = Cj (ω, �ν ′).

To prove the first part of (c), as remarked in Remark 7.11, if Bk(ω, ν) is minimal
it is uniquely ergodic. Thus if (10.1) holds, then λk(ω, �ν) = λk(ω, τ j (�ν)), and since
λk is injective by Theorem 9.5, �ν = τ j (�ν). Now for the second part of (c), certainly
π̂k : Bk(ω, �ν)→ Ck(ω, �ν) is continuous and onto, so assume it is not injective. Then
there exist s, t ∈ Bk(ω, �ν) with s �= t and π̂k(s) = π̂k(t). Thus for some 0 < j ′ < k,
t = T̂ j ′k (s), and so if j = k − j ′, then Bk(ω, �ν) ∩ T jk Bk(ω, �ν) �= ∅. But by assumption
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Bk(ω, �ν) is minimal and so Bk(ω, �ν) = T jk Bk(ω, �ν) and so �ν = τ j (�ν), a contradiction.
Thus π̂k : Bk(ω, �ν)→ Ck(ω, �ν) is injective, as required.

For part (d), Ck(ω, �ν) = Ck(ω, �ν ′) implies that

k⋃
i=1

T i(Bk(ω, �ν)) = π̂−1(Ck(ω, �ν)) = π̂−1(Ck(ω, �ν ′)) =
k⋃
i=1

T i(Bk(ω, �ν ′)).

Since each of T i(Bk(ω, �ν)) and T i(Bk(ω, �ν ′)) is minimal, for some j, T j (Bk(ω, �ν)) =
Bk(ω, �ν ′), and so by part (c), τ j (�ν) = �ν ′.
Remark 10.8. It is possible that if Bk(p/q, �ν) is a cluster of periodic orbits, πk could be
injective on some of them and not on others.

10.4. Continuity and injectivity. Let HMk(g) = HMk(g)/τ with equivalence classes
denoted by [�ν]. Note that τ j (�ν) ∈ Dk for some j is resonant if and only if �ν is, so we
may call [�ν] resonant or non-resonant.

Since the τ -action preserves slices, we define HMkω = HMkω(g)/τ . The ω-slices of
Ck(g) and Ok(g) are defined in the obvious way. If (p/q, �ν) is a pure parameter so is τ j (�ν)
for any j and so we define Pure(k, p/q) = Pure(k, p/q)/τ . Note that Pure(k, p/q) is all
[�ν] such that Bk(p/q, �ν) is a single periodic orbit, it is not all [�ν] such that Ck(p/q, �ν) =
π̂kBk(p/q, �ν) is a single periodic orbit.

Definition 10.9. Lemma 10.7 implies that (ι1)−1 ◦ Ck induces a map θk : HMk(g)→
Ck(g) and that (ι1)−1∗ ◦ μk induces a map βk : HMk(g)→ Ok(g). The induced maps on
slices are θkω : HMkω(g)→ Ckω(g) and βkω : HMkω(g)→ Okω(g).
THEOREM 10.10. Assume g ∈ G, for each k > 0.
(a) The map θk is onto, continuous at non-resonant values and discontinuous at resonant

values. Restricted to an irrational slice, it is injective, continuous at non-resonant
values, and discontinuous at resonant values. Restricted to a rational slices, it is
injective on the pure lattice.

(b) The map βk is a homeomorphism when restricted to irrational slices and pure
rational lattices.

Proof. By construction we have the following commuting diagram:

HMk(g)
Bk−−−−→ B̂k(g)

ι−1
k−−−−→ Bk(g)

∼
⏐⏐� ⏐⏐�π̂k ⏐⏐�πk

HMk(g)
Ck−−−−→ Ĉk(g)

ι−1
1−−−−→ Ck(g)

(10.2)

The vertical maps are all onto and continuous, while by definition the composition of the
bottom horizontal maps is θk . In a slight abuse of notation, the map Ck in the diagram
denotes the map induced on equivalence classes in HMk(g) by Ck . Since ιk and ι1 are
homeomorphisms we need only consider Ck and μk . The fact that these are continuous
follows from Lemma 9.10 and the just stated properties of the diagram, as do the various
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continuity assertions in the theorem. We prove the discontinuity result for Ck on irrational
slices. The other discontinuity assertions follow similarly.

Assume (α, �ν) is resonant with α �∈ Q. From Lemma 9.3 and its proof we have a
sequence (α, �ν(i))→ (α, �ν) so that Bk(α, �ν(i))→ Z, and an s ∈ Z \ Bk(α, �ν) with s

non-recurrent. In the quotients, [�ν(i)]→ [�ν] and Ck(α, �ν(i))→ π̂k(Z) by continuity. We
need to show that π̂k(Z) �= Ck(α, �ν) Now if πk(s) ∈ π̂k(Z) \ Ck(α, �ν) we are done, so
assume πk(s) ∈ Ck(α, �ν). Thus for some t ∈ Bk(α, �ν), πk(s) = πk(t), and so by Lemma
5.3(e), for some j, T̂ jk (s) = t . This implies that the action of σk on Cl(o(s, σk)) is
conjugated to that on Cl(o(t , σk)) by T̂ jk . But by Theorem 8.5, Cl(o(t , σk)) is a minimal set
and thus so is Cl(o(s, σk)), and so s is recurrent, a contradiction, yielding the discontinuity.

To show Ck is injective on the sets indicated, assume Ck(ω, �ν) = Ck(ω, �ν ′) with either
ω = p/q and �ν, �ν ′ in the pure lattice or ω �∈ Q. In either case Bk(ω, �ν) and Bk(ω, �ν ′)
are minimal and since π̂k is a semi-conjugacy, Ck(ω, �ν) and Ck(ω, �ν ′) are also. Thus by
Lemma 10.7(d), for some j, �ν = τ j �ν ′ and so [�ν] = [�ν ′].

Now for part (b), there is a diagram similar to (10.2) for βk . Since Denjoy minimal
sets and individual periodic orbits are uniquely ergodic, the injectivity asserted for μk
follows from that of Ck just proved. Continuity and surjectivity follow from the diagram
and Lemma 9.10.

Remark 10.11. We remark on the relationship of pure parameters to Ck and Bk . As a short-
hand we indicate symbolic periodic orbits by their repeating block. A simple computation
shows that B2(2/5, (3/5, 3/5)) = 01223 ∪ 00123 and so C2(2/5, (3/5, 3/5)) = 01001.
Note that, as required, T̂2(01223) = 00123 and 01001 is the 2/5-Sturmian (as defined
in the next section). Now B2(2/5, (4/5, 2/5)) = 00123 and so C2(2/5, (4/5, 2/5)) =
01001 = C2(2/5, (3/5, 3/5)). A further computation shows that both μ2(2/5, (4/5, 2/5))
and μ2(2/5, (3/5, 3/5)) are the unique invariant measure on 01001 and thus μ2 is not
injective on rational slices of HMk despite the fact that it is injective on rational slices of
HMk . The underlying explanation is that being a pure parameter requires Bk to be a single
periodic orbit, not that Ck be one.

Definition 10.12. Let Qk = Pk/τ where Pk ⊂ Rk+1 is the standard k-dimensional simplex
and τ is the shift. Equivalence classes in Qk are denoted [·]. For η̂ ∈ Ôk(g) with ρ(η̂) = ω
from Theorem 10.10 we may find an �ν with η̂ = μk(ω, �ν). The skewness of η̂ is defined
as γ (η̂) := [γ (λk(ω, �ν))]. Note that by Lemma 10.7 this is independent of the choice of
μk(ω, �ν). And also for η ∈ Ok(g) via γ (η) = γ ((ιk)∗(η)).
Remark 10.13. On an irrational quotient slice Ok,α , let γ 1 = kγ − α1. Then γ 1 is the
inverse of βk and may be viewed as a parameterization of Ôk,ω by skewness as in Remark
9.14. Also as in that remark, skewness also provides a parameterization of the quotient of
the pure parameters.

10.5. Sturmian minimal sets, the case k = 1. We will need the special and much-studied
case of symbolic kfsm sets for k = 1. When k = 1 there is only one allowable choice
for ν, namely ν = 1− ω, and so we write C1(ω) for C1(ω, 1− ω) = B1(ω, 1− ω).
When ω is rational C1(ω) is a single periodic orbit and when ω is irrational it is a
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semi-Denjoy minimal set. These minimal sets (and associated sequences) have much
historical importance and an abundance of literature (see [2] for a survey). Their main
importance here is as an indicator of when a given number is in the rotation set.

Definition 10.14. The minimal set C1(ω) ⊂ �+2 is called the Sturmian minimal set, with
rotation number ω which may be rational or irrational.

Because there are many definitions in the literature, to avoid confusion we note that here
‘Sturmian’ refers to a minimal set and not a sequence, and it is subset of the one-sided shift
�+2 . The next result is standard and we remark on one proof in Remark 13.6.

LEMMA 10.15. ω ∈ ρ(〈κ0, κ1〉) if and only ifC1(ω) ⊂ 〈κ0, κ1〉. If 0 ≤ ω1 < ω2 ≤ 1, then
in �+2 ,

min C1(ω1) < min C1(ω2) < max C1(ω1) < max C2(ω2).

Definition 10.16. For a fixed k, let �νs(ω) be defined by (�νs(ω))i = 1− ω for i = 1, . . . , k.

Remark 10.17. Since τ(�νs) = �νs it follows directly from Lemma 10.7 that for any k,
Ck(ω, �νs) = C1(ω), the Sturmian minimal set with rotation number ω.

11. Structure of HMk(g)

One obvious property of HMk(g) is the symmetry τ(HMk(g)) = HMk(g) for all k. The
full structure of HMk(g) for a general g ∈ G is quite complicated and will be saved for
future papers. Here we focus on the structure near the diagonal in Dk .

11.1. Irrationals on the diagonal. We parameterize the diagonal �k ⊂ Dk by ω using
�νs(ω) ∈ �k as defined in the previous section, and so

�k = {�νs(ω) : 0 ≤ ω ≤ 1}.
For g ∈ G the next result asserts that for each irrational α ∈ Int(ρ(g)) there is some

δ = δ(α) so that the neighborhood Nδ(�νs(α)) ⊂ HMk(g). It gives the proof of Theorem
1.2(a).

THEOREM 11.1. Assume g ∈ G and k > 0.
(a) HMk(g) ∩�k = {�νs(ω) : ω ∈ ρ(g)}.
(b) If α �∈ Q with α ∈ Int(ρ(g)), there exists a δ > 0 so that Nδ(�νs(α)) ⊂ HMk(g).
(c) If α ∈ Int(ρ(g)) \Q, then Ok(g) contains a (k − 1)-dimensional topological disc

consisting of unique invariant measures each supported on a member of a family of
kfsm semi-Denjoy minimal sets with rotation number α.

Proof. Assume �̂1(g) = 〈κ0, κ1〉. For (a) Ck(ω, �νs(ω)) = C1(ω), the Sturmian minimal
set with rotation number ω, and from Lemma 10.15, C1(ω) ⊂ 〈κ0, κ1〉 if and only if ω ∈
ρ(〈κ0, κ1〉) = ρ(g).

For (b) note that the pair (α, �νs) is non-resonant. We will first show that if α ∈ Int(ρ(g))
then there exists an ε > 0, so that HD(Ck(α, �νs(α)), Ck(ω, �ν)) < ε implies Ck(ω, �ν) ⊂
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〈κ0, κ1〉. Pick α1, α2 ∈ Int(ρ(g)) with α1 < α < α2. Thus by Lemma 10.15, in �+2 ,

κ0 < min C1(α1) < min C1(α) < max C1(α) < max C1(α2) < κ1,

and let

ε = min{d(min C1(α1), min C1(α)), d(max C1(α), max C1(α2))}.
Thus HD(Ck(α, �νs(α)), Ck(ω, �ν)) = HD(C1(α), Ck(ω, �ν)) < ε implies that the compact,
invariant set Ck(ω, �ν) satisfies min C1(α1) < Ck(ω, �ν) < max C1(α2) and so Ck(ω, �ν) ⊂
〈κ0, κ1〉.

Using the continuity of Ck at non-resonant irrationals from Theorem 10.10(a), there is a
δ > 0 so that ‖(ω, �ν)− (α, �νs)‖ < δ implies Ck(ω, �ν) ⊂ Nε(Ck(α, �νs)), and so (ω, �ν) ∈
HM(g).

Since τ(Nδ(�νs(α))) = (Nδ(�νs(α))), the neighborhood descends to one in HMk(g)

and βk is a homeomorphism on irrational slices of HMk(g) (Theorem 10.10(b)),
yielding (c).

12. Rational slices
In this section we study rational slices in the HM parameter and in Bk(g) and Ck(g). As
proved in Theorem 8.5, each Bk(p/q, �ν) is a collection of periodic orbits. They each have
period qk/ gcd(p, k) and all have rotation number p/q. Collectively as a set they are kfsm.
Note that this is stronger than each periodic orbit being individually kfsm. The invariant
measure λk(p/q, �ν) is a convex combination of the unique measures supported on each
periodic orbit.

12.1. Periods in �1. The next lemma examines how the periods of Bk can change after
projection to Ck via π̂k .

LEMMA 12.1. Fix k > 0 and p/q ∈ Q and assume �ν is allowable for p/q. If τ j (�ν) = �ν
with 0 < j ≤ k and it is the least such j, then the period of Ck(p/q, �ν) is jq/ gcd(j , p).

Proof. Recall from Theorem 8.5 that the period of Bk(p/q, �ν) is kq/ gcd(k, p). If j = k
by Lemma 10.7(c), π̂k : Bk(p/q, �ν)→ Ck(p/q, �ν) is injective, and since σ1p̂k = π̂kσk ,
Bk(p/q, �ν) and Ck(p/q, �ν) have the same period. Now if j < k by Lemma 10.7(b),
Ck(p/q, �ν) = Cj (p/q, �ν ′) where �ν ′ = (ν1, . . . , νj ). Since j is the least such, π̂j :
Bj (p/q, �ν ′)→ Cj (p/q, �ν ′) is injective and Cj (p/q, �ν ′) has period jq/ gcd(j , p).

12.2. The rational structure theorem. The theorem in this section describes in more
detail how the measures on p/q-kfsm sets vary with the parameter.

In the HM construction fix k, 0 < p/q < 1 with gcd(p, q) = 1, and an allowable �ν. We
often suppress dependence on these choices and so R = Rp/q , etc. LetN = qk/ gcd(p, k)
so N is the period of R acting on Sk . Recall that the address intervals are Xj = [�j , rj ] for
j = 0, . . . , 2k − 1 and so rj = �j+1. The good set is G and the itinerary map is ζ . When
we write ζ(x) it is implicitly assumed that x ∈ G.

The orbit of 0, o(0, R), partitions Sk into N pieces, each of width k/N = gcd(p, k)/q.
Thus J = [k − gcd(p, k)/q, 1) is a fundamental domain for the action of R on Sk in the
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sense that Sk =⋃N−1
i=0 Ri(J ) as a disjoint union. Thus for each 0 ≤ p ≤ 2k − 1 there

is a unique 0 ≤ m < N with �p ∈ Rm(J ), and then let dp = R−m(�p). Note that since
|X2j+1| = p/q, d2j = d2j−1, and that all d2j+1 as well as both endpoints of J are not in
G. Finally, for j = 0, 1, . . . , 2k − 1 and x ∈ J ∩G, let Mj(x) = {0 ≤ i < N : ζ(x)i =
j} = {i : Ri(x) ∈ Xj }.
LEMMA 12.2. Assume x, x′ ∈ J ∩G.
(a) ζ(x) = ζ(x′) if and only if M2j+1(x) = M2j+1(x

′) for all j = 0, . . . , k − 1.
(b) For each j,M2j+1(x) = M2j+1(x

′) if and only if x and x′ are in the same component
of J − {d2j+1}.

(c) For each k, #M2j (x) = #M2j (x
′) if and only if x and x′ are in the same component

of � \ {d2j−1, d2j+1} where � is the circle � = J/∼ with (k − 1/N) ∼ k.

Proof. First note that both endpoints of J are not in G so they are out of consideration for
x and x′ in what follows.

For (a) one implication is obvious. For the other, it suffices to show that the collection of
M2j+1(x) determines s = ζ(x). By Remark 7.11 we know that s ∈ �k and so its one-step
transitions are governed by (5.1). If si = 2j + 1 then si+1 = 2j + 2 or 2j + 3 and we
know which depending on whether i + 1 ∈ M2j+3 or not. Similarly, if si = 2j then si+1

is determined by whether i + 1 ∈ M2j+1 or not. Thus s is determined, completing the
proof of (a).

For (b), first note that |X2k−1| = p/q and (p/ gcd(p, k))(k/N) = p/q. Thus X2k−1 is
exactly filled with p/ gcd(p, k) iterates of J with disjoint interiors. Thus M2k−1(x) =
M2k−1(x

′) for all x ∈ J ∩G. Thus we only consider 0 ≤ j < k − 1. If i is such that
Ri(J ) ⊂ X2j+1, then i ∈ M2j+1(x) for all x ∈ J , and if Ri(Int(J )) ∩X2j+1 = ∅ then
i �∈ M2j+1(x) for all x ∈ J ∩G. If �2j+1 ∈ Ri(Int(J )), then for x > d2j+1 in J, we
have i ∈ M2j+1(x) and for x < d2j+1, i �∈ M2j+1(x). The last situation to consider is
r2j+1 ∈ Ri(Int(J )). Since |X2k+1| = p/q, we have Ri(d2j+1) = r2j+1 and so then for
x > d2j+1 in J, we have i �∈ M2j+1(x) and for x < d2j+1, i ∈ M2j+1(x), completing the
proof of (b).

If d2j−1 = d2j+1 every x ∈ � \ {d2j−1} has the same number of indices in M2j , so
assume that d2j−1 < d2j+1, with the other inequality being similar. If i is such that
Ri(J ) ⊂ X2j then i ∈ M2j (x) for all x ∈ J . If i is such that Ri(J ) ∩X2j = ∅ then
i �∈ M2j (x) for all x ∈ J . If i is such that �2j ∈ Ri(J ) then i ∈ M2j (x) if and only if
x > d2j−1 in J. If i is such that �2j+1 = r2j ∈ Ri(J ) then i ∈ M2j (x) if and only if
x < d2j+1 in J, finishing the proof.

COROLLARY 12.3. If for some m, the non-empty connected components of � \⋃k−1
j=0{d2j+1} are K1, . . . , Km, then Bk(p/q, ν) consists of exactly m distinct periodic

orbits P1, . . . , Pm with ζ(x) ∈ Pj if and only if x ∈ o(Kj , R). Further, λk(p/q, ν) =∑
N |Kj |δj with ϒj the unique invariant probability measure supported in Pj and

N = qk/ gcd(p, k).

Proof. As noted above, J is a fundamental domain for the action of R on Sk and so it
suffices to study ζ(x) for x ∈ J .
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Combining Lemma 12.2(a) and (b), we have that for x ∈ �, ζ(x) = ζ(x′) if and only if
x and x′ are in the same componentKj . Further, using Lemma 12.2(c), ζ(x) and ζ(x′) can
be on the same σ -orbit if and only if they are in the same component Kj , proving the first
sentence of the corollary. The second sentence follows from the definition of λk , the fact
that Sk =⋃N

i=1 R
i(J ), and that R preserves Lebesgue measure.

12.3. The pure lattice and the structure of HMkp/q . We now describe the pure affine
lattice in more detail with an eye towards counting the number of p/q-periodic kfsm sets.
For this a new method of specifying the address system in Sk will be useful. We fix a k and
an ω = p/q and sometimes suppress dependence on them

Recall that a pair (p/q, �ν) specifies an address system {Xj(p/q, �ν)} with each
Xj(p/q, �ν) = [�j , rj ]. For each i = 1, . . . , k − 1 let ξi be the signed displacement of
the address system from its totally symmetric position given by (ω, �νs(ω)). Thus

ξi(�ν) = (ν1 + · · · νi)− i(1− ω). (12.1)

Since in the HM construction X2k is fixed for all �ν, the vector �ξ(ω) is (k − 1)-dimensional
and so �ξ : Dk,p/q → �ξ(Dk,p/q) is an affine map from the simplex

∑
νi = k(1− p/q) to

a subset of Rk−1. Note that �ξ(�νs) = �0.

LEMMA 12.4. Given k and p/q, there exists a �η with ‖�η‖∞ ≤ gcd(p, k)/(2q) so that
�ν ∈ Dk,p/q is a pure parameter for p/q if and only if �ξ(p/q, �ν) ∈ �η + (gcd(p, k)/q)Zk−1

in �ξ(Dk,p/q).

Proof. Theorem 12.3 implies that Bk(p/q, �ν) is a single periodic orbit if and only if
no d2j−1 is in the interior of J. This happens if and only if all �2j−1 are contained in
o(0, Rp/q). Now o(0, Rp/q) divides Sk evenly into subintervals of length gcd(p, k)/q. For
each j = 1, . . . , k − 1 letmj be such thatR

mj
p/q(0) is the point on o(0, Rp/q) that is closest

to �2j−1 and define ηj = �2j−1 − Rmjp/q(0). Thus ‖�η‖∞ ≤ gcd(p, k)/(2q) and �ν is pure if
and only if φ(�ν) ∈ �η + (gcd(p, k)/q)Zk−1.

Definition 12.5. The set L = �η + (gcd(p, k)/q)Zk−1 ∩ �ξ(Dk,p/q) is called the p/q-pure
affine lattice as is its pre-image �ξ−1(L) ⊂ Rn−1.

12.4. Sub-resonance and the size of clusters

Definition 12.6. When ω = p/q, the pair (p/q, ν) is called sub-resonant if for some
qk/ gcd(p, k) > n > 1 and j �= j ′, Rnω(�j ) = �j ′ .

It follows from Theorem 12.3 that the number of sub-resonances in (p/q, �ν) ∈ Dk,p/q

controls the number of distinct periodic orbits in a cluster Bk(p/q, �ν). No sub-resonance
corresponds to k distinct periodic orbits and when all the �j are on a single Rp/q
orbit, Bk(p/q, �ν) is a single periodic orbit. In the latter case, (p/q, �ν) is a pure
parameter.

The set of sub-resonance parameters is a finite collection of codimension-one affine
subspaces in Dk,p/q . Thus the set of parameters with no sub-resonance case is an open,
dense and full measure subset of Dk,p/q . It follows then that in HMk,p/q the typical
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parameter corresponds to a cluster of k periodic orbits. It also follows that, restricted to
HMk,p/q , the assignment �ν �→ Bk(p/q, �ν) is constant, and thus is continuous on connected
components of the no sub-resonance parameters and is discontinuous at the sub-resonance
parameters.

12.5. Estimating the number of p/q-kfsm sets. For a given g ∈ G the number of points
from the pure p/q-lattice Purek,p/q contained in HMk,p/q(g) tells us how many distinct
periodic orbits there are in B̂k(g). So by Lemma 10.7 it tells us how many distinct periodic
p/q-kfsm sets g has. We get an estimate for this number using the continuity properties of
Bk from Theorem 9.5 and the relationship of kfsm sets in Sk to those in S1. The next result
proves Theorem 1.2(b).

THEOREM 12.7. If α ∈ Int(ρ(g)), α �∈ Q, k > 0, and pn/qn is a sequence of rationals in
lowest terms with pn/qn→ α, then there exists a C > 0 so that for sufficiently large n the
number of distinct periodic pn/qn-kfsm sets in �1(g) is greater than or equal to Cqk−1

n .

Proof. By Theorem 9.5(b) there is an ε1 > 0 so that Nε1(�νs(α)) ⊂ HMk(g), where recall
that �νs(α) is the Sturmian �ν for α on the diagonal of Dk . Since �ξ is a homeomorphism
there is an ε-ball H in the max norm with ε > 0 about �0 in �ξ(Dk)with �ξ−1(H) ⊂ HMk(g).
Thus if |pn/qn − α| < ε there is a ε-ball in the max norm, that is, a (k − 1)-dimensional
hypercube H1, about (pn/qn, �0) in �ξ(Dk,pn/qn) with �ξ−1(H1) ⊂ HMk,pn/qn(g).

We next estimate the number of pure resonance �ν in H1. By Lemma 12.4, the pure �ν
form an affine lattice with linear separation gcd(pn, k)/qn. Thus for pn/qn close enough
to α, the number of lattice points in H1 is larger than(

εqn

gcd(pn, k)

)k−1

≥
(
εqn

k

)k−1

since gcd(pn, k) ≤ k. Thus since �ξ is a homeomorphism the same estimate holds for the
number of pure lattice points in �ξ−1(H1) ⊂ HMk,pn/qn(g). By Theorem 9.5 this tells us
how many distinct periodic pn/qn are in B̂k(g) and thus in Bk(g) by Theorem 7.6.

To project this estimate to kfsm sets in S1, recall from Theorem 10.10 that
θk : HMk,pn/qn(g)→ Ck,pn/qn(g) is injective on the pure lattice. The projection
Pure(k, pn/qn)→ Pure(k, pn/qn) is at most k to 1 and so the number of distinct pn/qn
periodic orbits in C(g) is greater than or equal to

1
k

(
ε

k

)k−1

qk−1
n .

Remark 12.8. Using Lemma 12.1 for a pure (p/q, �ν), if there is a symmetry of the form
τ j (�ν) = �ν for some 0 < j < k, then the period of the Ck(p/q, �ν) counted in the theorem
is jq/ gcd(j , p). In the typical case of no such symmetry the period is kq/ gcd(k, p). So,
for example, when p and k are relatively prime, the counted periodic orbit has rotation type
(pk, qk), and when k divides p, the rotation type is (p, q). By making judicious choices
of the sequence pn/qn→ α, one can control the rotation types of the counted periodic
orbits.
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13. Parameterization via the interpolated family of maps
We return now to the heuristic description of kfsm sets in the Introduction using a
family of interpolated semi-monotone maps, and prove results and connections to the
HM parameterization. Since we are mainly developing a heuristic, some details are left
to the reader. In many ways this perspective is better for studying kfsm sets, while the
HM construction is better for measures. Initially the parameterization depends on the map
g̃ ∈ G but using the model map we will get a uniform parameterization.

13.1. The family of k-fold interpolated maps for g ∈ G. Fix g ∈ G with preferred lift
g̃. For y ∈ [g(xmin + n), g(xmax + n)] there is a unique x ∈ [xmin + n, xmax + n] with
g̃(x) = y. Denote this x by bn(y) (b for branch). Let Lg = g̃(min(�∞(g) ∩ I0)) and
Ug = g̃(max(�∞(g) ∩ I−1)) with the Ii as defined in §5.1. Note that, from the definition
of the class G, 0 ≤ Lg < Ug ≤ 1 and, by equivariance, Lg + j = g̃(min(�∞(g) ∩ I2j ))

and Ug + j = g̃(max(�∞(g) ∩ I2j−1)).

Definition 13.1. For �c ∈ Rk define c̃ ∈ Rk via c̃j = cj + j − 1 for j = 1, . . . , k.

Fix k > 0. For �c ∈ [Lg , Ug]k and for j = 1, 2, . . . , k define H̃k�c(x) on [b−1(0), b−1(0)+
k] as

H̃k�c(x) =
{
c̃j when x ∈ [bj−2(cj ), bj−1(cj )],

g̃(x) otherwise,

and extend to H̃k�c : R→ R so that H̃k�c(x + k) = H̃k�c(x)+ k. See Figure 1. Next define
Hk�c : Sk → Sk as the descent of Hk,�c to Sk .

Example: The model map. For the model map fm, xmin = 0, xmax = 1/2, L = 0, U = 1/2
and bj (y) = (y + 2j)/3.

Given a compact Z ⊂ �k(g), for j = 0, . . . , k let

�′j (Z) = g̃k(max{Z ∩ I2j−1})− (j − 1) and r ′j (Z) = g̃k(min{Z ∩ I2j })− (j − 1).

If for some j we have �′j < Lg let �j = Lg , otherwise let �j = �′j . Similarly, if for some j
we have r ′j > Rg let rj = Rg , otherwise let rj = r ′j . Not that these rs and �s are unrelated
to those in §9.1.

THEOREM 13.2. Assume Z ⊂ �k(g) is compact and invariant. The following assertions
are equivalent.
(a) Z is a kfsm set.
(b) For j = 1, . . . , k, �j (Z) ≤ rj (Z).
(c) Z ⊂ P(Hk�c) for

�c ∈
k∏
j=1

[�j (Z), rj (Z)], (13.1)

thus (g̃k)|Z = (Hk�c)|Z .
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Proof. If for some j, �j (Z) > rj (Z) then g restricted to Z does not preserve the cyclic
order, and so (a) implies (b). Assertion (c) implies (a) since invariant sets in non-decreasing
maps are always kfsm. Finally, (b) says that Z ⊂ P(Hk�c) for �c in the given range.

Definition 13.3. For Z ∈ Bk(g), let

Boxg(Z) =
k∏
j=1

[�j (Z), rj (Z)],

and so Boxg(Z) ⊂ [Lg , Ug]k .

Remark 13.4
(a) Nothing in the theorem requires Z to be recurrent. If it is then Z ∈ Bk(g) and so by

Theorem 8.5, ιk(Z) = Bk(ω, �ν) where ω = ρk(Z) and �ν ∈ Dkω.
(b) When Z is a periodic orbit or cluster, Boxg(Z) is k-dimensional. When Z is a periodic

orbit cluster its box is equal to the intersections of the boxes of its constituent single
periodic orbits.

(c) When Z is a semi-Denjoy minimal set contained in P(Hk�c), recall that a tight flat spot
of Z is one for which both endpoints of a flat spot of Hk�c are in Z. The dimension of
Boxg(Z) is the same as the number of loose flat spots in Z. Since, by Lemma 3.5(b),
Z cannot have k tight flat spots, the dimension of Boxg(Z) is between 0 and k − 1.

(d) Note that in contrast, in the HM parameterization, each single periodic orbit or
semi-Denjoy minimal set corresponds to just one point.

(e) When α �∈ Q, if Z = ι−1
k (Bk(α, �ν)) from the HM construction then the number of

loose flat spots of Z is the same as the number of resonances of (α, �ν), that is, j �= j ′
with RNα (�j ) = �j ′ for some n > 1, which is then the same as the dimension of
Boxg(Z).

13.2. Non-recurrence and kfsm sets that hit the negative-slope region. Throughout this
paper we have assumed that the kfsm sets were recurrent and avoided the negative-slope
region. In this section we use the interpolated maps to motivate and explain these
assumptions.

Assume now that Z is a kfsm set for some g ∈ G and Z contains points in the
negative-slope region of g. It still follows that Z is an invariant set of some Hk�c.
Let Z′ be the maximal recurrent set in P(Hk�c). A gap of Z′ is a component of the
complement of Z′ that contains a flat spot of Hk�c. In formulas, a gap is an interval
(max{Z′ ∩ I2j−1}, min{Z′ ∩ I2j }) for some j. Since gk acting on Z is semi-monotone, Z
can contain at most one point pj in the negative-slope region within each gap.

There are two cases. In the first, which may happen for both rational and irrational
rotation numbers, for all j ′ there is some n so that f i(pj ′) �∈ {pj } for all i ≥ n. This
implies that Hi

k�c(pj ) ∈ P(Hk�c) for all i ≥ n, and so, by Lemma 3.5(c), there is an n′ so
that Hi

k�c(pj ) ∈ Z′ for all i ≥ n′. Thus in this case negative-slope orbits add no additional
recurrent dynamics. In Figure 4 the disks give part of a periodic kfsm set and the squares
show additional homoclinic points to this kfsm set in the negative- and positive-slope
region.
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FIGURE 4. A semi-monotone set with homoclinic points.

The second case holds for just rational rotation numbers and occurs when some pj is
a periodic point; this does add new recurrent kfsm sets. Since the periodic points on the
endpoint of a gap always return, there is, in fact, a periodic point in the negative-slope
region of each gap of Z′. By adjusting �c we can assume that all these gap periodic orbits
are also superstable periodic orbits of Hk�c. Since the periodic points in Z′ are all unstable
the periodic points of Z′ must alternate with these gap periodic points. In particular, the
number of gap periodic orbits equals the number of periodic orbits in Z′. Thus the addition
of the negative-slope periodic orbits just adds a factor of two to the basic estimates of §12.5.

We again use Figure 4, but this time to discuss the holes in the space of recurrent
kfsm sets. Let Hc0 be an interpolated map whose flat spot contains the homoclinic points
indicated by squares. Assume we are in the k = 1 case and so each interpolated map Hc
contains exactly one recurrent semi-monotone set Zc in its positive-slope region. As cn
increases to c0, the sets Zcn converge in the Hausdorff topology not just to Zc0 , but to
that set union the boxed point shown in the positive slope region. A similar phenomenon
happens as cn decreases to c0. This phenomenon also clearly happens for loose gaps of
semi-Denjoy minimal sets and for all k. This is the geometric explanation of the holes in
Bk(g) and the discontinuity of Bk discussed in §9.1.

13.3. The rotation number diagram. Fix g ∈ G. Since Hk�c : Sk → Sk we define
Rk(�c) = kρ(Dk ◦Hk�c ◦D−1

k ). Thus if Z ⊂ P(Hk�c) is compact invariant then ρk(Z) =
Rk(�c). We treat Rk as a function Rk : [Lg , Ug]k → R.

Let Rk+ = {�u ∈ Rk : all ui > 0}. The open projective positive cone in Rk isQk = {�u ∈
Rk+ : ‖�u‖2 = 1}. For a given k and ω, define ϕ−,ω, ϕ+,ω : Qk → R+ as

ϕ−,ω(�u) = min{t ∈ R+ : Rk(t �u+ �L) = ω},
ϕ+,ω(�u) = max{t ∈ R+ : Rk(t �u+ �L) = ω},
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where �L = (Lg , Lg , . . . , Lg). So ϕ−,ω and ϕ+,ω give the top and bottom edges of the level
set R−1

k (ω) when viewed from the origin.

THEOREM 13.5. Assume g ∈ G and construct Rk as above.
(a) Rk is continuous function and is non-decreasing in t along any line �c = t �u+ �v with

all vi ≥ 0.
(b) For all ω the functions ϕ−,ω and ϕ+,ω are continuous.
(c) For rational ω, ϕ−,p/q < ϕ+,p/q , while for α �∈ Q, ϕ−,α = ϕ+,α . Thus each level

set R−1
k (p/q) is homeomorphic to a (k − 1)-dimensional open disk product a

non-trivial closed interval, while each R−1
k (α) is homeomorphic to a (k − 1)-

dimensional open disk.
(d) ρ(g) = [ρ(HLg ), ρ(HUg )] = ρ(�1(g), g).

Proof. Part (a) follows directly from Lemma 3.1(b) and (c). For (b) assume to the contrary
that ϕ− is not continuous. Then there is a sequence �un→ �u0 with ϕ−(�un) �→ ϕ−(�u0).
Passing to a subsequence if necessary, there is some t0 with ϕ−(�un)�un + �L→ t0�u0 + �L.
By the continuity ofRk ,Rk(t0�u0 + �L) = ω, and by the non-convergence assumption, there
is some t ′ < t0 with Rk(t ′ �u0 + �L) = ω. Thus again by the continuity of Rk for n large
enough there is some t ′′n < ϕ−(�un) with Rk(t ′′n �un + �L) = ω, a contradiction. Therefore,
ϕ− is continuous; the continuity of ϕ+ is similar.

For (c), pick any t0 and �u0 with Rk(t0�u0 + �L) = p/q and let �c = t0�u0 + �L. Then by
Lemma 3.5,H�c has a periodic orbit Z ⊂ P(H�c). Since Z is a finite set there is a non-trivial
interval I so that t ∈ I implies Rk(t �u0 + �L) = p/q and so ϕ−,p/q < ϕ+,p/q .

To complete (c), assume to the contrary that for some �u0, ϕ−,α(�u0) < ϕ+,α(�u0). Thus
by the continuity of Rk there is an open ball N ⊂ R−1

k (α). Pick �c ∈ N and let Z be the
semi-Denjoy minimal set in P(H�c) guaranteed by Lemma 3.5 which has at least one tight
gap, say the gap associated with c1, the first coordinate of �c. Let y be the x-coordinate
of the right-hand endpoint of this gap and so g̃k(y) = c1. Since Z is minimal under
H�c there are points z ∈ Z with z > y and arbitrarily close to y which have a n > 0
with y < Hn

�c (z) < z. Now let c′1 = g̃k(z) and �c′ = (c′1, c2, . . . , ck) and we have that
Hn
�c′(z) < z, which says that the nth iterate of the first coordinate flat spot of H�c′ is in that

flat spot. ThusH�c′ has a periodic orbit and soRk(�c′) �= α for some �c′ arbitrarily close to �c, a
contradiction.

For (d), assume k = 1 and ρ(g) = [ρ1, ρ2]. Let HT be the semi-monotone map
constructed from g to have a single flat spot of height g̃(xmax) andHB similarly constructed
to have a single flat spot of height g̃(xmin). Since HT ≥ g̃, we have ρ(HT ) ≥ ρ1. Now
by Lemma 3.5, there is a compact invariant Z ⊂ P(HT ) and so g|Z = (HT )|Z and
so ρ(HT ) = ρ(Z, g) ∈ ρ(g) and so ρ(HT ) = ρ1. Similarly, ρ(HB) = ρ2. Note that by
definition of HU , the compact invariant Z ⊂ P(HT ) also satisfies Z ⊂ P(HU) and so
ρ(HT ) = ρ(HU). Similarly, ρ(HB) = ρ(HL). Thus ρ(g) = [ρ(HL), ρ(HU)]. Finally,
consider the entire family Hc for c ∈ [L, U ]. Since ρ(Hc) is continuous in c, for each
ω ∈ [ρ(HL), ρ(HU)] there is a c with ρ(Hc) = ω. Further, for each c there is a compact
invariant Zc ⊂ P(Hc) and Zc ⊂ �1(g), and thus ω ∈ ρ(�1(g)) ⊂ ρ(g)
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Remark 13.6
(a) Note that HT (x) ≤ x + 1 and HB(x) ≥ x, and thus g ∈ G implies ρ(g) ⊂ [0, 1].

Further, it follows from (d) that the image of each Rk is ρ(g).
(b) Part (b) deals only with the part of the level sets of Rk in the open set (Lg , Ug)k . The

extension to all of [Lg , Ug]k is technical and not very illuminating, so we leave it to
the interested reader.

(c) Let τ act on �c as the left cyclic shift. It easily follows that Rk(τ(�c)) = Rk(�c).
(d) When k = 1 there is a one-dimensional family Hc for c ∈ [Lg , Ug]. The rotation

number R1(c) is non-decreasing in c and assumes each irrational value at a point and
each rational value on an interval by (a) and (c). For each c there is a unique recurrent
Zc ⊂ P(Hc) and ι1(Zc) is the Sturmian minimal set with the given rotation number.
This, along with the geometry of the family Hc, gives the proof of Lemma 10.15.

13.4. Comparing g ∈ G to the model map. In this section we use the interpolation
parameter �c to parameterize all the Z ∈ Bk(g) for a general g ∈ G. Notice that for the
model map, �̂k(fm) is all of�k . Thus B̂k(g) ⊂ B̂k(fm) and we can pass back to B(g) using
the inverse of the itinerary map. Thus we can use a subset of the interpolation parameters
of the model map to parameterize B(g) using the symbolic representation of a kfsm set as
the link. This subset turns out to be a square of the form [L′, U ′]k . In this section we often
add an additional f or g subscript to indicate which map fm or g is involved.

Since ιk,g(�k(g)) = �̂k(g) ⊂ �k = �̂k(f ) we may define ψ ′ : �k(g)→ �k(f ) by
ψ ′ = ιkf ◦ ι−1

kg . By Theorem 6.1, ψ ′ is an orientation-preserving homeomorphism onto
its image as well as a conjugacy. It thus induces a map ψ : Bk(g)→ Bk(f ).

Recall that the parameters for the model map are [Lf , Uf ]k = [0, 1/2]k . For a map
φ : [a, b]→ [a, b] extend it to the Cartesian product as φ(k) = (φ, φ, . . . , φ).

THEOREM 13.7. Given g ∈ G and k > 0, construct the interpolation parameters [Lg , Ug].
There exist an interval [L′, U ′] ⊂ [0, 1/2] and an orientation-preserving homeomorphism
φ : [Ug , Lg]→ [L′, U ′] so that for all Z ∈ Bk(g), φ(k)(Boxg(Z))) = Boxf (ψ(Z)), and
for all ω ∈ ρ(g), φ(k)ρ−1

k,g(ω) = ρ−1
k,f (ω).

Proof. Construct ψ ′ as above. Its properties imply that

ψ ′(�j (Z)) = �j (ψ(Z)) and ψ ′(rj (Z)) = rj (ψ(Z)) (13.2)

for all Z ⊂ Bk(g) and j = 1, . . . , k. Let L′ = ψ ′(Lg) and U ′ = ψ ′(Ug). Then
ψ ′ restricts to ψ : �k(g) ∩ [Lg , Ug]k → �k(f ) ∩ [L′, U ′]k . Since ψTk = Tkψ and
�k(g) ∩ [Lg , Ug]k is compact we can extend ψ equivariantly to a homeomorphism
� : [Lg , Ug]k → [L′, U ′]k which, using (13.2), satisfies � ◦ Boxg = Boxf ◦ψ . Finally,
since � ◦ τ = τ ◦� (recall τ is the left cyclic shift) there is a φ : [Ug , Lg]→ [L′, U ′]
with � = φ(k).

This result implies that the ρk-diagram for g looks like a k-dimensional cube cut from
inside the ρk-diagram of the model map and perhaps rescaled.
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FIGURE 5. The rotation number diagram for the model map with k = 2, reparameterized for clarity.

13.5. The case k = 2: numerics. Figure 5 shows the k = 2 rotation number diagram for
the model map fm. Each connected union of rectangles is the level set of some rational.
Rationals with denominator less than 6 are shown. Only the center rectangle is labeled for
each rational. Each rectangle in the figure corresponds to a different 2-fold semi-monotone
periodic orbit. The intersections of these rectangles correspond to H�c which have a cluster
of two periodic orbits.

The computation of this diagram used a discrete version of the HM construction. The
construction depends on integers p, q, μ with 0 < p/q < 1, p and q relatively prime, and
0 ≤ μ ≤ 2(q − p). The discrete circle is the finite cyclic group Z/2qZ = Z2q and it is
acted on by Rp : n �→ n+ p. The address intervals are X′0 = [1, μ], X′1 = [μ+ 1, μ+
p], X′2 = [μ+ p + 1, 2q − p], andX′3 = [2q − p + 1, 2(q − p)]. Let B ′(p, q, μ) be the
itinerary of the point 1 under Rp.

Using Theorem 8.5(b), when p is odd,Rp has a single period 2q orbit in Z2q . Expanding
the points in Z2q to intervals in the circle as in the proof of Theorem 8.5(c), we see that by
varying μ the construction generates all the symbolic p/q-periodic 2-fold semi-monotone
sets in �2.

Now when p is even, Rp has a pair of period q orbits. When μ is odd, these generate
different periodic orbits B ′(p, q, μ). However, μ even corresponds to a pure parameter
and so varying μ through the even μ generates all the symbolic p/q-periodic 2-fold
semi-monotone sets in �2.
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The next step is to use B ′(p, q, μ) to compute its symbolic box as in Corollary 14.1
below. Finally, we take the inverse of the itinerary map for the model map to get a box in
the �c parameter. Because the map fm has uniform slope of three in its positive-slope region
the formula for this inverse is s ∈ �+2 ,

ι−1
1 (s) =

∞∑
j=0

sj

3j+1 . (13.3)

14. Symbolic kfsm sets and the map z �→ zn

Using the model map, the characterization of ‘physical’ kfsm sets in Theorem 13.2 can
be transformed into a characterization of symbolic kfsm sets. For compact Ẑ ⊂ �k for
j = 1, . . . , k, define

�̂j (Z) = σk(max{Ẑ ∩ [2j − 1]}) and r̂j (Z) = σk(min{Ẑ ∩ [2j ]}).

Since ιk is order-preserving and onto for the model map we have the following corollary.

COROLLARY 14.1. Assume Ẑ ⊂ �k is compact and shift invariant. The following asser-
tions are equivalent.
(1) Ẑ is kfsm.
(2) For j = 1, . . . , k, �̂j (Ẑ) ≤ r̂j (Ẑ) with indices reduced mod 2k.

If Z is recurrent we know that eachZ ∈ Bk(f ) has ιk(Ẑ) = Bk(ω, �ν) for some allowable
(ω, �ν) which yields an indirect connection between the interpolated semi-monotone maps
and HM parameterization.

There is a well-known connection between the dynamics of dn : z �→ zn and the full
shift on n symbols. This yields a connection of the symbolic kfsm sets as described by
this corollary to invariant sets of the circle on which the action of dn is semi-monotone,
sometimes called circular orbits.

In Figure 6 we show the conditions forced by Corollary 14.1 as flat spots in the graph
of dn for k = 3 and n = 6. There are two classes of flat spots. Those in class A are forced
by the condition that Ẑ ⊂ �k and thus satisfies (5.1). These are the intervals of width 1/6,
[1/18, 2/9], [7/18, 5/9] and [13/18, 8/9]. These conditions are satisfied by all symbolic
kfsm sets in the corollary. The other three flat spots in class B are determined by the
conditions in part (b) of the corollary and vary with the symbolic kfsm set. Note that
adding all the flat spots yields a degree-one semi-monotone circle map as expected. See
figures in [21, 34].

This figure also illustrates a clear difference between the kfsm sets for bimodal circle
maps and circular orbits for dn. Specifically, the kfsm sets correspond to a specific subclass
of circular orbits for d2k . On the other hand, there is clearly a tight relationship between the
theories which needs to be investigated. Perhaps the degree reduction process described in
[8, 34] would be a good place to start.
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FIGURE 6. The semi-monotone map corresponding to a symbolic 3-fold semi-monotone set interpolated into
z �→ z6.
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