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The Classical N-body Problem in the
Context of Curved Space

Florin Diacu

Abstract. We provide the diòerential equations that generalize the Newtonian N-body problem of
celestial mechanics to spaces of constant Gaussian curvature κ, for all κ ∈ R. In previous studies,
the equations of motion made sense only for κ /= 0. _e system derived here does more than just
include the Euclidean case in the limit κ → 0; it recovers the classical equations for κ = 0. _is new
expression of the laws ofmotion allows the study of the N-body problem in the context of constant
curvature spaces and thus oòers a natural generalization of the Newtonian equations that includes
the classical case. We end the paper with remarks about the bifurcations of the ûrst integrals.

1 Introduction

_e idea that geometry and physics are intimately related made its way into human
thought during the early part of the 19th century due to the discovery of hyperbolic
geometry. A�er that, the Euclidean nature of physical space could not be taken for
granted anymore. Gauss measured the angles of a triangle formed by threemountain
peaks near Göttingen,Germany, apparently hoping to learnwhether the universe has
positive or negative curvature, but the inevitable observational errors rendered his
results inconclusive [6,20,21]. In the 1830s, Bolyai and Lobachevsky took these inves-
tigations further. _ey independently addressed the connection between geometry
and physics by seeking a natural extension of the gravitational law from Euclidean to
hyperbolic space [2, 24]. _eir idea led to the study of the Kepler problem and the
2-body problem in spaces of nonzero constant Gaussian curvature κ /= 0, two funda-
mental problems that are not equivalent, unlike in Euclidean space [26]. A detailed
history of the results obtained in this direction since Bolyai and Lobachevsky, as well
as the reasons why their approach provides a natural way of extending gravitation
to spaces of constant Gaussian curvature (a crucial aspect we also brie�y address in
Section 2), can be found in [6, 8,9].

Some recent studies [4–17,25] introduced a suitable framework for generalizing the
equations ofmotion suggested by Bolyai and Lobachevsky to N ≥ 2 bodies. Like the
curvedKepler problem and the curved 2-body problem, our equations made sense in
spaces of constantGaussian curvature κ /= 0, i.e., on 3-spheres of radius R = κ−1/2 em-
bedded in R4, for κ > 0, and on hyperbolic 3-spheres of imaginary radius iR = κ−1/2

embedded in the Minkowski space R3,1, for κ < 0. But whether written in extrinsic
or intrinsic coordinates, these equations contain undetermined expressions for κ = 0,
although we can recover the classical Newtonian system when κ → 0. So a study of
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_e Classical N-body Problem in the Context of Curved Space 791

the �at case in the context of curved space, including some understanding of the bi-
furcations and the stability of solutions when the parameter κ is varied through 0, is
impossible to perform in that setting.

In this paper we derive some equations of motion that overcome the diõculties
mentioned above. Using a coordinate system in R4 having the origin at the north
pole of the 3-spheres (the only point that is common to all the manifolds involved),
we prove that the N-body problem in spaces of constant Gaussian curvature κ ∈ R
can be written as

(1.1) r̈i =
N

∑

j=1, j/=i

m j[r j − ( 1 −
κr2i j
2 )ri +

r2i jR
2 ]

r3i j( 1 −
κr2i j
4 )

3/2
− (ṙi ⋅ ṙi)(κri +R), i = 1, . . . ,N ,

where m1 , . . . ,mN > 0 represent the masses. _e dot ⋅ denotes the standard inner
product of signature (+,+,+,+) for κ ≥ 0, but the Lorentz inner product of signature
(+,+,+,−) for κ < 0. _e vectors R and ri are given by

R = (0, 0, 0, σ ∣κ∣1/2), ri = (x i , y i , z i ,ω i), i = 1, . . . ,N ,

σ is the signum function, i.e., σ = +1 for κ ≥ 0 and σ = −1 for κ < 0, and

r i j ∶= [(x i − x j)
2
+ (y i − y j)

2
+ (z i − z j)

2
+ σ(ω i − ω j)

2
]
1/2

is the Euclidean distance for κ ≥ 0 and theMinkowski distance for κ < 0.
Notice that the distances r i j vary smoothly with κ. In particular, the values of the

coordinates ω i , i = 1, . . . ,N , and consequently the values of the expressions

(ω i − ω j)
2 , i , j ∈ {1, . . . ,N}, i /= j,

become small when κ gets close to 0, to vanish at κ = 0 since ω i = 0, i = 1, . . . ,N , on
the three-dimensional Euclidean manifold.
For κ /= 0, the initial conditions must be taken such that the bodies are restricted

to 3-spheres for κ > 0 and hyperbolic 3-spheres for κ < 0. For κ = 0 and ri =

(x i , y i , z i , 0), i = 1, . . . ,N , we recover the Newtonian equations,

r̈i =
N

∑

j=1, j/=i

m j(r j − ri)
r3i j

, i = 1, . . . ,N .

Tomake (1.1) analytic for all values of the parameter,we can introduce the substitu-
tion δ = σ ∣κ∣1/2. _is slight modiûcation of the equations ofmotion will be helpful in
future studies of the bifurcations of solutionswhen the new parameter passes through
the value δ = 0.

_e rest of this paper is organized as follows. We ûrst introduce the equations of
motion in extrinsic coordinates and explain why they fall short of our goal (Section
2). _enwe derive the north pole equations in the hope that theywill help us solve our
problem (Section 3). Unfortunately they do not, but they get us a step closer towards
ûnding a solution. We also derive the equations of motion in intrinsic coordinates
(Section 4) and explain why they also fail to address our concerns. _en we prove
that all these equations can be extended to (1.1), the only framework we have found
so far that oòers a uniûed picture for all κ ∈ R (Section 5). We end our paper with a
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discussion of the bifurcations encountered by the integrals of motion when the new
parameter δ = σ ∣κ∣1/2 passes through the value δ = 0 (Section 6).

2 Equations of Motion in Extrinsic Coordinates

In this section we present the equations ofmotion of the curved N-body problem in
extrinsic coordinates and explain how the �at case is obtained in the limitwhen κ → 0.
But before getting into the details, we would like to mention why the approach of
Bolyai and Lobachevsky is the natural way to extend gravitation to spaces of nonzero
constant Gaussian curvature.

_e reason for introducing this extension is purely mathematical. _ere is no
uniqueway of generalizing the classical equations ofmotion in order to recover them
when the curved ambient space becomes �at. So the potential we want to use should
satisfy the same basic properties the Newtonian potential does in its most basic set-
ting, the Kepler problem, a particular case when one body moves around a ûxed at-
tracting centre.

Two fundamental properties characterize the Newtonian potential of the Kepler
problem: it is a harmonic function in three dimensions (but not in two dimensions),
i.e., it satisûes Laplace’s equation, and it generates a central ûeld inwhich all bounded
orbits are closed, a resultproved by JosephLouisBertrand in 1873 [1]. In the early years
of the twentieth century, Heinrich Liebmann proved that these properties are also
satisûed by the Kepler problem in spaces of constant curvature, thus oòering strong
arguments for this mathematical generalization of the gravitational force [22,23].

Let us further present our approach to the gravitational extension ûrst suggested
by Bolyai and Lobachevski. Take N ≥ 2 point masses,m1 , . . . ,mN > 0,moving on the
3-sphere (of constant Gaussian curvature κ > 0),

S3
κ ∶= {(x , y, z,w) ∣ x2

+ y2
+ z2

+w2
= κ−1 , κ > 0},

viewed as embedded in R4, or on the hyperbolic 3-sphere (of constant Gaussian cur-
vature κ < 0), H3

κ ∶= {(x , y, z,w) ∣ x2
+ y2

+ z2
−w2

= κ−1 ,w > 0, κ < 0}, viewed as
embedded in theMinkowski space R3,1. We consider these spaces in the framework
of classical mechanics; so, unlike in special or general relativity, theMinkowski space
mentioned above has four spatial components instead of one temporal and three spa-
tial dimensions. Consequently the notation R3,1 we adopt here rather expresses the
signature of the inner product deûned below instead of the nature of the components.

_e coordinates of the point mass m i are given by the components of the vector
qi = (x i , y i , z i ,w i), and they satisfy the constraints x2

i + y2
i + z2

i + σw2
i = κ−1, for

i = 1, . . . ,N , where σ is the signum function

σ ∶=
⎧
⎪⎪
⎨
⎪⎪
⎩

+1 for κ ≥ 0
−1 for κ < 0.

We deûne the inner product of the vectors qi and q j by the formula

qi ⋅ q j ∶= x ix j + y i y j + z iz j + σw iw j .
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_is is the standard inner product in R4, of signature (+,+,+,+), for κ ≥ 0, but
the Lorentz inner product in theMinkowski space R3,1, of signature (+,+,+,−), for
κ < 0.

Let us consider the notations

q i j
∶= qi ⋅ q j , i , j ∈ {1, 2, . . . ,N}, i /= j,

q2
i ∶= qi ⋅ qi , i = 1, . . . ,N ,

and deûne the distance between the point masses m i and m j as

dκ(qi , q j) ∶=

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

κ−1/2 cos−1(κqi ⋅ q j) κ > 0,
∣qi − q j ∣ κ = 0,
(−κ)−1/2 cosh−1(κqi ⋅ q j) κ < 0,

which in S3
κ and H3

κ represents the arc distance and implies that the force between
bodies acts along geodesics (see [6, 8,9]).
As shown in [6, 8, 14], the cotangent force function,

Uκ(q) =
⎧
⎪⎪
⎨
⎪⎪
⎩

∑1≤i< j≤N m im j cot(dκ(qi , q j)) κ > 0,
∑1≤i< j≤N m im j coth(dκ(qi , q j)) κ < 0,

which extends the classical Newtonian force function to S3
κ , and H3

κ for κ /= 0 in the
direction suggested by Bolyai and Lobachevski, can be put into the form

(2.1) Uκ(q) = ∑

1≤i< j≤N

m im j ∣κ∣1/2κq i j

∣(κq2
i )(κq

2
j) − (κq i j

)
2
∣
1/2 ,

where q ∶= (q1 , . . . , qN) is the conûguration of the particle system. But Uκ is a homo-
geneous function of degree 0, so Euler’s relationship,

qi ⋅ ∇qiUκ(q) = 0, i = 1, . . . ,N ,

is satisûed [19] where the gradient operator is deûned as

∇qi = (

∂
∂x i

,
∂

∂y i
,

∂
∂z i

, σ
∂

∂w i
) , i = 1, . . . ,N .

Using the variational method of constrained Lagrangian dynamics (see [6, 8, 14]), it
can be shown that the equations of motion are given by the system of diòerential
equations

(2.2) m i q̈i = ∇qiUκ(q) − κm i(q̇i ⋅ q̇i)qi , i = 1, . . . ,N ,

where κ /= 0 and

∇qiUκ(q) =
N

∑

j=1, j/=i

m im j ∣κ∣3/2κq2
j [(κq

2
i )q j − (κq i j

)qi]

∣(κq2
i )(κq

2
j) − (κq i j

)
2
∣
3/2 , i = 1, . . . ,N .

To keep the bodies on the respective manifolds, it is enough to assume that at the
initial time t = 0, the position vectors and the velocities satisfy the constraints

κq2
i = 1, qi ⋅ q̇i = 0, i = 1, . . . ,N ,
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conditions that hold for all the time t for which the solution is deûned.
Using the constraints κq2

i = 1, i = 1, . . . ,N , we can write the gradient of the force
function Uκ on themanifolds of curvature κ /= 0 as

∇qiUκ(q) =
N

∑

j=1, j/=i

m im j ∣κ∣3/2[q j − (κq i j
)qi]

∣ 1 − (κq i j
)
2
∣
3/2 , i = 1, . . . ,N .

Notice that as the curvature of the manifolds S3
κ and H3

κ nears 0, the distance be-
tweenm i andm j approaches the Euclidean distance, as it is obvious from geometrical
considerations (see Figure 1). But this is not at all obvious from the formula deûning
the distance, since ∣qi ∣, ∣q j ∣→∞ as κ → 0. So although it is geometrically clear that

lim
κ→0

Uκ(q)→ U0(q) ∶= ∑

1≤i< j≤N

m im j

∣qi − q j ∣
,

i.e., Uκ tends to the Newtonian force function when κ → 0, this fact becomes less
obviouswhen trying to use (2.1). A similar problem appearswhen attempting to prove
that

lim
κ→0

∇qiUκ(q) =
N

∑

j=1, j/=i

m im j(q j − qi)

∣q j − qi ∣3
,

i.e., that the equations of the curved problem (κ /= 0) tend to the Newtonian equa-
tions when κ → 0. But again, the above geometric considerations about the distance
support the validity of this conclusion.
A similar technical diõculty shows upwhen substituting κ = 0 into (2.2), an oper-

ation that leads to undetermined expressions on the right-hand side of the equations
ofmotion. Although from the geometrical and dynamical point of view we can con-
clude that the equations of the curved problem tend in the limit to the Newtonian
equations, (2.2) does not include both the curved and the �at case, since the lengths
of the position vectors tend to inûnity when κ → 0.

It is natural to suspect that the reason for this failure stays with the fact that the
origin of the co-ordinate system is at the centre of the spheres, so the radii of the
spheres become inûnite as κ → 0. We could therefore shi� the origin of the coordinate
system to the north pole of the 3-spheres, namely to the point (0, 0, 0, ∣κ∣−1/2), amove
that would keep the values of the coordinates ûnite when κ → 0. But as we will show
in the next section, this approach alone does not fare better either.

3 The North Pole Equations

In this section we attempt to include the case κ = 0 in the equations of motion by
shi�ing the origin of the coordinate system to the North-Pole of the 3-spheres (see
Figure 1). For this purpose we consider the change of variables

ω i = w i − ∣κ∣−1/2 , i = 1, . . . ,N ,

which leaves the coordinates x i , y i , z i , i = 1, . . . ,N , unchanged. If

q i j
∶= x ix j + y i y j + z iz j + σω iω j ,

we have that κq i j
= κq i j

+ ∣κ∣1/2(ω i + ω j) + 1, for i , j ∈ {1, . . . ,N}, i /= j.
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Figure 1: A two-dimensional representation of the continuous transition from S3

κ , up, and from
H3

κ , down, toR3 . _e only common point of thesemanifolds is the north pole of the 3-spheres.

_en the equations ofmotion (2.2) take the form

ẍ i = ∑

1≤i< j≤N

m j ∣κ∣3/2[x j − (κq i j
+ ∣κ∣1/2(ω i + ω j) + 1)x i]

∣1 − [κq i j
+ ∣κ∣1/2(ω i + ω j) + 1]2∣3/2

− κ(q̇i ⋅ q̇i)x i

ÿ i = ∑

1≤i< j≤N

m j ∣κ∣3/2[y j − (κq i j
+ ∣κ∣1/2(ω i + ω j) + 1)y i]

∣1 − [κq i j
+ ∣κ∣1/2(ω i + ω j) + 1]2∣3/2

− κ(q̇i ⋅ q̇i)y i

z̈ i = ∑

1≤i< j≤N

m j ∣κ∣3/2[z j − (κq i j
+ ∣κ∣1/2(ω i + ω j) + 1)z i]

∣1 − [κq i j
+ ∣κ∣1/2(ω i + ω j) + 1]2∣3/2

− κ(q̇i ⋅ q̇i)z i

ω̈ i = ∑

1≤i< j≤N

m j ∣κ∣3/2{ω j + ∣κ∣−1/2 − [κq i j
+ ∣κ∣1/2(ω i + ω j) + 1](ω i + ∣κ∣−1/2)}

∣1 − [κq i j
+ ∣κ∣1/2(ω i + ω j) + 1]2∣3/2

− κ(q̇i ⋅ q̇i)(ω i + ∣κ∣−1/2),

for i = 1, . . . ,N , where q̇i = (ẋ i , ẏ i , ż i , ω̇ i) and q̇i ⋅ q̇i = ẋ2
i + ẏ2

i + ż2
i + σ ω̇2

i , for
i = 1, . . . ,N .
As in the previous section, the equations ofmotion are undeterminedwhen κ = 0,

although we know from the above geometrical considerations that they tend to the
Newtonian equations as κ → 0. _is fact suggests that the extrinsic coordinatesmight
not be good enough for solving our problem, so let us see if the use of intrinsic coor-
dinates allows us to include the case κ = 0 into the equations ofmotion.

4 Equations of Motion in Intrinsic Coordinates

In this sectionwe introduce the equations ofmotion in intrinsic coordinates in a uni-
ûed context. For κ < 0 and κ > 0, these equations were separately derived and stud-
ied in [16, 25]. _ese papers, however, treat only the two-dimensional case, which is
enough to justify our point.

So we assume in this section that the bodies move on the 2-spheres S2
κ or the hy-

perbolic 2-spheres H2
κ , which we can write together as

M2
κ = {(x, y, z) ∣ x2 + y2

+ σz2 = κ−1 , κ /= 0, with z > 0 for κ < 0}.
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In this new setting, the force function (2.1) has the form

(4.1) Uκ(p) = ∑

1≤i< j≤N

m im j ∣κ∣1/2κpi j

∣(κp2
i )(κp

2
j) − (κpi j

)
2
∣
1/2 ,

where pi = (xi , yi , zi), i = 1, . . . ,N ,

pi j
∶= pi ⋅ p j = xix j + yiy j + σziz j , p2

i ∶= pi ⋅ pi = x2i + y2
i + σzi , i , j ∈ {1, 2, . . . ,N},

and p = (p1 , . . . , pN) is the conûguration of the system. _en the equations ofmotion
are given by

(4.2) m i p̈i = ∇piUκ(p) − κm i(ṗi ⋅ ṗi)pi , i = 1, . . . ,N ,

where κ /= 0,

∇piUκ(p) =
N

∑

j=1
j/=i

m im j ∣κ∣3/2κp2
j[(κp

2
i )p j − (κpi j

)pi]

∣(κp2
i )(κp

2
j) − (κpi j

)
2
∣
3/2 , i = 1, . . . ,N ,

and the coordinates satisfy the constraints κp2
i = 1, pi ⋅ ṗi = 0, for i = 1, . . . ,N .

To obtain the equations of motion in intrinsic coordinates, we further introduce
new geometricmodels, both for the 2-spheres and the hyperbolic 2-spheres. For this,
we use the stereographic projection, which takes the points of coordinates (x, y, z) ∈
M2

κ to the points of coordinates (u, v) of the plane z = 0 through the bijective trans-
formation

u =

x

1 − σ ∣κ∣1/2z
, v =

y

1 − σ ∣κ∣1/2z
.

_e inverse of the stereographic projection takes the points of coordinates (u, v) of
the plane z = 0 to the points (x, y, z) ∈M2

κ through the formulae

(4.3) x =
2u

1 + κ(u2
+ v2

)

, y =
2v

1 + κ(u2
+ v2

)

, z =
κ(u2

+ v2
) − 1

∣κ∣3/2(u2
+ v2

) + σ ∣κ∣1/2
.

From the geometric point of view, the correspondence between a point ofM2
κ and a

point of the plane z = 0 is made via a straight line through the point (0, 0, ∣κ∣−1/2) for
κ > 0 and (0, 0,−∣κ∣−1/2) for κ < 0. In the former case, the projection of S2

κ is R2,
but with a diòerent metric than the Euclidean one. We denote this plane by P2

κ . In
the latter case the projection of H2

κ is the Poincaré disk D2
κ of radius (−κ)−1/2, with

the corresponding hyperbolic metric. Let B2
κ denote either of P2

κ and D2
κ . With this

notation we say that the stereographic projection ofM2
κ that preserves the geometric

structure is B2
κ .

_emetric of B2
κ in coordinates (u, v) is given by

ds2 =
4

[1 + κ(u2
+ v2

)]
2 (du

2
+ dv2

).

_is metric can be obtained by substituting (4.3) into ds2 = dx2 + dy2
+ σdz2, which

deûnes the metric in R3, for σ = 1, and in the Minkowski space M2,1, for σ = −1
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(see [18]). In other words, we can say that the metric in B2
κ is given by the matrix

G = (g i j)i , j=1,2 with

g11 = g22 =
4

[1 + κ(u2
+ v2

)]
2 , g12 = g21 = 0.

_e inverse of G is G−1 = (g i j
)i , j=1,2 with

g11
= g22

=

[1 + κ(u2
+ v2

)]
2

4
, g12

= g21
= 0.

Assume that the stereographic projection maps the points qi and q j from M2
κ to

the points wi = (u i , v i) and w j = (u j , v j) of B2
κ , respectively. _en, using (4.3), we

obtain that

qi ⋅ q j =
4κwi ⋅w j + (κ∣wi ∣

2
− 1)(κ∣w j ∣

2
− 1)

κ(κ∣wi ∣2 + 1)(κ∣w j ∣2 + 1)
,

where wi ⋅w j = u iu j + v iv j , so ∣wi ∣
2
= u2

i + v2
i .

To simplify the computations, we introduce the complex coordinates (z, z) with
the help of the transformation z = u + iv, z = u − iv. _en the metric of B2

κ is given
by ds2 = 4

(1+κ∣z∣2)2 dz dz, where 4
(1+κ∣z∣2)2 is the conformal factor.

Some long but straightforward computations show that, for κ /= 0, these changes
of variables applied to the position vectors bring the force function Uκ given by (4.1)
to the form

Wκ(z, z) = ∑

1≤i< j≤N

∣κ∣1/2m im jB i j

∣A2
i j − B

2
i j ∣

1/2 ,

where z = (z1 , . . . , zN), z = (z1 , . . . , zN), and z i is the coordinate of the body ofmass
m i , i = 1, . . . ,N ,

B i j ∶= B(z i , z j , z i , z j) ∶= 2κ−1(z iz j + z jz i) + (∣z i ∣
2
− κ−1)(∣z j ∣

2
− κ−1),

A i j ∶= A(z i , z j , z i , z j) ∶= (∣z i ∣
2
+ κ−1)(∣z j ∣

2
+ κ−1), i , j ∈ {1, . . . ,N}, i /= j.

_e equations ofmotion (4.2) take the form

(4.4) m i z̈ i =
(κ∣z i ∣

2
+ 1)2

2
∂Wκ

∂z i
(z, z) +

2∣κ∣m iz i ż2
i

κ∣z i ∣2 + 1
, i = 1, . . . ,N ,

where
∂Wκ

∂z i
(z, z) =

N

∑

j=1, j/=i

2m im jE i j

∣κ∣11/2[σ(A2
i j − B

2
i j)]

3/2 ,

E i j ∶= E(z i , z j , z i , z j) ∶= 2(κ∣z i ∣
2
+ 1)(κ∣z j ∣

2
+ 1)2

(z j − z i)(κz iz j + 1).
For κ = 0, (4.4) is undetermined. By looking just at these equations, it is also

far from obvious that the Newtonian equations are recovered when κ → 0, but this
property is satisûed because equations (4.4) and (2.2) are equivalent, a result proved
in [16,25].

Since the equations of motion written in intrinsic coordinates do not solve our
problem either, let us move to another attempt to ûnd a solution. _e idea is to com-
bine the use of extrinsic coordinates given by a frame centred at the north pole of
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the 3-spheres with diòerent distances than the geodesic ones, namely the Euclidean
distance for κ ≥ 0 and theMinkowski distance for κ < 0.

5 Extension to the Flat Case

In this section we provide a form of the equations ofmotion that extends from κ /= 0
to κ = 0, thus solving the problem we posed at the beginning of this paper. Given the
position vectors qi = (x i , y i , z i ,w i) for the body m i and q j = (x j , y j , z j ,w j) for the
body m j , i , j ∈ {1, . . . ,N}, i /= j, let us introduce the notation

q i j ∶= [(x i − x j)
2
+ (y i − y j)

2
+ (z i − z j)

2
+ σ(w i −w j)

2
]
1/2 .

For κ ≥ 0, q i j is the Euclidean distance between m i andm j inR4. But for κ < 0, q i j is
not a distance in the usual mathematical sense of the word. Although the quantities

(x i − x j)
2
+ (y i − y j)

2
+ (z i − z j)

2
− (w i −w j)

2

are always non-negative, such that the expressions q i j are positive for distinct point
masses m i and m j , with positions given by the vectors qi and q j , it is not generally
true that q ik ≤ q i j+q jk , so this “distance” does not satisfy the triangle inequality. Nev-
ertheless, the “Minkowski distance”misnomer has been employed in themathematics
and physics literature for more than a century now.

Using the fact that 2q i j
= q2

i + q2
j − q2

i j , which follows from a straightforward
computation, the force functionUκ given by (2.1) can bewritten in the ambient space
as

(5.1) Vκ(q) = ∑

1≤i< j≤N

m im j(κq2
i + κq2

j − κq2
i j)

[2(κq2
i + κq2

j)q
2
i j − κ(q2

i − q2
j)

2
− κq4

i j]
1/2 .

On themanifolds of constant curvature κ, the force function Vκ becomes

Vκ(q) = ∑

1≤i< j≤N

m im j(2 − κq2
i j)

q i j(4 − κq2
i j)

1/2 ,

which is the same as

(5.2) Vκ(q) = ∑

1≤i< j≤N

m im j( 1 −
κq2

i j
2 )

q i j( 1 −
κq2

i j
4 )

1/2
.

_e dependence of Vκ on q is obvious from the deûnition of the extrinsic mutual
distances q i j . We prefer to emphasize the dependence on q instead of the dependence
on q i j alone, because the equations ofmotion involve∇qiVκ . Butwhereas the formula
of Uκ in (2.1) cannot be extended to the �at case, the right-hand side of (5.2) makes
immediate sense for κ = 0. Since Vκ depends only on themutual distances, which are
ûnite, we recover for κ = 0 the classical Newtonian force function of the Euclidean
space, V0(q) = ∑1≤i< j≤N

m im j
q i j

.
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Let us now see how the equations ofmotion (2.2) get transformed. Straightforward
computations show that we can put them into the form

(5.3) q̈i =
N

∑

j=1, j/=i

m j[q j − ( 1 −
κq2

i j
2 )qi]

q3
i j( 1 −

κq2
i j

4 )
3/2

− κ(q̇i ⋅ q̇i)qi , i = 1, . . . ,N .

For κ /= 0, the 2N initial conditions at t = 0, κq2
i = 1, κqi ⋅ q̇i = 0, for i = 1, . . . ,N ,

must be satisûed to keep the bodies on themanifolds S3
κ or H3

κ .
Since the origin of the coordinate system lies at the centre of the 3-spheres, when

κ → 0, we have that ∣qi ∣ → ∞. So for κ = 0 the equations are still undetermined. To
overcome this last diõculty we can now make use of the idea introduced in Section
3, namely shi� the origin of the coordinate system to theNorth-Poles (0, 0, 0, ∣κ∣−1/2)
of the 3-spheres. For this consider again the transformations

(5.4) ω i = w i − ∣κ∣−1/2 , i = 1, . . . ,N ,

which leave the variables x i , y i , z i , i = 1, . . . ,N , unchanged, andmake the notations

R = (0, 0, 0, σ ∣κ∣1/2), ri = (x i , y i , z i ,ω i), for i = 1, . . . ,N , r = (r1 , r2 , . . . , rN),

r i j ∶= [(x i − x j)
2
+ (y i − y j)

2
+ (z i − z j)

2
+ σ(ω i − ω j)

2
]
1/2 .

By noticing that r i j = q i j , we can see that the potential is practically unchanged, i.e.,

Vκ(r) = ∑

1≤i< j≤N

m im j( 1 −
κr2i j
2 )

r i j( 1 −
κr2i j
4 )

1/2
,

and that the equations ofmotion become

(5.5) r̈i =
N

∑

j=1, j/=i

m j[r j − ( 1 −
κr2i j
2 )ri +

r2i jR
2 ]

r3i j( 1 −
κr2i j
4 )

3/2
− (ṙi ⋅ ṙi)(κri +R), i = 1, . . . ,N .

At t = 0, the initial conditions must have the 2N constraints

κr2i + 2∣κ∣1/2ω i = 0, κri ⋅ ṙi + ∣κ∣1/2ω̇ i = 0, i = 1, . . . ,N .

Due to the invariance of S3
κ and H3

κ relative to the equations ofmotion, these condi-
tions are satisûed for all t. _ey are also identically satisûed for κ = 0. System (5.5)
still bears a small inconvenience: it is not analytic for all κ ∈ R. In any study of bifur-
cations of solutions relative to some given parameter, it is desirable that the system be
analytic in that parameter. To endow our system with this property, we introduce the
new parameter δ = σ ∣κ∣1/2, which implies that κ = σδ2. _en equations (5.5) become

(5.6) r̈i =
N

∑

j=1, j/=i

m j[r j − ( 1 −
σδ2 r2i j

2 )ri +
r2i jQ
2 ]

r3i j( 1 −
σδ2 r2i j

4 )
3/2

−(ṙi ⋅ṙi)(σδ2ri+Q), i = 1, . . . ,N ,

whereQ = (0, 0, 0, δ). _e constraints are then given by

(5.7) σδ2r2i + 2∣δ∣ω i = 0, σδ2ri ⋅ ṙi + ∣δ∣ω̇ i = 0, i = 1, . . . ,N .
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System (5.6) is obviously analytic in the parameter δ. _e fact that the constraints
do not share this property at 0 is of no consequence in the study of bifurcations of
solutions when passing through δ = 0.

On components, system (5.6) can be written as

ẍ i =
N

∑

j=1, j/=i

m j[x j − ( 1 −
σδ2 r2i j

2 )x i]

r3i j( 1 −
σδ2 r2i j

4 )

3/2 − σδ2
(ṙi ⋅ ṙi)x i ,

ÿ i =
N

∑

j=1, j/=i

m j[ y j − ( 1 −
σδ2 r2i j

2 ) y i]

r3i j( 1 −
σδ2 r2i j

4 )

3/2 − σδ2
(ṙi ⋅ ṙi)y i ,

z̈ i =
N

∑

j=1, j/=i

m j[ z j − ( 1 −
σδ2 r2i j

2 ) z i]

r3i j( 1 −
σδ2 r2i j

4 )

3/2 − σδ2
(ṙi ⋅ ṙi)z i ,

ω̈ i =
N

∑

j=1, j/=i

m j[ω j − ( 1 −
σδ2 r2i j

2 )ω i +
δr2i j
2 ]

r3i j( 1 −
σδ2 r2i j

4 )

3/2 − (ṙi ⋅ ṙi)[σδ2ω i + δ],

for i = 1, . . . ,N , with the 2N constraints

σδ2
(x2

i + y2
i + z2

i ) + δ
2ω2

i + 2∣δ∣ω i = 0,

σδ2
(x i ẋ i + y i ẏ i + z i ż i) + δ2ω i ω̇ i + ∣δ∣ω̇ i = 0, i = 1, . . . ,N .

We can now assume that,when δ varies and the bodies are ûxed on their respective
manifolds, only the direction (but not the length) of the position vectors changes.
_en for δ = 0, the values of ∣ri ∣ are ûnite, so we recover Newton’s equations in the
Euclidean case,

(5.8) r̈i =
N

∑

j=1, j/=i

m j(r j − ri)
r3i j

, i = 1, . . . ,N ,

where, since δ = 0 and ω i = 0, i = 1, . . . ,N , the position vectors, ri = (x i , y i , z i , 0),
for i = 1, . . . ,N , are free of constraints. Notice that, for consistency, we consider that
the motion in R3 takes place in a hyperplane of R4, i.e., in a space of zero Gaussian
curvaturewith position vectors ri = (x i , y i , z i , 0) and velocities ṙi = (ẋ i , ẏ i , ż i , 0), so
the coordinates and the velocities can be assumed to have the 2N constraints, ω i =

ω̇ i = 0, i = 1, . . . ,N , the same number as the constraints (5.7) that occur for δ /= 0.
Consequently the dimension of the phase space of system (5.8) is 6N , a conclusion
that can be drawn either because there are no constraints in R3 or since there are 8N
coordinate and velocity components bound by 2N constraints in R4.

_e equations ofmotion (5.5) are apparently less natural than the other equations
ofmotion presented in this paper, because they use the Euclidean distance in R4 and
the Minkowski distance in R3,1 instead of the standard geodesic distance between
bodies. But for any given parameter δ, the Euclidean or the Minkowski distance
uniquely determines the geodesic distance, so there is no room for confusion. More-
over, (5.6) is very convenientwhenwe regard the classical Newtonian approach as the
�at case of themore general problem that describes the gravitational motion of point
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masses in spaces of constant curvature. We emphasize that, unlike (2.2), for which
it is far from obvious what happens when κ → 0, (5.6) brings forth the equations of
motion of the curved N-body problem for any δ ∈ R.

System (5.5) thus opens the way towards the study of the classical N-body prob-
lem in the larger context of spaces of constant curvature. In particular it allows us to
understand the dynamical behaviour of solutions near δ = 0. _is is an important
physical problem, since we actually still do not know whether physical space is �at
or curved, although it is now widely agreed that, should the curvature be nonzero,
its absolute valuemust be very small. Although this is more of a cosmological prob-
lem, which refers to very large distances and not to those traditionally encountered
in celestial mechanics, it is still an interesting mathematical problem to regard the
equations describing the gravitational motion of N bodies from the point of view of
curved space.

6 The Integrals of Motion

In this last section we complete our paper with a study of the bifurcations that occur
for the integrals of motion when the parameter passes through the value δ = 0. _e
results we obtain here show that the classical case appears to be quite special in the
context of curved space in the sense that it is the exception rather than the rule. _e
only integral ofmotion that encounters no bifurcations is the integral of energy,which
exists for all δ ∈ R, whereas all the other integrals change in number.

Ithasbeenknown since 1887 that the equations thatdescribe the three-dimensional
Newtonian N-body problem have ten linearly independent integrals of motion that
are algebraic functions relative to position vectors andmomenta and that there are no
other such integrals of this kind [3]. Today these aspects are better understood from
the perspective of Noether’s theorem, and they have been discussed in [6] relative to
generators of isometry groups. _ere is one integral of energy, three integrals of the
centre ofmass, three integrals of the linear momentum, and three integrals of the to-
tal angular momentum. As we previously proved, for nonzero curvature there is one
integral of energy and six integrals of the angular momentum, but no integrals of the
centre ofmass and of the linear momentum [7,8, 14]. We will further show how these
bifurcations occur in (5.6) when the parameter δ passes through 0.

6.1 The Integrals of the Centre of Mass and the Linear Momentum

_e typical way to obtain the integrals of the linear momentum is to sum up m i r̈i in
(5.6) from i = 1 to i = N , notice that the obtained expression is 0, and then integrate
this identity. _e integrals of the centre ofmass follow a�er another integration. More
precisely, we have that

N

∑

i=1
m i r̈i =

N

∑

i=1

N

∑

j=1, j/=i

m im j[r j − ( 1 −
σδ2 r2i j

2 )ri +
r2i jQ
2 ]

r3i j( 1 −
σδ2 r2i j

4 )

3/2 −

N

∑

i=1
m i(ṙi ⋅ ṙi)(σδ2ri +Q)

=

N

∑

i=1

N

∑

j=1, j/=i

m im j
r2i j
2 (σδ2ri +Q)

r3i j( 1 −
σδ2 r2i j

4 )
3/2

−

N

∑

i=1
m i(ṙi ⋅ ṙi)(σδ2ri +Q),
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which is 0 for any solution only if δ = 0. By integrating in the case δ = 0, we obtain
the three integrals of the linear momentum,

(6.1)
N

∑

i=1
m i ṙi = a,

where a = (a1 , a2 , a3) is an integration vector. By integrating (6.1), we are led to the
integrals of the centre ofmass,

(6.2)
N

∑

i=1
m iri − at = b,

where b = (b1 , b2 , b3) is another integration vector. Obviously, these integrals do not
show up for δ /= 0, a fact that puts into the evidence the bifurcations these integrals
encounter at δ = 0.
From the dynamical point of view, the integrals (6.1) and (6.2) express the fact that

the centre ofmass of the particle system moves uniformly along a straight line when
a /= 0. By taking the origin of the coordinate system at the centre of mass, which
implies that a = b = 0, the above integrals become, respectively,

(6.3)
N

∑

i=1
m i ṙi = 0,

(6.4)
N

∑

i=1
m iri = 0.

_eir physical interpretation is that the centre ofmass is ûxed relative to the coordi-
nate system. _ismeans that the forces acting on the centre ofmass cancel each other.
In general, no such physical properties occur when δ /= 0. In particular, there is no
point atwhich the forces acting on it cancel each other. Nevertheless, some particular
solutions of the equations of motion have this property, as shown in previous work
[6, 8].

6.2 The Integral of Energy

We further obtain the integral of energy for (5.3) and then use the change of vari-
ables (5.4) and the change of parameter to derive this integral for (5.6). _e standard
approach is to take m i q̈i ⋅ q̇i and sum up from i = 1 to i = N , i.e.,

N

∑

i=1
m i q̈i ⋅ q̇i =

N

∑

i=1
q̇i ⋅ ∇qiVκ(q) −

N

∑

i=1
m i(q̇i ⋅ q̇i)(κqi ⋅ q̇i) =

d
dt

Vκ(q).

By integration we obtain the energy integral, Hκ(q, q̇) ∶= Tκ(q, q̇) − Vκ(q) = h,
whereHκ is theHamiltonian function, Tκ(q, q̇) ∶= 1

2 ∑
N
i=1 κm iq2

i (q̇i ⋅q̇i) is the kinetic
energy, and h is an integration constant. Using the transformations (5.4) and the
change of parameter, the kinetic energy Tκ becomes

Tκ(r, ṙ) =
1
2

N

∑

i=1
m i(σδ2r2i + 2∣δ∣ω i + 1)(ṙi ⋅ ṙi),
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so the integral of energy for (5.5) takes the form

1
2

N

∑

i=1
m i(σδ2r2i + 2∣δ∣ω i + 1)(ṙi ⋅ ṙi) − ∑

1≤i< j≤N

m im j( 1 −
σδ2 r2i j

2 )

r i j( 1 −
σδ2 r2i j

4 )
1/2

= h.

For δ = 0, we recover the well-known integral of the Newtonian equations,

1
2

N

∑

i=1
m i(ẋ2

i + ẏ2
i + ż2

i ) − ∑

1≤i< j≤N

m im j

r i j
= h,

so no bifurcations occur in this case.
_e energy integral also shows that (5.6) is Hamiltonian and that theHamiltonian

function is given by

Hκ(r, ṙ) ∶=
1
2

N

∑

i=1
m i(σδ2r2i + 2∣δ∣ω i + 1)(ṙi ⋅ ṙi) − ∑

1≤i< j≤N

m im j( 1 −
σδ2 r2i j

2 )

r i j( 1 −
σδ2 r2i j

4 )
1/2

.

Notice, however, that if we want to derive the equations ofmotion from the above
Hamiltonian, then the expression of the potential must be written in the ambient
space, i.e., the form (5.1) must be taken into account, before applying the partial
derivatives to Hκ . A�er that the constraints can be taken into consideration to see
that, restricted to their respective manifolds, the equations of motion take the form
derived in the previous section.

6.3 The Integrals of the Total Angular Momentum

As in the case of the energy integral, we can derive the integrals of the total angular
momentum for (5.3) and use the transformation (5.4) and the change of parameter to
obtain the integrals for (5.6). _e total angular momentum is deûned as

N

∑

i=1
m iqi ∧ q̇i ,

where ∧ represents the exterior product of the Grassman algebra over R4. From the
physical point of view, this quantitymeasures the rotation of the system relative to the
six planes given by every two of the four axes that form the coordinate system of R4.
We further show that this quantity is conserved for the equations ofmotion (5.3), i.e.,

(6.5)
N

∑

i=1
m iqi ∧ q̇i = c,

where c = cwxew ∧ ex + cwyew ∧ ey + cwzew ∧ ez + cx yex ∧ ey + cxzex ∧ ez + cyzey ∧ ez ,
with the coeõcients cwx , cwy , cwz , cx y , cxz , cyz ∈ R, and

ex = (1, 0, 0, 0), ey = (0, 1, 0, 0), ez = (0, 0, 1, 0), ew = (0, 0, 0, 1)

represent the vectors of the standard basis of R4. We obtain this conservation law by
integrating the identity formed by the le� and right expressions in the sequence of
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equations

N

∑

i=1
m i q̈i ∧ qi =

N

∑

i=1

N

∑

j=1, j/=i

m im jq j ∧ qi

q3
i j( 1 −

κq2
i j

4 )
3/2

−

N

∑

i=1
[

m im j( 1 −
κq2

i j
2 )

q3
i j( 1 −

κq2
i j

4 )
3/2

− κm i(q̇i ⋅ q̇i)]qi ∧ qi = 0,

which follows a�er ∧-multiplying the equations of motion (5.3) by m iqi and sum-
ming up from i = 1 to i = N . _e last of the above identities follows from the skew-
symmetry of the ∧ operation and, consequently, from the fact that qi ∧ qi = 0, i =
1, . . . ,N . On components, the six integrals in (6.5) can be written as

N

∑

i=1
m i(x i ẏ i − ẋ i y i) = cx y ,

N

∑

i=1
m i(x i ż i − ẋ iz i) = cxz ,

N

∑

i=1
m i(y i ż i − ẏ iz i) = cyz ,

N

∑

i=1
m i(w i ẋ i − ẇ ix i) = cwx ,

N

∑

i=1
m i(w i ẏ i − ẇ i y i) = cwy ,

N

∑

i=1
m i(w i ż i − ẇ iz i) = cwz .

Using the transformations (5.4) and the change of parameter, we can see that for
system (5.6) these integrals take the form

N

∑

i=1
m i(x i ẏ i − ẋ i y i) = cx y ,

N

∑

i=1
m i(x i ż i − ẋ iz i) = cxz ,

N

∑

i=1
m i(y i ż i − ẏ iz i) = cyz ,

N

∑

i=1
m i ẋ i+ ∣δ∣

N

∑

i=1
m i(ω i ẋ i− ω̇ ix i) = ∣δ∣cωx ,

N

∑

i=1
m i ẏ i+ ∣δ∣

N

∑

i=1
m i(ω i ẏ i− ω̇ i y i) = ∣δ∣cωy ,

N

∑

i=1
m i ż i + ∣δ∣

N

∑

i=1
m i(ω i ż i − ω̇ iz i) = ∣δ∣cωz ,

where cωx = cwx , cωy = cwy , cωz = cwz .
So for δ /= 0, system (5.6) has six integrals of the total angular momentum. But

at δ = 0, only the ûrst three integrals of the total angular momentum survive; the
others become the three integrals of the linear momentum (6.3) obtained when the
origin of the coordinate system is taken at the centre of mass of the particle system.
_inking of this phenomenon geometrically, it is not so surprising to see that some of
the angular momentum integrals of the sphere and hyperbolic sphere become linear
momentum integrals when passing from curved spaces to the Euclidean space. So an
interesting kind of bifurcation occurs in this case as we pass through the value δ = 0
of the parameter.

7 Conclusions

_e study of the new equations of motion (5.6) is neither simpler nor more compli-
cated than that of the systems provided in intrinsic or extrinsic coordinates in Sections
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2, 3, and 4, although certain problems might bemore approachable with some of the
equations presented in this paper thanwith others. Nevertheless, system (5.6) has the
advantage of unifying the cases δ /= 0 and δ = 0, thus oòering a larger perspective
for the Newtonian equations of the N-body problem. As we showed above, some in-
teresting bifurcations occur for the integrals of motion as we pass through the value
δ = 0 of the curvature parameter. Since the geometric shape of the physical space
still eludes us, a further study of these equations might bring more insight on this
question.
All the solutions obtained for δ = 0 can now be viewed from the point of view of

δ /= 0 and vice versa, in the sense of studyingwhether such solutions bifurcate or occur
for all values of the curvature parameter δ, under what circumstances they show up,
andwhether the stability of these solutions changeswith δ. Consequently system(5.6)
opens new perspectives of research thatwere not possiblewith the previously derived
equations ofmotion. In particular, the study of the Lagrangian and the Eulerian orbits
of the 3-body problem can be considered in the future in the context of this larger
framework. But these are only a couple of the questions among themany new exciting
problems that can be considered from this novel point of view.

It is also interesting to remark the change in thenumberof ûrst integrals thatoccurs
when passing through the value δ = 0 of the parameter. Although this phenomenon
occurs in other systems of diòerential equations, it seems to be quite rare. Neverthe-
less, themessage iswell known: fewer integrals imply fewer symmetries and therefore
suggestmore complicated behaviour. However, a fact never encountered before, as far
as our knowledge goes, is the change of the dimension of the space relative to the ex-
trinsic coordinates we introduced here when the parameter is varied. _ough one
may argue that the dimension of the involvedmanifolds is the same, the background
space in which they are embedded is not. Whether this fact will lead to new general
insights, is something we still have to understand.

Acknowledgment _e author is indebted to Carles Simó for suggesting several im-
provements to an earlier form of this paper.
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