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TWO FAMILIES OF ASSOCIATED WILSON 
POLYNOMIALS 

M. E. H. ISMAIL, J. LETESSIER, G. VALENT AND J. WIMP 

ABSTRACT. TWO families of associated Wilson polynomials are intro
duced. Both families are birth and death process polynomials, satisfying 
the same recurrence relation but having different initial conditions. Con
tiguous relations for generalized hypergeometric functions of the type -jF^ 
are derived and used to find explicit representations for the polynomi
als and to compute the corresponding continued fractions. The absolutely 
continuous components of the orthogonality measures of both families are 
computed. Generating functions are also given. 

1. Introduction and Notation. The Wilson polynomials, introduced by 
James A. Wilson in his Ph.D. thesis [39], are the most general polynomials 
known of hypergeometric type. All of the classical, and many other polynomi
als as well, can be expressed as special or limiting cases of these polynomials. 
Wilson's account of some of his thesis work on the Wilson polynomials is 
in [40], and further work can be found in Askey and Wilson [3]. Complete 
references and further results are in the article of Andrews and Askey [1]. A 
^-analogue of the Wilson polynomials are called the Askey-Wilson polynomials 
or the 403 polynomials. Andrews and Askey [1] define a sequence of polyno
mials to be classical if and only if it is a special case or a limiting case of the 
Askey-Wilson polynomials. 

The Wilson polynomials are a four parameter set which we denote by 

(1.1) Pn(a, b, c, d; x) = Pn(x). 

They satisfy the three term recurrence relation 

\nyn+\ + Vnyn-\ - (An + lln)yn, 

a2-t\y^ =0, y0 = 1 

(n + a + b)(n + a + c)(n + a + d)(n + s — 1) 
(2n + s)(2n + s- 1) ' 

n(n + b + c — \){n + b + d— \)(n + c + d — 1) 
(2n + s-2){2n + s- 1) ' 

a + b + c + d. 
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(1.2) -xyn = 

x := 
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The Wilson polynomials are birth and death process polynomials with birth rates 
Xn and death rates [in. Birth and death processes are treated in Bailey [6]. The 
connection between birth and death processes and polynomials orthogonal on a 
subset of [0, oo) was pointed out by Karlin and McGregor in [19]. 

Wilson [39] gave a closed-form expression for these polynomials, 

( — rc, n + s — l,a — t.a + t \ 
;1 

a + b^a + c^a + d J 

and showed that when, a, b, c, d were real and positive, for example, the 
polynomials constituted an orthogonal set on (—oo, oo) with respect to the 
weight function 

(1.4) \T(a + it)T{b + it)T(c + it)T(d + it) /T(2it)\2. 

We view it as unlikely that the Wilson polynomials can be further general
ized by the straightforward process of sticking more numerator or denominator 
parameters into the 4F3 in (1.3) for, as the work of Lewanowicz, [22], [23], 
implies, such a hypergeometric function would undoubtedly satisfy a recurrence 
relation of minimal order greater than two. There are, however, other procedures 
available for extending the Wilson polynomials. One is to discuss ^-analogues 
of the polynomials, and the other is to discuss what we call associated Wilson 
polynomials. 

Askey and Wilson, see [4], employed the former approach and we employ 
the latter approach in this paper. Recall that if a system of polynomials {pn(x)} 
satisfies the three-term recurrence relation 

(1.5) - xyn = Anyn+l + Bnyn-\ - Cnyni 

n = 0, 1, 2, . . . , p-x = 0, p0 = 1, 

where At1 Bt, Ct are defined for all t > 0, then for any 7 = 0, we may define 
the associated polynomials by the recurrence relation 

(1.6) — xyn = An+Jyn+\ + Bn+1yn^\ — Cn+1yn, 

n = 0, 1, 2, . . . , /?_i = 0 , po = 1. 

The associated polynomials are always more than a laboratory curiosity. They 
are often vital for discussing the distribution function and spectrum of the origi
nal polynomials pn{x) and for analyzing the nature of the Padé approximants 
based on the continued fraction defined by (1.5). However, it is usually quite 
difficult to provide an explicit representation for the associated polynomials 
pn(x; 7) or to construct their distribution function. Even for the Jacobi poly
nomials, this task is formidable, see Wimp [41]. As the reader can well guess, 
the task for the Wilson polynomials, which generalize Jacobi polynomials, is 
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even more daunting. The analysis is extremely technical, and rests on a remark
able body of nearly forgotten work associated with such names as Bailey, Orr, 
Whipple, all British analysts who over forty year period starting late in the last 
century discovered many intriguing properties of generalized hypergeometric 
series, particularly series of the type -jF^ with argument 1. Their work enables 
us both to construct an expression for the associated Wilson polynomials and 
to compute the continuous component of their distribution function. 

For most of our special functions, we employ the notation of Erdélyi [11] and 
Slater [35] and the terminology of asymptotic analysis of Olver [28]. We denote 
the associated Wilson polynomials by Prt(«, b1 c, d\ x\ 7) = Pn(x\ 7). The 
hypergeometric function 

( a\,a2l...,ap+\ \ 
; i J 

b\,b2,*..,bp J 

is meromorphic in its parameters. We use the above to signify the analytic 
continuation of the function in its parameter space in C2p+\ see Section 2. 

The purpose of this work is to analyze the associated Wilson polynomials. 
In Section 2 we derive and study bases of solutions to the associated Wilson 
recurrence relation. This is achieved by investigating the invariance of the as
sociated Wilson recurrence relation. It turns out that there are two families of 
associated Wilson polynomials. Sections 3 and 4 contain explicit representations 
for both families and the corresponding weight functions. Section 5 is devoted 
to a general discussion about the nature of generating functions of polynomials 
{PnW} generated by a three term recurrence relation with coefficients which 
are certain rational functions of n. This is an extension of the works of Letessier 
and Valent [20], [21] who developed the generating function method when the 
coefficients in the three term recurrence relation are polynomials of degree 2. In 
Section 6 we apply the methods of Section 5 to derive two different generating 
functions for a family of associated Wilson polynomials. 

The associated Askey-Wilson polynomials are currently under investigation 
[17]. The methodology of [17] overlaps with this work in the sense that both use 
contiguous relations. However [17] does not contain any generating functions 
for the associated Askey-Wilson polynomials. On the other hand [17] contains 
some representations that exhibit the polynomial character of the polynomials 
under consideration. The associated Askey-Wilson polynomials are orthogonal 
on a bounded set where general theorems exclude non-isolated discrete masses 
except possibly at the end points of the continuous spectrum. The situation in 
the case of the associated Wilson polynomials is far more complicated because 
of the unboundedness of the spectrum. 

This work motivated Masson [26] to find an alternate approach to compute 
the weight function of one of the two families of associated Wilson polynomials 
considered in this paper. 
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2. Solutions of The Associated Wilson Recursion. For the moment let 
a, /?, c, d be fixed positive parameters, z a complex variable. We find it 
convenient to use the following notation. 

(2z + s){2z + s + 1) 
(2.1) s :=a + b + c + d, A(z) := 

C(z) := 

(z + l)(z + 6 + c)(z + b + d)(z + c + d) 

(z + s)(z + a + b+ l)(z + a + c + l)(z + a + d+ l)(2z + s) 
(z + l)(2z + j + 2)(z + b + c)(z + b + d)(z + c + d) 

B(z):=-l-C(z). 

It is easily verified that the following algebraic equation is an identity in the 
complex variable z: 

(2.2) A(z) 
(z + 2)(z + s - l ) 

k(a + b + k- \){a + c + k- \)(a + d + k - 1) 1 

(z + 2)(z + s - l ) J 

_ ^ (~z + fc-2)(z +5 + fc-1) | (z + s + /c)(z + s + £ - 1) 
U j (Z + 2)(Z + J - 1 ) + U j (z + s - l ) ( z + s) 

(-z + k-l)(-z + k-2) 
(z + l)(z + 2) 

0. 

Let 

; l , 
a + b,a + c,a + d J 

(2.4) /**(*):= ( a - 0 * ( a + 0*. 

We first derive a second order difference equation satisfied by f(z). The result 
is stated as Theorem 1 below. Note that 

(2.5) hM(f) = (a2 - t2)hk(t) + lc(k + 2a)hk(t). 

We multiply equation (2.2) by 

n f>\ (-z-2)k(z + s-\)k 

(2-6) 777 77~7 w !ThkW 
k\(a + b)k(a + c)k(a + d)k 

and sum over k from & = 0 to oo. The second, third, and fourth sums converge, 
and give 

(2.7) f(z) + B(z)f(z + 1) + C(z)f(z + 2). 
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For the first sum, we get 

(2.8) A(z) lim ( Y (-*-»>»-•(*+ ')*-» h{t) 

_ A k{k + 2a)(-z-l)k(z + s)kh 

f^ k\(a + b)k(a + c)k(a + d)k * U 

N-l 

= A( ) lim ( V ( ~ Z ~ l)*(z + s)*ft*+i(0 
Z N^°° \hokl(a + b)k{a + c)k(a + d)k 

yk(k + 2a)(-z-l)k(z + s)khk(t)) 
f^o k\(a + b)k(a + c)k(a + d\ J 

M Ï r i^(-Z-l)k(z + s)k[hk+l(t)-k{k + 2a)hk(t)] 
= A(z) Jim 2 ^ — 

^=o k\(a + b)k(a + c)k(a + d)k 

N(N + 2q)(-z - \)N(z + s)NhN(t) 
N\(a + b)N(a + c)N(a + d)N 

Using Stirling's formula on the last term and the relationship (2.4) in the sum 
gives 

a + b,a + c,a + d 
Z — l,z + s,a + t,a — t. 

(2.9) A(z)(a2-t2)f(z + \)-A(z)T 

In (2.9) we used Slater's notation for products of gamma functions. We have 
thus proved the following theorem. 

THEOREM 1. For all but isolated values of a, b, c, d, z, the function f(z) in 
(2. 3) satisfies the second order non-homogeneous difference equation 

(2.10) f(z) + [A(z)(a2 - t2) + B(z)]f(z + 1) + C(z)f(z + 2) = G(z), 

-(2z + s)(2z + s - 1) ^ r fl + /77fl + c,a + d 1 
(fc + c + z)(fr + d + z)(c + d + z) ' l-z,z + s,a + t,a-t. 

Observe that when z — n, a non-negative integer, G(z) — 0 and the recurrence 
relation is precisely the one satisfied by the Wilson polynomials. However, when 
i = n + 7 and 7 is not a non-negative integer, then (2.10) does not yield the 
homogeneous recurrence relation for the associated Wilson polynomials. Our 
task (and it is not a trivial one) in this section is, from the above considerations, 
to find a basis of solutions for the latter recurrence relation. 

It will simplify matters to introduce the functions 

(2.11) F(z) := <j>(z)f{z\ <Kz) := (a + b\{a + c)z(a + d\/(z + s - \\ 
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where 

(2.12) (u)a :=T(u + a)/T(u). 

Therefore F{z) satisfies the non-homogeneous recurrence relation 

(2.13) L[F(z)] = H{z), H(z) := <Kz)G{z), 

L [F(z)] := E° + [a(z)(a2 - t2) + (5{z)\E{ + 7(z)£2, 

where Ek is the shift operator and 

(2.14) a(z) 

0(z) 

7(z) 

= (2z + s - lhMz)/[(z + s - \){a + £ + z)(tf + c + z)(tf + J + z)] 

= (2z + j - l)2B(z)/[(z + s- \){a + b + z)(tf + c + z)(tf + J + z)] 

= (2z + s- l)4C(z)/[(z + 5 - l)2(a + * + z)2 

(a + c + z)2(a + ^ + z)2] 

Now let 7(z) be any function of z, a, b, c, J, and define 

(2.15) J(z) — J(z) with a, b, and z replaced by 1 — b, I — a, 

and a + b + z — 1, respectively. 

Thus """ defines an operator. A straightforward (but very tedious) computation 
shows that L is invariant under the operator " that is 

(2.16) L = L. 

Applying "to both sides of the equation in (2.13) gives 

(2.17) L[F(z)] = H(z), 

n i c , rrÊYM sin[7T(̂  + b + zW(a + Q I > - Q 
(2.18) L [F(z)] = . , . ^ , . „ , . —^H(z) . 

sin(7rz)r(l — b + t)T(l —b — t) 
Since the function ra(z) 

(2.19) m(z) := sin[7r(a + b + z)]/ sin(7rz) 

has period 1, we may move l/ra(z) inside the L operator to obtain 

(2-20) L {smMa + b+Z)m« + on« - o F ( z ) 1 = ~"(z)' 
Adding equations (2.13) and (2.20) gives 

(2.2„ X[TO1=0, TO:=FW,S'°;7,r('-';i"'r('-|
fc-''fc, 

sin[7r(<3 + b + z)]T(a + ORfl — 0 
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It turns out that, by using known transformations and connecting formulas for 
jF^s and 4F3X Y(z) may be expressed in terms of a -jF^. 

Here and in what follows, we use the notation 

(2.22) W(a\c,d,e,f,g) 

( (2,1 + a/2,c,d,e,f,g 
= 7^6 

V a/2, I + a — c, I + a — d, \ + a — e, 1 + a —/, 1 + a — g 

for a very well-poised jF^. The W notation, due to Bailey [7], has many 
advantages. It is easier to type and print and exhibits the essential parame
ters in the very well-poised jF^ series. Using the formula (4) on page 29 
of Bailey [7], we find Y(z) may be expressed in terms of a single function, 
W(2a + c + d — 1 + r, a + c + z, a + d + z, a + t, a — t, z + s — 1) if we make the 
identification 

(2.23) A = 2a + c + d — 1 + z, C = a + c + z, D = a + d + z, 

E = a + t, F' = a — t, G = z + s — 1. 

(We will always use capitals to denote Bailey's parameters.) 
Referring back to the original equation (2.10) we see that 

(2.24) / i ( z ) : = r 2a + c + d + z,c + d + z 
a + c + d + z + t^a + c + d — t 

a + c + z, a + d + z, z + s — I, a + t, a — t) 

W(2a + c + d- 1 +z\ 

is a solution of the difference equation 

(2.25) f(z) + [A(z)(a2 - t1) + B(z)V(z + 1) + C(z)f(z + 2) = 0. 

Note that if the jF^ in (2.24) is interpreted as a series, then W will converge only 
when Re z < 1— Re (a + b). However, a transformation of Bailey [7, (1), p. 62] 
with A = 2a + c + d + z—\, C = a + t, D = a — t, E — a + c + z, F — a + d + z, 
produces a jF^ convergent for Re z > — Re (c + d). We do not necessarily 
assume any ^+1^(1) makes sense as a convergent series, rather, we use p+\Fp(X) 
to indicate the analytic continuation of that function in its parameter space. This 
continuation will exist provided that none of the denominator parameters nor 
the quantity 

(2.26) 2^, (denominator parameters) — 2_\ (numerator parameters), 

is a negative integer or zero, see Wimp [42] . 
Other linearly independent solutions of the equation (2.25) may be obtained 

by interchanging b and c or b and d in/i(z). 
By letting z = n + 7, we arrive at Theorem 2. 
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THEOREM 2. The associated Wilson recurrence relation 

(2.27) - xyn = An>wi + linyn-\ — (A„ + Hn)yn, x := a2 - t2, 

Xn:= 
(n + 7 + a + fc)(n + 7 + a + c)(n + 7 + « + d)(« + 1 + s — 1) 

(2n + 27 + s - \)iln + 27 + s) ' 

(rc + 7)(rc + 7 + 6 + c - l)0z + 7 + & + d - l)(w + 7 + c + J - 1) 

^ ' (2n + 27 + s - l)(2n + 27 + 5 - 2 ) 

/zas ffte pairwise linearly independent solutions 

/->oo\ _ T . r 2 f l + c + J + Ai + 7, c + d + n + 1, a + b, \ —b + t, 1 — b — t 
\Z.Zo) Un '.— 1 

L a + c + d + n + 1 + t, a +c + d + n + 1 —t, a+\—b 

sin(7r(fl + b)) 

x W(2a +c+d+n+l— 1 ; tf + c + rc + 7, tf + d + rc + 7, 

n + 7 + 5 — 1, a + t, a — t) 

vn := un\t,^c,wn := un\b^d' 

The associated Wilson polynomials Pn(a, £7 c, d; JC; 7) = Fn(*'> 7) satisfy 
the above recurrence with 

(2.29) />_!(*; 7) = 0, F0(*; 7) = 1. 

We shall demonstrate the linear independence of the functions un, vn, wn 

later. 
It will be useful to write out un explicitly as a sum of 4F3' s that is 

(2.30) un = 4F3 
-n — l,n + l + s — l,a + t,a — t 

; 1 
# + &, a + c, a + <i 

sin(7r7) 

xr 

sin(7r(« + Z? + 7)) 

' n + 7 + 1, \ —b + t, I — b — t, a + b, a + c, a + d, 
n+1+c+d 

a + t, a — t, n + 1 + a + b, 2 — a — b, n + 1 + s — 1, 
1 — b + c, 1 — b + d-

( l—n — 1 — a — b, n + l + c + d, 1 — b + t, \ — b — t 
;1 

2-a-b, I-b + c, l - b + d 

The associated Wilson polynomials may then be written 

U-\Vn - V-\Un 
(2.31) Pn(a, b, c, d\ x\ 7) = 

W-lVo -V-\UQ 

https://doi.org/10.4153/CJM-1990-035-4 Published online by Cambridge University Press

file:///Z.Zo
https://doi.org/10.4153/CJM-1990-035-4


ASSOCIATED WILSON POLYNOMIALS 667 

For certain values of the parameter 7, the above polynomials reduce to Wilson 
polynomials, Pn{a, b, c, d\ x). First, obviously, we have 

(2.32) Pn(a, b, c, d\ x\ 0) = Pn(a, b, c, d\ x). 

Next consider the case when 7 —> \ — a — b. In this case u-\ contains a 
factor with a denominator of sin(7r(a + b + 7))r(7 + a + b — 1), which is not zero. 
Multiplying both numerators and denominators of (2.31) by sin(7r(a + Z?+7)) and 
taking the limit gives 

<~> w p t u A 1 u\ (c + d+l-a-b)n(2-a-b)n 

(2.33) Pn{a, b, c, d; x\ I - a - b) = 
n\(c + d)n 

xPn(\ -b, 1 -a, c, J; y), 

x = vV~T72? y = V ( l - Z ? ) 2 - r 2 . 

By interchanging fr and c or b and J, one obtains similar expressions in the 
cases 7 = 1 — a — c, and 7 = I — a — d. Observe the Pn(a1 b, c, d\ x\ 7) 
is symmetric in b, c, d but it is not fully symmetric in the four parameters 
«, /?, c, d. However the polynomials 

(2.34) (a + b + l)n(a + c + l)n(a + d + l)nPn(a, b, c, d\ x\ 7) 

are fully symmetric in a, /?, c, and d. Using this fact provides an evaluation of 
Pn(a, &, c, J; x; 7) for 7 = 1 — b — c, \—b — dovl—c — d. 

The next step is to determine the asymptotic behavior of the associated Wilson 
polynomials for large n and fixed x in order to determine the weight function. 
Unexpectedly, determining the asymptotic behavior of uni vn, and wn turned out 
to be a trivial job. The asymptotics follow from (3) on page 62 in Bailey [7] 
with the following choices. 

(2.35) A = 2a + c + d + n + l - 1, C = n + 1 + s - I, D = a + c + n + 'J, 

E = a + d + n + 7, F — a — t1 G — a + t. 

The 4/Vs which arise have only two denominator parameters which depend 
on n. Both denominator parameters are 0(n) as n —• 00. Thus we get 

,<, ^ sin(7r(tf + b)) sin(7r(7 + b +1)) 
(2.36) un — —— : 

7rsin(7r((3 + ̂  + 7)) 
~ a + b, a + c, a + d, 1— b — t^lt^c + d + n + l^b + t + n + l 

a + t, c + t, d + t, a + b + n + 1, a + c + d + n + 1 — t 
x {1 + 0(n~2)} — (the same quantity with t and —t interchanged), 

x T 

and similarly for vn and wn. 
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Note that these asymptotics agree with those predicted by the Birkhoff-
Trjitzinsky theory, see Wimp [43], which gives 

(2.37) Kxn -2a+2t 1 + + —r + • • 
n nL 

+ K2n -2a-2t 1 + + — + • 
n nL 

as the asymptotic form of any solution of (2.27). 

3. Explicit Representations for Pn and the Weight function. Let 

(3.1) An := unvn+\ -VnUn+i, n = - 1 , 0, 1, 2, . . . . 

Then (2.31) reads 

(3.2) Pn{x\ 7) = (n-ivn-v_iwn)/A_i, /i = - 1 , 0, 1, 2, . . . . 

Note that 

(3.3) un-i(l + 1) = un(n) and v„_i(7 + 1) = v„(7). 

We wish to calculate An and determine its asymptotic behavior as n —> oo. 
Rewriting equation (2.27) with _yn = un and yn = vn gives 

(3.4) - xwn = Xnun+i + /xnw„_i - (A„ + /x„)w„ and 

- xvn = A„vn+i + //nvn_i - (A„ + /i„)v„. 

Multiplying the first equation in (3.4) by vn, the second by un and subtracting 
shows that 

(3.5) A„/An_! = /i„/A„, n = 0, 1, . . . , 

or 

n - i 

(3.6) A, = A o n My+i 

7=0 V+l 

= AQ(7 + 1)„(7 + b + c)n(n + b + J)w(7 + c + J)„(7 + 1 + s/2)n 

(7 + tf + £ + l)n(7 + tf+ c + l)w(7 + a + d+ l)n(7 + s)„(7 + s/2)„' 

Thus we have established 

(3.7) An = AoEn~4a~l[\ +0(n - 1 ) ] , as n -> oo, 

' L 7 + l , 7 + /? + c, 7 + b + d, 7 + c + d J ' 
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We now put the asymptotic estimates (2.36) for un and vn into the expression 
(3.1) for An and compare with (3.7) to terms 0(n~4a~l) using 

r ( a + n) _ a-p j ,^ (a-f3)(a + f3- 1) i ^„-2, 
( 3-8 ) rm^ = n 1 + " ^ T ^ ' + 0 ( O , as n — oo. 

This gives, after a very tiresome manipulation of trigonometric identities, the 
value 

(3.9) 2ir sin(7r(<2 + c)) sin(7r7) sin(7r(Z? + c + 7)) 

x sin(7r(Z? - c)) sin(7r(a + b))(n + 7 + s/2) 
K sin(7r(& + t)) sin(7r(Z? — t)) sin(7r(c + t)) 

x sin(7r(c — t)) sin(7r(<2 + b + 7)) sin(7r(<2 + c + 7)) 

xr 

a + b, a + b, a + c, « + c, a + J, « + J, 
n + 7 + 1, rc + 7 + b + c, n + 1 + b + d, rc + 7 + c + d 

a-^t^a — t^b + t^b — t^c + t^c — t^d-^t^d — t^n+1 
+a + b+ l,n + 7 + a + c + l , n + 7 + fl + d + l , ft+ 7 +s 

Thus for general £, w„ and vrt are linearly independent solutions of the associated 
Wilson recurrence relation provided that none of the following are integers 

(3.10) 7, b-c, b + c + 1. 

(Note that if any of a + £, a + c, « + & + 7 or a + c + 7 is an integer then un 

and vn may be multiplied by suitable constants to obtain linearly independent 
solutions.) 

Let us look at the moment problem related to Pn(x\ 7). The recurrence relation 
satisfied by the monic associated Wilson polynomials {fn(x)} is 

(3.11) fn+\(x) =[X- (A„ + Hn)]fn(x) - VnK-\fn-\(x)> 

The coefficients A„ + /z„ and \n-\Hn in the above recursion do not form bounded 
sequences. Thus the spectrum is unbounded, Chihara [10, Theorem 2.2 p. 109]. 
Using the notation of Erdélyi et al [11, vol. 2, 10.3] we let kn denote the 
coefficient of xn in Pn(x; 7), and hn denote the normalization constant, that is 

(3.12) Mx\l):=Pn(x;?f)/y/hn 

is an orthonormal set. The relations in [11, vol. 2, 10.3] give 

sn i->\ kn+\ I hn \in A„An 

(3.13) -— = - — , - — = - = , n = l , 2, . . . , 
kn K nn-\ A/i-i An_iA„_i 

so 

(3.14) hn=^L = ^f[^ „ = 0 , l , 2 , . . . . 
y = l J 
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Therefore 

(3.15) hn œ (non-zero constant) nl~4c\ as n —> oo. 

The recurrence relation satisfied by (/>„(*; 7) is 

(3.16) x(j)n(x; 7) = VXMn+i</wiC*; 7) 

+ y/Xn-\fln<l>n-\(X', 7 ) - (Xn + Vn)<t>n{x\ 7 ) , 

n = 0, 1, 2, . . . . 

The moment problem corresponding to the polynomials {</>„(*; 7)} is deter
mined if for some value of x, real or complex, 

oo 

(3.17) ^ | < M * ; 7 ) | 2 = cx), 
A7=0 

see Shohat and Tamarkin [34, p. 50]. Now Pn(0; 7) satisfies 

(3.18) / W O ; 7) - (1 +/x„/An)Pn(0; 7) - (Mn/A„)/Vi(0; 7), 

n = 0, 1, 2, . . . . 

By induction we find 

« y— 1 

(3.19) Pn(0; 7) = X ^ n f ' * = 0, 1, 2, . . . . 

Here we follow the usual convention that empty sum is zero but an empty 
product is 1. The sequence {Pn(0; 7)} converges since 

(3.20) n W M = 0(r4a-1), as y — oo 

and the constant in O in (3.20) is positive. This and (3.12) and (3.15) show that 

(3.21) |<£„((); 7)|2 » (positive constant^4"-1, as rc —> oo. 

Thus the sum (3.17) diverges for x — 0. Therefore the Hamburger moment 
problem is determined and the distribution function dty(x\ 7) may be found by 
inverting the Stieltjes transform 

(3.22) F(z) = / , z £ (-oo, oo), 
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where 

(3.23) F(z) = lim — — — — — . 
n-+°° Pn(Z'9 7 ) 

The numerator and denominator inside the limit in (3.23) are the numerator 
and denominator convergents of the related continued fraction, see [11, vol. 2, 
10.5]. 

We set 

(3.24) t = (a2-x)V2. 

The branch of the square root in (3.24) is chosen in the following manner. 

(3.25) Va2 -x = l ^ - j c l ^ e x p f ^ - T r ) ) , 0 < </> < 2TT. 

Thus for x off the cut [«2, oo), we have 

(3.26) Re{(a 2 - jc) 1 / 2 }>0 

and the dominant contribution to both un and vn is of the order n2t~2a. By an 
application of (3.3) and (3.5) we establish the relationship (3.27). 

(3.27) ^ ( ^ ; 7 + 1) 

Pn(z\ 7) 

= A_i(7)[n-i(7 + 1 K - I ( 7 + 1) - v-i(7 + 1 K - I ( 7 + 1)] 
A_,(7 + l)[w_K7K(7) - v_i(7K(7)] 

A0 ( wo(7)vn(7) - v0(7K(7) 

/xo U~i(7)vn(7)-v_i(7K(7) 

The coefficient of n2t~2a in the asymptotic development of the denominator of 
(3.27) can be determined from (2.36). It is a difference of 7/Vs, and may be 
written as a single -jF^. To see this it is necessary to use some very technical for
mulas due to Whipple, [37]. The relations needed connect series what Whipple 
calls Gp(0), Gp(l), Gp(2). Specifically, we use (3.4), on page 341 in Whipple 
[37] with the choices 

(3.28) A — 1/2 — 3XQ +X\ +X2 +x$ +X4 + X5, 

B — 1 / 2 — XQ — x\ + xi + X3 + X4 + *5 , 

C = 1 /2 — XQ + X\ — X2 + ̂ 3 + X4 + Xs, 

D = 1 /2 — XQ + X\ + X2 — X3 + X4 + X5, 

F — 1/2 — XQ + X\ + X2 + *3 — X4 + X5, 

F = 1 /2 — XQ + X\ + X2 + X3 + X4 — X$, 
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where 

(3.29) A = a + c-b-t, B = a - t,C = a + c + 7 - 1, D = c - t, 

E = 2-b-d-l, F=\-b-t, S = l - d - t , 

and we made the choices 

(3.30) GP{Q) = \I)(B + C-S, B, C, 1 + A - E - F, 

1 + A - D - F , 1 +A-D-E), 

Gp(\) = ij(2B + C-A-S1 B, B + C-A, 

1 + A - F - F , 1 + A - D - F , 1 + A - D - F ) , 

Gp(2) = \j){\ + C-B-D, 1 - F>, \-B, 

C+E-A, C + F-A, l+A-B-D). 

The I/J functions are W functions multiplied by suitable gamma functions, see 
Whipple [37]. The result is that the coefficient of n2t~2a is 

(3.31) | r 
\-b + t , \ - b - t , l - c + t , \ - c - t 

a + t, a — t, d + t1 d — t, b + t + 7, c + / + 7, d + t + 7 _ 

x W(l + 2f ; 7, 1 - a + f, 1 - è + r, 1 ~ c + t, 1 - d + 0, 

where M is independent of t. The coefficient of n2t~2a in the numerator of (3.27) 
is the above expression (3.31) with 7 replaced by 7+1, because of the periodicity 
in 7 of the sine functions occurring in (2.36). The final result is the following 
limiting relation. 

(3.32) 

where 

(3.33) F(z) 

hm := F(z), 
*-**> P„(z; 7) 

(7 + 2 r+ l ) 

(a + 7 + t)(b + 7 + 0(c + 7 + t){d + 7 + 0 
W(7 + 2t\ 7, I -a + t, 1 - £ + f, 1 - c + f, 1 - d + f) 

x ^ ( 7 + 2 ^ - 1; 7 - 1, 1-a + t, ' 
\—b + t, 1 — c + f, 1 — J + 0 

z = a 2 - r 2 . 

First we compute the absolutely continuous component of the measure dip. 
Using the inversion formula for the Stieltjes transform, see [34], we obtain 

(3.34) VV, 7) = ^~. [F~~F+l 
2m 
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where F+ and F are the respective values of F above and below the cut 
[a2, oo). This implies 

(3.35) r//(x; 7) 

( 1 + 7 + 2/r) i 

2^ {a + 7 + ir){b + 7 + ir)(c + 7 + ir)( d + 7 + IT) 

W(l + 2/r, 7, 1 — a + IT, 1 — b + /r, 1 — c + rr, 1 — d + IT) 

x W(7 - 1 + 2/r, 7 - 1, 1 - a + ir, 
\ — b + IT, 1 — c + /r, 1 

(the same with r replaced by —r) 

J + /r) 

where 

r := V I 

Now consider the functions 
"n + 7, fl + 7 + 1+2*, n + 7 + fc + c— 1, 

n + 7 + b + d— l , n + 7 + c + J— 1 
rc + 7 + s — 2, rc + 7 + tf + £, rc + 7 + fr + ,̂ 

ft + 7 + c + f, rc + 7 + d + £ -

x W(rc + 7 + 2f; rc + 7, 1 — a + f, I -b + t, I -c + t, 

(3.36) r„(0 := T 

1 - d +1). 

Because of the symmetry of n and 7 in equation (2.27) and the relation of rn(t) 
to w_i(7), rn(t) satisfies the equation 

(3.37) (t2 -a2)rn{t) = \n_xrn+x{t) + / i n - i ^ - i ( 0 - (A„_i + / i „ - i K ( 0 -

Another linearly independent solution of this difference equation is rn(—t). Thus 
xjj' may be written in the form 

. . . ,,, ^ i r 0 ( /T ) r i ( - / r ) - r 0 ( - /T ) r i ( / r ) 
(3.38) V>(*; 7 ) = 1 r , l 2 • 

2TT | r 00r) | 2 

Evaluating the Casorati determinant in the numerator by the same process used 
to compute An of (3.1) yields the following weight function for P„(x; 7). 

(3.39) xl/(x; 7) 
(2y + s - 2)2y/x - a2 

TT(7 + s - 2) 

r 7 + S - 2 

x T 1 + 7 , a + ft+7, fl + c + 7, a + d + 7, 
L fr + c + 7, b + d + 1, c+d+1\ 

x (27 + s - 2) 

T(a + ir + 7)r(Z? + /r + l)T(c + /T + 7) 

x r ( J + /r + 7 ) / r ( l + 2 / r + 7) 
W(l + 2/r, 7, 1 — 0 + IT, 1 - Z? + /r, 

1 — c + /r, 1 — d + /r) 

,x^a2, 
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where r is as defined following (3.35) and W is the jFç, defined in (2.22). 
The orthogonality relation is 

/»oo 

(3.40) / Pn(x; l)Pm{x\ l)dil>(x; 7) = S^fa, 

n 

(3.41) TT0 := 1, 7rn := I J i V i M K n > 0. 
7=1 

Note that i// is symmetric in a, &, c, and J. This reflects the fact that 
Pn(x; 7), suitably normalized, as a function of r, «, &, c, J, is fully symmetric 
in the parameters «, b1 c, and d. To see this symmetry write the recurrence 
relation in the monic form (3.11) and note that /inAn_i is fully symmetric, and 
a tedious calculation shows that 

(3.42) a2 - Xn - nn 

is also fully symmetric. Thus, by induction, fn(x) is fully symmetric. We have 
not found a way to prove this directly from the representation (3.2). Thus this 
symmetry gives transformation formulas for the function defined by the right 
hand side of (3.2). 

The question of whether there are mass points on the negative real axis can 
be answered by the following theorem. 

THEOREM 3. The polynomials generated by 

(3.43) />_!(*) - 0, P0(X) = 1, Pn+l(x) = (X- Cn)Pn(x) - LnPn-xix), 

n =t 0, L„+1 > 0, Cn > 0, n ^ 0, 

are birth and death process polynomials if and only if the spectrum of the 
distribution function -0 is contained in [0, oo). 

Proof We write the general birth and death process polynomials in the monic 
form (3.11). We then prove the theorem by utilizing a theorem in Chihara [10, 
p. 108, Theorem 2.1], namely that the support of dx/j is contained in [0, oo) if 
and only if Cn > 0 and 

(3.44) Ln/(CnCn_i), n = l , 2, . . . , 

is a chain sequence. First let (3.43) be birth and death process polynomials, i.e. 
let (3.43) be of the form (3.11). Then choose a parameter sequence {gn} as 
follows. Let go = 0 and 

( 3 - 4 5 ) 8n:= n
rfn~l

n , * = 1 , 2, . . . with ( l+r n )D n 

n 7 - 1 

Dn:=l+Y,l[n, n=l , 2, ... , 
j=l k=0 
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where 

(3.46) rn := jin/\nj n = 0, 1, . . . . 

Obviously 0 < gn < 1, n = 1, 2, . . . , and we have 

(3.47) gn(\-gn_x) (1 + rn){\ + r„_i) (An_i + /in_i)(A„ + /xn) 

so {L„/(C„Cn_i) : « = 1, 2, . . .} is a chain sequence and the support of the 
measure dip is contained in [0, oo). 

Conversely, let the support of the dxjj be contained in [0, oo). Then there is 
a parameter sequence {gn} with 0 ^ go < I, 0 < gn < 1, n > 0, and 

(3.48) — ^ — = (1 - gn_!)^, « = 1 , 2 , . . . . 

We define rn recursively by ro = 1, 

(3.49) r„ = 
l+r„ - i _ ^ * 

, n= 1, 2, . . . , 
L#«(l -gn-\) 

and then define A„ and [in by 

(3.50) A_i = 1, \n = Cn/(l + r„), /xn = Ln/Xn-u « = 0, 1, 2, . . . . 

This puts the recurrence (3.43) in the form (3.11). 
As an application of Theorem 3 we find that if all of 

(3.51) 7, 7 + J - 1, 27 + 5 - 2 , 7 + tf + &, 7 + tf + c, 

7 + tf + d, 7 + fc + c— 1, 1 + b + d- 1, 7 + c + d - 1 

are positive, the distribution function for the associated Wilson polynomials has 
no mass points in (—oo, 0). 

Recall that the moment problem is determinate, see the argument following 
(3.20). To show that x = £ supports a mass we need to show that the series 
(3.17), that is 

(3.52) f > „ { P „ ( e , 7)}2 

n=l 

converges, [34, p. 50]. The relationship (3.19) shows that P„(0; 7) = Dn, where 
Dn is as in (3.45). It is clear that the series in (3.52) diverges when £ = 0. 

On the other hand, determining whether there are mass points (jumps of I/J(X)) 

in [0, oo) is a much less tractable problem. One way to do this is to show that 
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the denominator of F(z), as given by (3.33), does not vanish for z G (0, oo). 
This we have not been able to do. 

There are several interesting special cases of formula (3.39). 
First, 7 —> 0 gives the weight function for the Wilson polynomials, as is to 

be expected. 
Secondly, the limiting case d —• oo gives the weight function for the associ

ated continuous dual Hahn polynomials discussed in [15]. 
Thirdly, replace c, d, and r by a + /A, a — /A, and TA, respectively, and 

express the -jF^ as a difference of two 4/Vs using (4), on page 29 in Bailey [7], 
then choose 

(3.53) A = 7 + 2/T, C = 1 - a + /AT, D = 1 - b + /AT, 

E — 1 — a — iX + /AT, F = 1 — a + iX + /AT, a = l. 

As A —• 00 the two 4^3^ become 2^1's. If, in those 2^1's, we let 

(3.54) 7 = c, <* = (/?+ l)/2, 2a + a + 6 - 1 = 7, 1 - T2 = x 

and employ a Pfaff-Kummer transformation on the 2^1's we get the weight 
function for the associated Jacobi polynomials given in Wimp [41]. 

4. Zero-related Polynomials. Consider the general three-term (associated) 
recurrence relation 

(4.1) xyn = Xn+1yn+\ + //„+7vn_i + (An+7 + //„+7).y„, n = 0, 1, . . . . 

Let {/?„(*; 7)} denote the polynomial solution of (4.1) satisfying the initial 
conditions 

(4.2) p_x{x\ 7) = 0, p0(x; 7) = 1. 

Clearly 

(4.3) Pl(x; 7) = (* + A7+/i7)/A7. 

Let w„(7) and vn(7) be linearly independent solutions of (4.1) having the property 

(4.4) w„(7 + 1) = w„(7); v„(7 + 1) = vn(7). 

Such solutions can be constructed easily from any given set of linearly indepen
dent solutions. Then 

(4.5) />„(*; 7) = — , 

A(7) :=II_I(7)V 0 (7) - KO(7)V_I(7). 
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The convergents of the corresponding continued /-fraction are given by 

(4 6) Pn-\(x\ 7 + 1) = A 7 [M 0 (7K(7) -M„(7)VQ(7) ] 

pn(x\ 7 ) lh\.U-\(n)vn<n) - Mn(7)V-i(7)] ' 

Let, as usual, 

(A n\ v Pn-\{Z\ 7 + 1 ) 
(4.7) hm ——— := F(z). 

n^°° pn(z; 7) 
Ismail, Letessier, and Valent [14], [15] observed that when the recurrence 

relation (4.1) is modified by requiring /i7 = 0, then, at least in the special 
cases they studied, the resulting orthogonal polynomials are closely related to 
the original polynomials. Here we show that this is true in general, and explore 
the consequences for the associated Wilson polynomials. 

Consider the polynomials {qn(x\ 7)} defined by 

(4.8) xqn{x\ 7) = Xn+1qn+i(x; 7) + fin+1qn-x{x\ 7) 

- (A„+7 + fin+1)qn(x; 7), n = 0, 1, . . . , 

/x7 = 0, and /2„+7 = /i„+7 for n > 0. 

We will call these qn's the zero-related polynomials. 
It is easy to see that qn{x\ 7) may be written 

(4.9) qn(x\ 7) = pn(x; 7) - (/x7/A7)pn_i(j:; 7 + 1), n ^ 0. 

Note that 

(4.10) qx{x\ 7) = (x + A7)//x7. 

Thus we may think of pn(x\ 7) and qn(x\ 7) as satisfying the same recurrence 
relation for n — 1, 2, 3, . . . but with different conditions on p\(x\ 7) and 
q\{x\ 7). 

We now construct the numerator polynomials {q*(x; 7)} for the continued 
/-fraction related to the qn recurrence, (4.8), see 10.5 in volume 2 of Erdélyi 
et al [11]. The g*'s also satisfy the difference equation (4.8) for n > 0 and are 
given initially by 

(4.11) <7*(x;7) = 0, tf(*;7)=l. 

Obviously 

(4.12) ^ (x ; 7) =/>„_i(x; 7+1) . 

We wish to compute 

(4.13) F , ( z ) : = l i m ^ ^ . 
n^oo qn{X; 7) 
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Thus 

(A.A. r , . r Pn-\(x\ 7 + 1)  
(4.14) Fa(z) = lim r- . 

' ^oopnix; 7) - (fh/X^Pn-iix; 7 + 1 ) 

(4.15) Fq(z) = F(z)/[l - ^F(z)/X1l 

When the moment problem is determinate then Fq(z) is the Stieltjes transform 
of the measure dq^{x\ 7) with respect to which the qn's are orthogonal. It is 
clear that 

(4.16) ^ - / 0 ) - ^ + /0)=^-^^.+;^ 
|1 — /i7F(x + i0)/\1\

l 

where "0" means "0+". We then use 

(4.17) 27riy(x; 7) = F(x - /0) - F(x + i0) 

and obtain 

(4.18) tl/q(x\ 7) = ^ ( * ; 7) 
•2 

l-^F(x + iO)\ 

This seems to be about as far as one can go in general, there being no 
obvious way of simplifying the denominator. But it is a striking fact that for the 
associated Wilson polynomials both xjj'ix; 7) and \jjq(x', 7) may be encompassed 
in the same formula. In fact, this is what Ismail, Letessier and Valent did for 
associated Laguerre, Meixner and continuous dual Hahn polynomials. However 
the computation in the case of associated Wilson polynomials requires a new 
recursion formula for the related jF^s, (4.23). 

We start with the identity 

(4.19) ^ n (8 — l)n 
(l+a-g)„ (2 + a-g)n 

n(n + a)(g)n-i 

( l + f l - g ) ( 2 + 0 - g ) ( 3 + a - s ) n _ i 

We then multiply both sides of (4.19) by 

1 (a)n(l+a/2)n(c)n(d)n(e)n(f)n 

,n ^ 1. 

(4.20) 
n\ (1 + a - c)n{\ +a- d)n{\ +a- e)n(l + a -f)n 

and use on the right hand side the identity 

(4.21) (a)n = a(a+l)n-i 
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to get 

(4.22) 
(a)n(l+a/2)n(c)n(d)n(e)n(f)n 

n\{\ +a- c)n(\ +a- d)n(l +a- e)n(\ + a -f)n 

c & / ( l + a)(2 + fl)(2 + fl)H-1(2 + a/2)n-i 

(l+a — g)2(l +a — c)(l +a — d)(l +a — e)(l + a —./) 

(g + l ) n - l ( / + l ) „ - l ( £ + !)„-!  

(n - 1)!(1 + a/2)B_1(2 + a - c)„_i(2 + a - d)*-i 

( c + l ) n - l ( ^ + l ) n - l  

(2 + a - e)n-i(2 + « - / ) « - i ( 3 + a - g)„_i ' 

Summing from n = 1 to oo gives 

(4.23) W(fl; c, J , *, / , g) - W(a; c, d, e, f, g - 1) 

cdef(l+a)(2 + a) 

( l + a — g)2(l +a — c)(l + a — d)(l +a — e)(l + a —f) 

x W(a + 2; c+ 1, d + 1, e + 1, / + 1, g). 

We now get 

(27 + 5 - 2)(a + IT)W(7 + 2ir, 7, - a + IT, 

f4 ?4ï 1 - ^ F f z ï = 1 - fr + rr, 1 - c + IT, 1 - J + IT) 
^ ; A7

 W (7 + s - 2)(7 + a + IT)W(l + 2ir, 7, 1 - a + IT, 

1 — ft + IT, 1 — c + IT, 1 — d + IT) 

Putting this into (4.18) gives the following formula for the derivative of ip 

(27 + 5 - 1 ) T 
(4.25) itf(x\ 7) 

xr 7 + 5 - 1 
1-7 + 1,7 + 0 +ft, 7 + <z + c, 7 + 0 + d , 7 + ft + c,7 + ft + d ,7 + c + d . 

1 + 7 + a + IT, 7 + ft + IT, 7 + c + IT, 7 + d + IT 1 | 2 

1 + 7 + 2IT J 
| W(l + 2IT, 7, — a + IT, 1 — b + IT, 1 — c + IT, 1 — d + IT) 

T— VX a2 x^a2. 

The normalization relationship for the zero-related Wilson polynomials 
{Qn(x; 7)} is the same as for {Pn(x; 7)} . 

We note that this weight function is not fully symmetric in the parameters 
<z, ft, c, and d. In fact neither are the polynomials {Qn{x\ 7)}, even when 
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renormalized. It is easily verified that the monic polynomial Q\(x\ 7) is not 
symmetric in a and b. 

5. Associated Recurrences and Generating Functions. Let /i(r, 7) be a 
distribution function, i.e. dfi(t; 7) is a positive measure supported on an in
finite subset of the real line and has finite moments of all orders. Assume 
that d[i(t\ 7) depends on a real parameter 7 ^ 0 . Let {pn{t\ 7)} be poly
nomials orthogonal with respect to d[i(t\ 7) and satisfy the initial conditions 
p_x(t\ 7) = 0, p0(t; 7) = 1, for all 7 ^ 0. We call /x(f; 7) an associated 
distribution function if the numerator polynomials {qn(f)} of the corresponding 
/-fraction are given by the formula 

(5.1) qn(t) = pn-dt; 7+1) , n = 0, 1, 2, . . . . 

We know of no simple conditions on a distribution function which will make 
it an associated distribution function, although by now many special cases of 
associated distributions have been found, see [2], [5], [8], [14], [15 ], [17], [25], 
[26], and the references given in these papers. 

If /x0; 7) is an associated distribution function, then the polynomials 
{pn{t\ 7)} generated by it are called associated polynomials. Assume that the 
three-term recurrence relation satisfied by {pn(t\ 7)} is 

(5.2) pn+l(t; 7) - [tAn(l) + Bn(l)]pn(t\ 7) - Cn(7)p„-i(f; 7), 

n = 0, 1, 2, . . . . 

Since the numerator polynomials {qn(t\ 7)} satisfy the same recurrence relation, 
it is obvious that we must have 

(5.3) An_1(7 + 1)=AB(7), 

and similarly for Bn(l) and C„(7). Iterating (5.3) gives 

(5.4) An(7) = A0(n + 7) := A(n + 7). 

Thus a three term recurrence relation satisfied by a set of associated polynomials 
must be of the form 

(5.5) pn+l(t; 7) = [ÉA(n + 7) + fl(rt + 7)]p„(f; 7) - C(n + 7)/>„-i(f; 7), 

n = 0, 1, 2, . . . . 

This condition is easily seen to be necessary and sufficient, and so, by application 
of the formulas [11, vol. 2, p. 159, (8)] one can obtain necessary and sufficient 
conditions for /x(r, 7) to be an associated distribution function in terms of the 
Gram determinants of the moments of d[i(t\ 7), 

/

oo 
tmdn(t; 7). 

OO 
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The conditions one gets are not, however, very illuminating. 
Some traditional families of orthogonal polynomials are associated in their 

natural setting, for instance, the Chebyshev polynomials, or the Pollaczek four 
parameter family of polynomials, [30]. Nevai [27] has shown that when 7 is an 
integer, d[i(t\ 7) may be expressed in terms of an integral involving d[i(t\ 0). 

One interesting condition on d[i(t\ 7) may be expressed in terms of its Stieltjes 
transform 

r°° dii(w\ 7) 
(5.7) F(f; 7) := / 7 . 

Let ii(t\ 7) be an associated distribution function and let the moment problem 
for the recursion (5.2) be determined. Then one can choose a basis of solutions 
for the recurrence relation un{t\ 7) = w„(7), vn(t\ 7) = v„(7) such that 

(5.8) l im ^ = o 
n-^oo v„(7) 

and furthermore 

(5.9) H„_I(7 + 1) = MB(7), v„_!(7 + 1) = vn(7). 

We can write 

(5.10) pn(t; 7) = [u-i(7)vn(7) - v_i(7K(7)]/A_!(7), 

where 

(5.11) An(7) = wn(7)vrt+i(7) - vB(7K+i(7), n = - 1 , 0, 1, . . . . 

Constructing the nth approximant (convergent) rn to the related continued frac
tion in the usual way and employing (5.10) and the fact that 

(5.12) A_!(7)/Ao(7) = 1/C(7), 

we find that 

" v0(7K(7) - w0(7K(7) 
(5.13) i 

V-i(7K(7)-M-i(7)v„(7) C(7) 

Thus we have 

«o(7) 
(5.14) F(t\ 7 ) = lim rn = 

C(7)«-i(7) 

But 

(5.15) ^ = A ( 7 ) r + 5 ( 7 ) - C ( 7 ) ^ . 
«o(7) w0(7) 
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We thus find that if /i(r, 7) is an associated distribution function, its Stieltjes 
transform F(t\ 7) must satisfy the nonlinear difference equation 

(5.16) C(7 + l)F(t; 7 + 1) = [A(7)f+ £(7)] - l/F(t; 7), 

7 ^ 0 , t<£ Supp{d/i(f; 7)}. 

A consequence of this is that the only constant (in 7) associated distribution 
function is that for the Chebyshev polynomials Un(x). In that case A, B1 C and 
F are all constants and we get 

(5.17) CF2(t; 7) - [tA + B]F(t; 7) + 1 = 0. 

Solving this quadratic equation for F and inverting the Stieltjes transform gives 
the distribution function for the Chebyshev polynomials Un(x) (renormalized 
to some appropriate interval). This, of course, can also be inferred from the 
three-term recurrence relation. 

One advantage of dealing with associated polynomials is, that when a nice 
formula is known for /?„, one has a nice formula for the Padé approximants to 
F. This was exploited in Wimp [41] to obtain a closed form expression for the 
[(n — l)/n] Padé approximants to the continued fraction of Gauss. Another nice 
thing about associated polynomials is the extremely elegant character of their 
generating functions. In this section we will explore this idea further. Let us 
start with a general associated-type recurrence relation, which we will write in 
the form 

(5.18) a(n + 7 + l)yn+l + b(n + 7)y„ + c(n + 7 - l)yn-\ = 0, 

w = 0, 1, 2, . . . . 

We are interested in the solution pn(l) with the property 

(5.19) /7_,(7) = 0, and/>0(7)=l. 

Let 

oo 

(5.20) G7(*):= 5 3 ^ ( 7 ) . 
n=0 

It might be thought that writing the above expression would involve problems 
of convergence. But this is not really the case, since everything we shall do, 
including the work on linear differential operators to follow, is easily justified 
by placing the discussion in the context of rings of formal series 

oo 

(5.21) w " ^ a „ w " , 
n=0 
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with coefficients an in a ring, or field. There are various manifestations of this 
theory, sometimes called the umbral calculus, see [24], [44], [32], [33]. 

We assume a, &, c of (5.18) are polynomials of the same degree, say a 

a 

(5.22) a(z)=Aj\(z + aj) 

a 

b{z) = B]\(z + bj) 

a 

c(z) = cH(z + Cj) 
7=1 

Others are best arrived at by confluence. We assume the a/ s are distinct. Let 8 
denote the operator 

(5.23) 6 = wD, D = 4~-
aw 

Note that 

(5.24) «$V+7 = (r + 7 ) V + 7 . 

Multiplying the recurrence reaction (5.18) by 

(5.25) ww+>„(7) 

and summing from n — 0 to oo gives 

(5.26) fP(«)^y(w) = a(l)w\ </>7(w) := w^^w), 

a a a 

<P (S) := A Y[(5 + Oj) + wB J | ( 6 + bj) + w2C ]J(è + cj). 
7=1 j=\ 7=1 

This differential equation, which is of order a, can be solved by variation of 
parameters if a basis of solutions can be determined for the corresponding ho
mogeneous differential equation, 

(5.27) <P(6)y = 0. 

Such a basis will be provided by the functions 

(5.28) <^(w) . 

In practice what usually happens is that explicitly available expressions for these 
quantities are insufficient to fill out a basis. This happens, for instance, with the 

= A[za + a V " 1 +•••], 
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associated Jacobi and associated Wilson polynomials. In both situations, one 
member of the basis is lacking. 

Suppose, that we are lacking a full basis of the homogeneous equation (5.27), 
but that one solution, say y*, is known and that y* satisfies a linear differential 
equation with polynomial coefficients of order a — 1 

(5.29) Ç(y) = pi(w)y°-l+p2(w)y (<r-2) 0. 

Then the equation (5.27) is called reducible. It is known that every solution of 
the so-called reduced equation (5.29), must be a solution of the original equation, 
so if we know a basis for (5.29), we have a — I members of a basis for (5.27). 

In rings of differential operators with polynomial coefficients, there is an 
Euclidean algorithm, see Forsyth [12, vol. 4, p. 223] which implies that we may 
factor T in the form 

(5.30) <£ = %g 

where %, is an operator of first order. 
It is easily verified that 

(5.31) 6n = wnDn + X-n(n - l)Dn~l + • • n= 1, 2, 

Write 

(5.32) ^ = fiD + i/I. 

We have 

(5.33) <2 = [ipxD
a = (/xpi + [ip! + vp\)Da~l + 

= SwaDa + 5 ^ 1 ) + (Aa* + wBb* + w 2 C c # ) w ^ 1 ^ - 1 

5 = S(w) \=A + wB + w2C. 

This establishes the relationships 

(5.34) / iP l = 5wa, 

/XP! + /Xp2 + Vp\ = W Sa(a„ l) +Aa* + wBb* + w2Cc* 

This implies that as a condition for reducibility, there must exist polynomial 
solutions /i, v of the above equations, for instance, p\ must be a factor of Swa, 
etc. 
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Dividing the first equation in (5.34) into the second equation in (5.34) gives 

(5.35) 4 + ^ + ^ = 4i + ^ _ + ^i_ 
P\ P2 P W W — V{ W — V2 

where 

(5.36) vi, v2 = ^[-B±VBi-4AClA{=a* + a(a
2
 l), 

A2 
VB2 - 4AC [vi 

-(a*-c*) + B(b*-c*) 

A3 = -
VB2 - 4AC 

-(a*-c*) + B(b*-c*) 
vi 

If B2 — 4AC = 0, there are complications. These can be resolved, but, to keep 
things simple, we assume 

(5.37) B2 - 4AC ^ 0, 

which, in fact, is always the case in practice. 
Integrating (5.35) yields 

(5.38) In |pi| -h [ —dw+ f -dw 
J Pi J P 

= A i I n w + A 2 l n / l - - ) + A 3 l n / l - — J +M. 

This shows that an integrating factor for the operator inverse to ^ is 

(5.39) V = exp( / -dw) 

= wA,(l - w/vi)A2(l - w/v2)
A3 exp f - J —dw] jpx. 

By Abel's formula the quantity exp (— J(p2/p\)dw) is proportional to the Wron-
skian, WXw), of the reduced system. Thus we may take 

(5.40) V = exp ( J - dw j = wM{\ - w/vx)
A2(l - w/v2)

M W(w)/px 

as the integrating factor. 
We now compute $t~l(g), which is equivalent to solving (/iD + i/I)y — g. 

The relationship (3.40) yields 

(5.41) <K.-\g)~ Pl 

AW(w) 

x 

w"A,(l ~ w/vi)"A2(l - w/v2y
A3 

/ W M ^ ' - ^ l - u/v{)
A2-\\ - u/v2)

A'~Xg{u)du. 
Jo 
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For our case, g(u) = uc, we took the constant of integration to be zero. This 
will give the solution with the correct behavior as t —» 0. 

The particular solution which turns out to be the one required for 

<p(S)y = Kw^ 

is 
CT-l 

(5.42) y = w ^ 7 ( w ) = -A V > ( w ) f w ^ w A ~ V l < f a , 

see [13, p. 123], where y\, j2, ...,)>* is a basis for (5.29) and Wk is the 
determinant formed from W by replacing the kth column by (0, 0, ..., 0, 1). 
Note that fragments of the solution to the homogeneous equation obviously 
cannot occur, since these will give rise to inappropriate powers of w. 

Observe that when W is a polynomial ^ _ 1 ( w 7 ) can be written as a gener
alized hypergeometric function of several variables, the Lauricella function F#, 
since 

pw P 

(5.43) / ua-lY[(l-Xku)^du 
0 j=i 

w 
= — FD(a, -au-02, ...,-(Tp, a + 1 , \\w, A2w7 . . . ,Apw), 

a 
see Slater [35, p. 228]. 

6. Generating Functions For Associated Wilson Polynomials. There are 
two generating functions for the Wilson polynomials. One, found by Wilson, is 

( a + t,b + t \ ( c-t,d-t \ 

\w UFA ;W 

a+b J \d+c J 

E°° (a + c)n(a + d)n n 2 2 

(c + d)nnl Un, b, c, d; x)w , x = a - t . 
This follows by taking the Cauchy product of the two series on the left, and 
applying the Whipple transformation, Bailey [7, (1) p. 56] on the 4F3 which 
arises. A ^-analogue of this generating function was proved by Ismail and Wilson 
in [18]. 

Another generating function is 

(6.2) V {±-^!Lpn(a, b, c, d; x)wn (s - 1)„ 

n=0 

'a + t,a — t,s/2, (s — l)/2 
is ^ 1 - 4 w 

(\-wy-s
4F3 ' ( 1 - w ) 2 

<a + b,a + c, a + d 
s = a + b + c + d. 
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This follows directly from the definition and rearrangement of series. The gen
erating functions (6.1) and (6.2) seem to be the only generating functions of the 
Wilson polynomials that are known at this time. 

The minimal order of the differential equation for any possible generating 
function for the associated Wilson polynomials will be five. We will show that 
the generating functions (6.1) and (6.2) can be made to yield 4 solutions of the 
differential equation (5.26). 

We now derive an extension of (6.1) to the associated Wilson polynomials. 
Let us renormalize the associated Wilson polynomials as 

(6.3) Rn = Rn(a, b, c, d\ x\ 7) 

(7 + a + c)n(l + a + d)n 
Pn(a, b, c, d\ x\ 7). 

(l + l)n(l + c + d)n 

They satisfy the recurrence relation 

(6.4) - xRn = bnRn+i + dnRn-i - (Xn + /!„)#„, 

with Xn and [in are as in (2.27) and 

_ (n + 7.+ l)(n + 7 + s - \){n + 7 + a + b)(n + 7 + c + d) 
( , ) n~ (2n + 21 + s - \)(2n + 21 + s) ' 

[(n +1 + a + c — l)(n +1 + a + d — 1) 

(66) d = (n + l + b + c-l)(n + l + b + d-l)] 
V ' } n (2n + 2l + s - 2)(2/i + 27 + ^ - 1 ) 

We then study the symmetries of the recurrence relation (6.4) under changes of 
the parameters. Consider the transformations 

(6.7) { T :l-+l + a + b - l , Û —• 1 - a, b-+1 - b, c-*c, d-^d}, 

(6.8) { T / : 7 - ^ 7 + c + J - l , a - ^ a, b->b, c - ^ 1 - c, d ^ l - d } . 

Note that the variable t does not change under the transformations (6.7) and 
(6.8) but x, being (a2 — f2)1/2 will change if a changes. 
It is clear that 

T 2 = T / 2 = / , T ?' = ?'?. 

The transformations T and T ' generate a group L of order 4, 

L={I, T, *', T f ' } . 

One can easily see that bni dn and x — Xn — \in are invariant under L. Hence 
the polynomials Rn are also invariant under L. 
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Let us define 

00 

(6.9) fy(w) = Y,R»^ b' c' J ; *; 7)w"+7* 

The differential equation for the generating function Q 1(w) takes the form 

(6.10) [w2ft + w(xQ -%-%) + <Qs]Çy(w) = w7£>7, 

with 

îDy =7(7 + s - 2)(7 + a + b - 1)(7 + c + d - 1)(27 + s - 4), 

% =(26 + s - 2)(8 + s - l)(6 + a + b)(6 + a + c)(8 + a + d), 

% =6(26 + s)(8 + b + c- \)(8 + b + d- l)(6 + c + d - 1), 

G =(25 + j - 2)(26 + j - 1)(2<5 + s), 

ft =(26 + s + 2)(£ + a + c)(<5 + a + d)(tf + b + c)(8 + b + d), 

6 :=wDw = w — . 
aw 

Note that D7 is invariant under L. The differential equation (6.10) can be 
expressed in the form 

5 1 
(6.11) <PÇ,(w) = Y,¥5-jfi

J&W = ï®1^' 

with 

(6.12) % = (1 - w)2, Tx = (w - 1)[(1 + 5s/2)w + 6 - 5s/2]. 

The remaining 2}'s will not be used in the sequel. Applying the factorization 
method developed in Section 5 we see that T has a factorization 

(6.13) T = %.S, where ^ = 8 + r(w). 

Furthermore S is a differential operator of order 4 which annihilates the follow
ing four linearly independent functions: 

(6.14) Gx =YxY2l G2 = TG { = Y3Y2, 

G3 = <T'Gx = YxY4, G4 = T T ' G , = Y3Y4, 
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and Y\, Y2l Y?> and Y4 are 

( a + t,b + t 
(6.15) Yx = 2Fj 

V a + b 
(c — t,d — t 

; w 

Yi — iF\\ ; w 
V c + d 

( \ -a + t,\ -b + t \ 
; w J , 

2-a-b J 
f \ - c - t , l - d - t \ 

Y4 = 2^1 ; w , 
V 2-c-d J 

Following Orr [29] we define 

(6.16) yi =w(a+b)/2(l-w)t+l/2Yx, 

and find that it is a solution of the second order differential equation 

(6.17) ^ l + / m = 0 , 

provided that 

(,18) ,„l(»,^^^pH^ 
l-(l-a-b)2 + (b-a)2-4t2 

4w(l — w) 

Similarly 

(6.19) y2 = w(c+d)/2(l - wyt+l/2Y2l 

satisfies 

(6.20) ^ +I2y2 = 0, with I2 = I2(c, d- t) := /i(c, J; -t). 

We set 

L M 
(6.21) Q(w) := Ix -12 =-r-~ + 4vv2 4w(l — w)' 

L = (A + Z?)(2 -a-b)-(c + d)(2 - c - d), 

M = L + (a — b + c — d)(a — b — c + d). 
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Observe that L and M are also invariant under L. 
Orr [29] has shown that the product y\y2 satisfies a fourth order differential 

equation 

(6.22) {Di - {DwQ)Dl + • • ^yxy2 = 0. 

Thus we have shown that the product Y\Y2 satisfies the ordinary differential 
equation 

(6.23) SYXY2 := M^ + Q,S3 + • • -)YXY2 = 0, 

Q:=2s-a- 4w/(l - w) - (wDwQ)/Q. 

Taking into account the factorization of T in (6.13) we find r(w) from (6.11), 
(6.12) and (6.23). The result is 

(6.24) Kw)=4-2+ {M~L)W 

2 L + (M -L)w 

Now the differential equation (6.11) becomes 

(6.25) (S + r(w))SÇy(w) = (l/2)£>7w7, 

which can be integrated once to give 

(6-26) 5 ^ ) = 2 [ L + (M-Z>] { L ^^ + ( M - L ) ^1T^}-

The integration constant in (6.26) vanishes since Çi(w) ~ w7 as w —» 0. We 
may now solve (6.26) using a Green's function technique since we know four 
solutions of the corresponding homogeneous differential equation, Ince [13, p. 
122], A tedious calculation and simplification give the following integral repre
sentation for the generating function: 

(6.27) Çy(w) = - w 7 { / + T + T ' + T T ' } 

x w"7Gi(w) / -1—T 

1 Vo p[L + ( M - L ) r ] 2 

x ^(r) [Ty2-s/2(l -y)Qiy)G4(y)dydr), 

with p = (1 - a - b){\ - c -- d) and </>(T) = L/(7 - 2 + j / 2 ) + T{M - L)/(7 -
1 + s/2). After expanding Gi(w) and G4(w) in terms of the Wilson polynomials 
Pn(a, b, c, d\ x) then performing the integrations in (6.27) we establish the 
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following explicit representation of the associated Wilson polynomials in terms 
of the Wilson polynomials 

(6.28) Pn(a, b, c, d\ x\ 7) 

_ 7(7 + s - 2)(7 + a + b - 1)(7 + c + d - 1)(7 + 1)„(7 + c + d)n 

(I-a- b)(l - c - d)(l + a + c)„(7 + a + d)n 

( / - T - T ' + TT') \Y,yn-J 
{ y=0 

T TV; 

7-1 

2 7 + ^ - 2 

In (6.28) we used the notation 

{a + c)n(a + d)n 

Y,u-fLV 

L(7+y)(2/-j + 2) 

T T ^ 1 
L J (2/ - s + 2)(2/-s+4)J 

Vr„ = 
«!(c + d)„ 

P„(a, &, c, d\ x). 

Note that if 7 —> 0, 2 — 5, 1—a — b,orl—c — d then (6.28) reduces to an 
obvious equality. 

We conclude this section by proving a generalization of (6.2) to the case 
of associated Wilson polynomials. The method of proof is very similar to 
what we used to prove (6.27). To do so we again renormalize the polynomials 
Pn(a, by c, d\ x\ 7). Set 

(6.29) Sn = Sn(fl, b, c, d\ x\ 7) = ( S ^ ~l)nPn(a, b, c, d\ x\ 7). 
(7 + ljn 

The Sn's satisfy the recurrence relation 

(6.30) - xSn = bnSn+i + dnSn-\ - (A„ + /zM)S„, 

where Xn and \in are the same as in (2.27) but bn and dn are now defined as 

_(rc + 7+l)(rc + 7 + tf + b)(n + 7 + 0 + c)(w + 7 + a + J) 
n ~~ (211 + 27 + s - l)(2n + 2j + s) ' 

[(n + 7 + 5 - 2)(/i + 7 + & + C - 1 ) 
, __ (n + 1 + b + d- \)(n + 7 + c + d - 1)] 

(2n + 27 + 5 - 2)(2n + 27 + s - 1) 

The analogue of the group of transformations L is the four element group L', 

L' = {/, # , # ' , W } , 

and 

{9{ :7—•7 + a + fc— 1, « —̂  1 — Z?, b—> I -a, c —> d, d—*c}, 

{9{' :7—•7 + a + c - l , a —• 1 - c, £—•*/, c —• 1 - a, d —* £}, 
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Recall that the variable t is invariant under the above transformations but x = 
(a2 — t2)1/2 will change if a changes. Here we also have 

?{2 = }{fT2 = I,?{?{f = ?{'?{. 

In the present case bn and dn as well as A„ + [in — x are invariant under L'. 
The generating function 

oo 

(6.31) g*(w) = ^2sn(a, b, c, d\ x\ l)wn+\ 
«=o 

satisfies the differential equation 

(6.32) [w2Ts* + w(xQ -%-%) + <Z%*]£7*(w) - w7£>7*, 

with 

£>7* = 7(27 + s - 4)(7 + a + b - 1)(7 + a + c - 1)(7 + a + d - 1), 

<Fh* = (28 + s + 2)(<5 + s - 1)(<5 + b + c)(<5 + 6 + d)(<5 + c + J), 

and .%, % and G are as in (6.10). The differential equation (6.32) can be put 
in the form 

5 1 
(6.33) (P*g*(w) = Y, Tf-FQlW = ̂  # > 7 

with 

(6.34) <P0* = (1 - w)2, ^* = (1 - w)[(2a - ls/2)w + 2a-5 + 3s/2]. 

As we pointed out earlier, #*, j — 2, 3, 4, 5 will not be used so we will not 
record their values. Applying the factorization method we obtain 

2>* = ^ * 5 * , where ^ * =<5 + r*(w). 

Performing a change of variable in the differential equation satisfied by a gen
eralized hypergeometric function of the type 4F3, [11] we can prove that the 
function 

'a + t, a — t, s/2, (s — l)/2 
(6.35) G(w):=( l - wf~\F3 ' \-s ^ 1 ~4w 

' ( 1 - w ) 2 

a + &, « + c, a + d 

is a solution of the differential equation 

(6.36) S*G = {2>0*£4 + Q > 3 + • • -}G = 0, 
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with 

Q* := 4w(l - s)(l - w) + 
1 — w 

1 +w 

6£(1 - w2) - -(1 - w)2 + (la + s - 1/2X1 + w)2 

We use the factorization T * = !^ *5 * then solve an inhomogenous linear first 
order differential equation to find that r*(w) must be 

r*(w) = - 1 + s/2- 1/(1+ w), 

and that ^7(w) satisfies 

1 
(6.37) 5*£7*(w)= Zl 

1 + w 
W „7+l 

27 + ^ - 4 27 + s - 2 

Finally this leads to the generating function 

£ 7 » = w72)7*[/ + ̂  +?{f + !Mf]w-1G(w) [W ( 1 yY H 

Jo Z(l+a + b-c 

2"*(y) 
-c-d)2 

»,7-i 

27 + ^ - 4 27 + ^ - 2 
dy, 

where 

£ = (a + b - \){a + c - l)(a + J - 1), 

and 

tf*0>) := 4^3 

1 - a + f, 1 - 0 - r, 1 - 5/2, (3 - s)/2 

2 — a — b1 2 — a — c, 2 — a — d 
d-y)2 
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